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ABSTRACT 

A novel approach is introduced to determine the time evolution of optical forces and torques on arbitrary shape 
nanostructures by combining Maxwell's stress tensor with the surface integral equation method (SIE). Conventional time 
averaging of Maxwell’s stress tensor allows obtaining an elegant form in terms of surface currents for the force exerted 
on nanostructures. Unfortunately, the information about the time dependence of the force – which can be very important 
in ultrafast photonics experiments and in nano-manipulation applications – is lost in such an approach. To overcome this, 
we have developed a time-domain method based on the inverse Fourier transform of the frequency-domain SIE. The 
calculations in the frequency domain allow accurately taking into account the dispersion of the permittivity function of 
the system and the use of surface currents enables the rigorous treatment of intricate geometries for the scatterer. 
Furthermore, the integration of Maxwell’s stress tensor directly on the scatterer’s boundary significantly reduces the 
required computation time and increases the accuracy of the method.  

We show quite unusual sum frequency-like terms in the dynamics of the force appearing in Maxwell’s stress tensor, 
which normally vanish for the time-averaged force. To illustrate this effect, we study how the pulse duration influences 
the dynamics of optical force in the case of a rectangular shape and Gaussian pulses illuminating thin film at normal 
incidence. In the framework of the developed numerical method, we study the influence of the sum-frequency-like terms 
on the dynamics of optical forces in the case of a spherical scatterer. 
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1. INTRODUCTION

After the discovery of the optical trapping by Ashkin,1,2 a series of works have been dedicated to the various possibilities 
of manipulating materials, biological specimens and atoms with light.3-9 Continuous-wave (CW) illumination has 
become instrumental in developing these experiments. Indeed, knowing the resonances of the objects and being able to 
tune the excitation wavelength accordingly, one can achieve very high optical forces, especially close to the resonances 
of the structure.10-13 The majority of these experiments rely on employing time-averaged optical forces appearing at 
selected frequency.  

Interestingly, the effects resulting from pulsed illumination are quite intricate and can substantially change the optical 
force.14-22 Despite the fact that all these works employ a very short laser pulse, fundamental physics that explains the 
values of the optical force in each particular pulsed-illumination experiment is surprisingly different. For example, 
pulsed illumination can be used to achieve very high peak power intensities, thus requiring less optical power than CW 
excitation to detach particles from a surface.18,19,22 In pulsed regime, a nonlinear Kerr effect can change the stiffness of 
the potential well in optical trapping experiments by utilizing the nonlinearity of the nanoparticle23-26 or the 
surrounding.27 Heating effects can also change the dielectric permittivity of the particle, thus enabling significantly larger 
optical forces.28 Femtosecond optical tweezers may be used to significantly enhance two-photon fluorescence compared 
to CW illumination.15,19,29  

Complex physics appears during the interaction of an optical pulse with an object. Despite the fact that it was shown that 
the average force is independent on pulse duration,30 the time-domain dynamics of the force within the pulse is quite 
intricate and strongly depends on the pulse duration.14,30,31 
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In this paper, we provide a pedagogical explanation of the emergence of the peak force in pulsed experiments. In Secs. 
2.1-2.3, we present theoretical models that explain the enhancement of the peak force for rectangular or Gaussian 
illumination pulses acting on a thin film and show how the peak force depends on the pulse duration. In Sec. 2.4, we 
consider two specific frequencies from the pulse and show that concurrent illumination with two planewaves at different 
frequencies leads to the peak optical force enhancement. In Sec. 2.5, we propose a numerical method based on the 
surface integral equation to numerically calculate the force in the case of a two-wave illumination. In Sec. 2.6, we apply 
this method to calculate the dynamics of the optical force acting on a 150 nm silver sphere. 

2. RESULTS

2.1 Scaling peak optical force with the laser bandwidth 

In this section, we discuss the effect appearing due to the interaction between different frequencies of the illumination 
spectrum and characterize the unusual enhanced peak force, which appears for broader laser spectra.  

Let us consider the optical force acting on a metallic thin film placed in vacuum and illuminated by a plane wave pulse 
with electric and magnetic fields 0 ( )tE  and 0 ( )tH  in the geometry illustrated in Figure 1. The dynamics of the optical 

force due to the applied electromagnetic field can be found using Maxwell's stress tensor, which is defined as32 

0 0( ) ( ) ( ) ,V V

S V

d
t t dS t dV

dt
     F T n S   (1) 

where ( )tT n  is the time-varying projection of Maxwell's stress tensor on the outward normal n  to the closed surface S 

        0 0 0 0

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,

2s s s st t t t t t t t t              T n E E n H H n E E H H n   (2)

and V , V  ( s , s ) are permittivity and permeability of the object (surrounding medium); while the Poynting vector 

( ) ( ) ( )t t t S E H  is integrated inside the volume V  of the object. Henceforth, we will assume that the surrounding 

medium is vacuum with 1s   and 1s  .  

