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ABSTRACT

In this article we review some machine learning methods for the design of nanomaterials. The first part will
discuss how to use neural network to build a predictive model of the optical properties of a certain material or
structure. The second part is dedicated to the optimization and reverse engineering of an optical material using
generative networks.
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1. INTRODUCTION

Machine learning has recently emerged as a new tool for nanophotonics to improve data analysis1,2 both at the
simulation and experimental levels. At the experimental level, neural networks can enhance our interpretation of
data and understanding of patterns; it has found applications for refractive index sensors,3 SERS experiments4

or for data storage devices.5 On the simulation level, machine learning can draw relationships between the
parameters of an object and its optical properties and can thus serve as a predicting model6 of the material
studied. This model can in turn be used in a more complex reverse engineering algorithm7,8 to find a solution
to an optimization problem. The more straightforward approach is to use a reverse network linking the optical
property to the parameters of the object, as it has been shown for reflection coating,9 waveguides,10 power
splitters,11 nanostructures,12 nanoparticles13 or chiral metamaterials.14 Another method widely implemented
is generative algorithms, which create solutions targeted towards a certain property, a method very well suited
for geometry-based problems. It has found applications for metasurfaces,15–19 nanostructures,20 metagratings,21

thermal emitters22 chiral metasurfaces,23 photonic crystals,24,25 power splitters26 and optical cloaks.27 Another
approach uses reinforcement learning to guide the process of selecting the optimal parameters of an object, and
has been demonstrated for color generation.28

In what follows we introduce some basic elements of neural networks as well as strategies to improve their
efficiency. We will consider forward predictive networks in a first part and how we can include physics-based
equations to improve their generalization capabilities.29 In a second part, we will present how we can use a
feedback loop for a generative adversarial network in order to optimize the geometry of an all-dielectric optical
cloak.27

2. FORWARD PREDICTIVE NETWORK

2.1 Fully connected Networks

Fully connected networks (FCN) are meant to draw a relationship between an object’s parameters and its optical
properties. Once trained, the network constitutes a synthetic function that takes a series of parameters as inputs
and calculates an output via the weights of every node of the network. The most simple case of a FCN is depicted
in Figure 1 for the prediction of the transmission spectrum of a metallic grating. It has the period and width
of a nanoslit array as inputs, the spectrum as the output and has 3 hidden layers. In this case of supervised
training, a dataset of previously collected spectra will be used to update the weights of the hidden layers in order
to build an optimal model. The spectra were obtained using coupled mode theory.30–32

This type of network, when trained with a sufficient number of example and with adequate activation function
and number of nodes, performs relatively well for parameters close to those used for training, as will be shown in
the next section. However the performance decreases drastically with very different input parameters. For this
reason, different strategies are employed to improve the capabilities of the network to generalize its predictions.

Further author information: (Send correspondence to Andre-Pierre Blanchard-Dionne: E-mail: andre-
pierre.blanchard-dionne@epfl.ch

Invited Paper

Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XVIII, 
edited by Din Ping Tsai, Takuo Tanaka, Proc. of SPIE Vol. 11462, 114621C  

© 2020 SPIE · CCC code: 0277-786X/20/$21 · doi: 10.1117/12.2568471

Proc. of SPIE Vol. 11462  114621C-1



2 2.5 3 3.5 4 4.5

1015

-2

-1

0

1

2

3

4

5

6

7

8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

Re(t)
Im(t)

Transmission

Input
Parameters

Output
Spectrum

Figure 1. A fully connected network for the prediction of the optical spectrum of a metallic nano-grating.

2.2 Networks with physics-based equations

In this section we show how we can improve the performance of neural networks when we include in their structure
a set a fundamental physics-based equations.29 Asa physical system, we consider a nanoslit array and use the
fact that its transmission is determined by the resonance states of the structure, we can use the basic Lorentzian
oscillator equations and a background factor to fully describe the spectrum. The network used is represented in
Figure 2. The parameters are connected to a series of hidden layers which give as output the parameters of a
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Figure 2. Neural Network including Lorentz oscillators. The output spectrum is the sum of the response of each oscillator.

Lorentz oscillator ω, γ, c and θ respectively the resonant central frequency, the losses, the amplitude and phase
of the oscillator. The actual output of each oscillator is thus given through the general equation :

l(ω) =
ceiφ

~(ω − ω0) + iγ
, (1)

and the total transmission will be given by the summation of the response of each oscillator.

In Figure 3 the transmission obtained using this method is presented alongside the response of of each
individual oscillator. We can observe that the two main resonance peaks of (a) are each well represented by a
single oscillator, the blue and yellow curves in (b). The advantage of the method can be clearly observed in the
following Figure 4, where the relationship between the inverse of the central frequency 2πc/ω0, or the resonant
wavelength, and the losses γ are plotted as a function of the period d. According to the physics of the resonance30

the former should have a linear behaviour with the period while the latter should have an inverse behaviour.
This is observed even for values of d which falls outside the range of the training set, meaning the the network
was able to grasp the physics of the studied material and extrapolate it.
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Figure 3. (a) Predicted and target spectrum for the model using oscillator equations for a nanoslit array of d = 266 nm
and a slit width of a = 66 nm. (b) Output of each individual oscillator.
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Figure 4. Relationship for (a) the resonant wavelength λ02πc/ω0 and (b) the losses γ as a function of the periodicity of
the system.