In the configuration presented in Figure 1, we assume a negligibly small thickness of the plate. Thus, the integration over 
the entire surface S in Eq. (1) can be substituted by the integration over the upper and lower sides of the plate. In 
addition, the volumetric integration of the Poynting vector in Eq. (1) vanishes due to the negligibly small volume of the 
film. In the case of normal incidence, the electric and magnetic components of the field are always parallel to the long 
side of the plates, thus, 0   E n H n . These assumptions significantly simplify Eqs. (1) and (2) leading to  

    0 0

1
( ) ( ) ( ) ( ) ( ) .

2S

t t t t t dS     F E E H H n   (3) 

The incident field is defined by the electric and magnetic components 0 ( )E t  and 0 ( )H t , as shown in the Figure 1, while 

the fields of the reflected and transmitted waves are defined from the incident ones using the coefficients r  and t , 
respectively. For simplicity, in the following we assume no frequency dependence of r  and t .  
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Figure 1. Sketch of a thin film illuminated by a pulse propagating along the z-direction. The dynamics of the electric and 
magnetic fields for the incident pulse are defined by 0 ( )E t  and 0 ( )H t . Transmission and reflection coefficients t  and r

complete the definition of the field above and below the film.  

The total electric field above the surface ( )above tE  of the film has the form 

0( ) ( )(1 ).above t t r E E    (4) 

Recalling that the electric and magnetic fields of the planewave are related through the wavevector k  as 

0 0 ,k E H   (5) 

the magnetic component of the reflected wave should be taken into account with the minus sign in the equation for the 
total magnetic field ( )above tH  above the surface, 

0( ) ( )(1 ).above t t r H H   (6) 

The electric and magnetic fields below the surface ( )below tE  and ( )below tH  are defined by 

0( ) ( ) ,below t t tE E (7) 

0( ) ( ) .below t t tH H   (8) 

The projection of the optical force along the z-axis in Eq. (3) then takes the form  
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where 0S  is the surface of the long side (up or down) of the film. Using Eqs. (4) - (8), the equation for the force (8) 

reduces to 
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In the case of planewave propagation, the electric and magnetic components are related through the impedance of 
vacuum,33 

0
0

0

.
E

Z
H




    (11) 

Expressing the magnetic field in Eq. (10) using (10) leads to 

 2 2 2
0 0( ) ( ) 1 .z t t r t S   F E z   (12) 

This formula suggests that in the case of thin metal film, the force directly depends on the square of the instantaneous 

value of electric field on the surface of the film. In the following, we explain how different temporal spectra 0 ( )tE
influence the peak force. 
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2.2 Peak optical force in the case of a rectangular shape pulse 

Let us assume that the illumination spectrum has a rectangular shape 
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With the inverse Fourier transform defined as 
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the time-domain signal corresponding to Eq. (12) is  
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/ 22
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E t E
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The rectangular shape pulse spectrum as well as its time-domain counterpart are presented in Figure 2.  

Figure 2. (a) Rectangular spectrum. (b) Corresponding sinc-shape time-domain response.  

Note that the field in Eq. (14) is normalized so that the total energy of the pulse, given by  

2 2
0( )P E t dt E




  ,  (16) 

does not depend on filter band pass  . The equation for the force dynamics is now obtained by substituting Eq. (12) 
into (14) as 
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This force takes its maximum value when t=0, therefore, considering that  

0
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the maximum of the optical force dynamics can be simplified to 
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Interestingly, the peak force depends on the spectral width of the excitation. The total momentum transferred to the film, 
defined as 
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( ) ( ) ,
t

zS t t dt


  F (20) 

can be applied to calculate the total momentum transferred during one pulse, 

 2 2 2
0 0( ) 1 .S E r t S    z   (21) 

As can be seen, the total transferred momentum does not depend on  , which means that the pulse duration cannot 
affect the average dynamics of the pulse, as was pointed out previously.30 

2.3 Peak optical force in the case of a Gaussian pulse 

In order to show how the pulse width affects the peak force for different kinds of pulses, we study the peak force 
resulting from the Gaussian pulse illumination defined by 

 
   2 2 2 20
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2 1 exp( T )
          

  
 (22) 

where T defines the time width of the pulse. Note that the normalization in Eq. (22) is chosen such that the total energy 
of the pulse is the same as that in Eq. (16). Using the inverse Fourier transform defined by Eq. (14), the time-domain 
expression of the electric field (21) is given by 
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The Gaussian shape pulse spectrum as well as its time-domain counterpart are presented in Figure 3 for 0 8 / 2T  . 

Figure 3. (a) Gaussian pulse spectrum. (b) Gaussian pulse electric field dynamics in time-domain. 

The total momentum transferred to the film, 

 2 2 2
0 0( ) 1 ,S E r t S    z   (24) 

also does not depend on the pulse width, as before. The peak force acting on a plate at t=0, as in Eq. (19), is given by 
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Recalling that 1/ T  , the peak force scales again as  
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z F  (27) 

Overall, these results suggest that by increasing the bandwidth of the pulse, the peak optical force also increases. In the 
following section, we give a simple physical explanation for this phenomenon. 

2.4 Frequency interaction changes the peak force 

In order to get insights into the origin of peak force enhancement, let us first consider the interaction of two planewaves 
with frequencies 1  and 2 . The optical force due to the two-wave interaction can be found from Eq. (21) and reads 

   2 2 2
0 1 1 2 2( ) sin( ) sin( ) 1 ,z t E t E t r t S      F z (28) 

which can be further transformed into 
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As can be seen from Eq. (29), in addition to the oscillations at 1  and 2 , we also have now oscillations at the sum 

frequency and the difference frequency. These terms, with amplitudes 1 2E E  modulate the instantaneous force. When we 

extend this to a pulse, built from many different frequencies, all the frequency components interfere between each other 
thus contributing to this beating effect and therefore significantly changing the force in the time-domain. Let us note that 
this phenomenon is akin to the generation of second harmonic under pulsed illumination.34-39 

2.5 Surface integral equation for the accurate calculation of the dynamics of the optical forces 

In this section, we discuss a numerical approach to find the dynamics of the optical force acting on arbitrary shape 
particle. Generally, numerical integration of Maxwell’s stress tensor on the sphere enclosing the scatterer is required to 
find the optical force. In addition, the integration of the Poynting vector inside the volume of the particle is required to 
consider the variation of the momentum of the electromagnetic field.32 In order to find the fields, one needs to use 
numerical techniques based on Maxwell’s equations.40,41 In this paper, we use the surface integral equation (SIE), which 
has been proven as a very good method for the solution of scattering problems thanks to its accuracy and low 
computation requirements.41,42 Also, being a frequency-domain method, this approach allows taking into account the 
dispersion of the dielectric function, which is more difficult for time-domain methods.41,42  

Due to the freedom in choosing the integration surface in Eq. (1), we set S  to be the surface of the scatterer. In this case, 
the volumetric integration of the Poynting vector ( )tS  is performed within the volume of the structure. In the framework 

of the surface integral equation formulation, the fields at the surface of the object are represented in terms of so-called 
surface currents, which in harmonic representation i te  are related to the complex amplitudes of the electric ( )E r  and 

magnetic ( )H r  fields on the surface of the scatterer:42 

( ) ( ),  S  J r n H r r (30) 

( ) ( ).  M r n E r   (31) 

Recalling the main results from Ji et al.43 and Kern et al.,42 the dynamics of the electric and magnetic fields on the 
scatterer’s surface at frequency   can be found through a separation into normal and perpendicular components as  
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 ( , ) Re ( ) .i tt e    H r J r n   (35)

Here ( )V   and ( )V   are dielectric permittivity and magnetic permeability of the scatterer at frequency  . 

Assuming that the scatterer is a homogeneous body with a surface S , the electric and magnetic fields inside the volume 
of the scatterer read 

( , ) ( ) ( , ') ( ') [ ' ( , ')] ( ') ,  ,i t i t
V

S S

t i dS e dS e V             E r G r r J r G r r M r r   (36) 

( , ) ( ) ( , ) ( ) [ ' ( , )] ( ) .i t i t
V

S S

t i dS e dS e                H r G r r M r G r r J r  (37)

With the dyadic Green’s function defined as 
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where  1 22 ( ) ( )V Vk       is the wavevector inside the scatterer and 'R  r r .  Let us introduce parallel and 

perpendicular components of electric and magnetic fields with respect to the local surface normal vector n  