The fact that the spectrum follows a phenomenological behaviour leads to a much more robust and accurate
model, as can be seen in Figure 5 where the predicted spectrum for a FCN and the model with oscillators are
presented for parameters outside the training set range.
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Figure 5. (a) Predicted spectrum with the oscillator model (red dashed line) and fully connected network (yellow dashed-
dotted line) compared to the target (blue line). (b) Mean squared error of both models for values of the periodicity inside
and outside the training range

The FCN (yellow dashed curve) shows some spurious peaks, which could be expected since the fitting of
the spectrum in such a point-by-point method is more subject to inconsistencies or overfitting of the model.
The model with oscillators (red dashed curve) follows the behaviour of the individual oscillator and thus gives
a clearly better match with the target curve. We can have a global idea of the improvement of this model by
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looking at Figure 5(b), which plots the mean squared error of the predicted spectrum for different values of the
period. Both networks show good performances of 1.02 × 10−4 and 6.01 × 10−5 inside the range of the training
set, but reach in average 0.031 and 0.0016 outside of it, for an improvement of a factor of 20 for the model with
oscillators.

3. GENERATIVE NETWORK FOR REVERSE ENGINEERING

Generative networks were first created mostly for computer vision applications. They have the ability to manip-
ulate images and create realistic new images of a certain subject.33 They can be a great tool for geometry-based
optimization of nanomaterials since they can efficiently generate new design. Furthermore they can also be
trained for generating objects that satisfy a certain optimization goal. In this section we will present a genera-
tive adversarial network for the optimization of an optical cloak.27

3.1 Convolution Network

We use a convolution network to create a predictive forward network with an image as input. The convolution
operation aims at recognizing features in the image. For this study we optimize the geometry of a cloaking shell
as illustrated in Figure 6(a), which tries to conceal a perfectly reflective object at R1. The shell has a uniform
isotropic dielectric constant of ε = 2 and the background is air with ε = 1. The convolution network (Figure
6(b)) takes a binary image of the shell as input and predicts its scattering coefficient Ψp as output. 10 000
random shells were randomly generated and their scattering coefficients were computed with the finite-element
method to create the training dataset.
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Figure 6. (a) Geometry of the problem for cloaking with a uniform isotropic dielectric shell. (b)

Once the convolution network has been trained, it can be included in a generative adversarial network (GAN)
in order to generate new prototypes of the shell. This network is made of the generator, a convolution upsampling
network which takes noise input and generate images, and the discriminator, a convolution network which aims
a distinguishing which images are ”real” (from the dataset) and which are ”false” (from the generator) by having
this probability p as output. To this branched network we add the convolution network for which the losses are
added to the generator. The GAN in this setup (see Figure 7) accomplishes 2 tasks: it creates configurations of
the shells which resemble those of the dataset (avoiding noisy and random configurations) and which minimize
the scattering coefficient Ψ.

The training of the GAN is presented in Figure 8. The generator and discriminator usually reach an equilib-
rium state since their loss calculation is in opposition. The forward network in this case adds an additional loss
to the generator, which shifts the losses of the generator towards higher values. Proper scaling of the loss factors
must be done in order to generate adequate potential solutions. In Figure 8(b) we can observe the evolution
of the generation of shell configurations for different epochs of the training. The first few examples are slightly
more random but then tend towards prototypes which represent good solutions for cloaking.

In order to improve the solution search using the GAN, we implement a feedback algorithm which takes the
best proposed solution by the GAN, calculates their actual scattering coefficent (and not the predicted one from
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Figure 7. (a) The discriminator, a convolution network, and Generator, a transposed convolution network. (b) Structure
of the generative adversarial network
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Figure 8. (a) Training of the GAN. (b) Evolution of the images created by the GAN during training.
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Figure 9. Feedback loop used to improve the solution search
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the forward network), adds them to the dataset and then retrains the GAN for another iteration. This process
is illustrated in Figure 9.

The effect of the retraining improves the solution search in 2 ways: First, it improves the accuracy of the
forward network by including configurations of the cloaks that were deemed optimal and by retraining it with
the actual scattering coefficient. This way the forward network can learn which optimal solutions were actually
good, and which weren’t, reorienting the solution search. Second, the new solutions populate the dataset with
favorable configurations, which will influence the GAN into generating images that are similar. We can follow
the improvement of the proposed solutions by the GAN in Figure 10, where the average value of the calculated
scattering coefficient of the solutions found as well as the minimum value found (best candidate), are plotted for
each iteration of the feedback loop of the GAN.

(a) (b)

0 2 4 6 8 10

Iteration

10-10

10-9

10-8 Average
Minimum

Figure 10. (a) Value of the average and minimal scattering coefficient for the 1000 answers generated at each training of
the GAN. (b) Optimal configuration of the cloaking shell.

Each iteration shows an improvement until it reaches a minimum value of 5.11×10−11 W/m. This corresponds
to a ratio of cloaking of 0.0089 when comparing to the value 5.77 × 10−9 W/m for the case without a shell, a
result comparable to ones obtained using topology methods. The optimal configuration is presented in Figure
10 where we can see the bending of the electromagnetic wave around the object to conceal, a feature of cloaking
shells.

4. CONCLUSION

In conclusion, we have shown how we can improve predictive forward network by giving them more structure to
work with, in this case by including physics-based equations. We have also demonstrated how we can accomplish
reverse engineering with a generative adversarial network, and how a feedback loop of this network can gradually
improve the optimization process.
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