( , ) ( , ) ( , ),t t t E r E r E r   (39) 

( , ) ( , ) ( , ).t t t H r H r H r   (40) 

Inserting Eqs. (39), (40) into Eq. (2) gives: 
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In the case of a two-wave illumination at frequencies 1  and 2 , the components of the electric field require slight 

modification as 
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And for the magnetic field 
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By inserting Eqs. (42)-(45) into Eq. (41), the dynamics of the force attributed to Maxwell’s stress tensor can be obtained 
for the case of a two-wave illumination. The integration of the Poynting vector inside the volume of the object can also 
be simplified by writing the fields in frequency domain: 

1 2
1 2( , ) 2Re ( ) ( ) ,  ,i t i tt e e V      E r E r E r r   (46) 
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1 2
1 1 2 2

( , )
2 Re ( ) ( ) .i t i td t

i e i e
dt

       
E r

E r E r   (47) 

By replacing E  and H  in Eqs. (46) and (47), the same expressions can be obtained for magnetic field thus enabling 
finding the derivative of the Poyting vector. Thus, using Eqs. (36), (37), (46) and (47) the dynamics of the force due to 
the exchange of electric field momentum can be obtained. Note that the errors in the volumetric calculation of the 
Poynting vector in Eqs. (36) and (37) due to the divergence of the Green’s tensor in the vicinity of the scatterer’s surface 
for ' 0R   r r  can be avoided by using the singularity subtraction technique.44,45 

2.6  Dynamics of the optical forces acting on a sphere 

In this section, we apply the method developed in Sec. 2.5 to study the dynamics of optical forces acting on a 150 nm 
diameter silver sphere for an illumination with two planewaves at frequencies 1  and 2 . Before discussing the 

dynamics caused by two-wave illumination, let us look at the force emerging due to single frequency illumination. In 
Figure 4(a), we present the time-average optical force at different frequencies. From Figure 4(a), we selected two 
frequencies at 1 2.67 eV   corresponding to the maximum of the average force and at 2 2.13 eV  , slightly below, to 

obtain a beating effect. The dynamics of optical forces at frequencies 1  and 2  is represented in Figure 4(b) as 1F ( )t

and 2F ( )t . As can be seen, the peak optical force reaches the maximum values of 226.1 10  2/ ( / )N W m  and 224.8 10  
2/ ( / )N W m  for the frequencies 1  and 2 , respectively. Quite interestingly, simultaneous illumination with the two 

waves at these frequencies leads to the emergence of the additional beating component of the optical force, as described 
in Sec. 2.8. The dynamics of this component oscillating at the beating frequencies 1 2   and 1 2   is presented in 

Figure 4(c). Note that the amplitude of the beating force oscillations is 2211 10  2/ ( / )N W m  in this case and even 

higher than the amplitudes of the oscillations of 1F ( )t  and 2F ( )t . Consequently, the dynamics of the optical force under 

two waves illumination sumF ( )t  equals to 1 2 beatingF ( ) F ( ) F ( )t t t   and is shown in Figure 4(c). 
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Figure 4. Time-domain analysis of the optical force acting on a 150 nm diameter silver sphere in vacuum under two-wave 
illumination. (a) Optical force under monochromatic illumination. (b) Dynamics of the optical force at frequencies 

1 2.67 eV   and 2 2.13 eV  . (c) Dynamics of the beating component in the case of simultaneous illumination with the two 

waves. (d) Dynamics of the optical force under two-wave illumination (purple) and dynamics of the optical force under 
single-wave illumination (red). 

Comparison of the two-wave illumination force with the 1F ( )t  shows significant enhancement of the amplitude of the 

two-wave force. In Figure 4(c), we multiplied the force 1F ( )t by the factor of two to insure equal power of incident 

illumination of the single wave and two wave illuminations. 

3. CONCLUSION

We have discussed the instantaneous optical force acting on a thin film illuminated by rectangular or Gaussian pulses at 
normal incidence. Keeping the average power of the pulse constant for varying spectral widths, we have observed the 
enhancement of the peak force for pulses with largest bandwidth. We have further shown that the appearance of a 
beating effect, associated with the different spectral components of the illumination pulse, explains this enhancement of 
the peak force. Finally, we have proposed an accurate numerical method to compute the variations of the optical force in 
the time domain, based on a frequency-domain surface integral equation method. This method was applied to calculate 
the peak force enhancement for a 150 nm sphere illuminated by two waves with different frequencies. 
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