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Teaching optics to a machine learning network
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In this Letter, we demonstrate how harmonic oscillator
equations can be integrated in a neural network to improve
the spectral response prediction for an optical system. We
use the optical properties of a one-dimensional nanoslit
array for a practical implementation of the study. This
method allows to build more generalizable relations between
the input parameters of the array and its optical properties,
showing a 20-fold improvement for parameters outside the
range used for the training. We also show how this model
generates the output spectrum from phenomenological
relationships between the input parameters and the output
spectrum, indicating how it grasps the physical mechanisms
of the optical response of the structure. © 2020 Optical
Society of America

https://doi.org/10.1364/OL.390600

Machine-learning algorithms have been introduced recently
in photonics as a tool to improve the design of nanostructures
[1,2]. Such algorithms are based on artificial neural networks
trained to perform a certain task, which is in the present case
to determine the relationship between a structure’s parameters
and its optical properties. It has been proven a very powerful
method, achieving high accuracy even for complex geometries,
without the computational cost of running numerical simu-
lations for every structure [3]. Furthermore, networks can be
designed to do the opposite operation, for example, finding
the right parameters to obtain specific optical properties, thus
achieving the otherwise difficult task of reverse engineering
[4–7]. Different networks have been demonstrated to work
well for applications in optics, including the design of reflection
coating [8], waveguides [9], optical storage units [10], power
splitters [11], chemical sensors [12], as well as for the scattering
of nanoparticles [13], circular dichroism in chiral metamate-
rials [14], or for color generation [15,16]. In this article, we
draw inspiration from classical optics to introduce a method
that improves the accuracy and the generalization potential of
spectrum predictions using machine learning. Indeed, while
regular networks can achieve great accuracy within the examples
of the training set, this accuracy drops considerably for examples
outside this range [17]. To circumvent this issue, we introduce
neural networks that include harmonic oscillator equations,
which are then used to generate a spectrum. This method is
depicted in Fig. 1.

We demonstrate the advantage of using this approach for the
transmission spectrum of a metallic grating in air with a glass

substrate at normal incidence. The metallic grating is made of
silver, and the thickness of the metal layer is fixed at 200 nm.
This structure with constant thickness can be describe with
two parameters: namely, the period d and the slit width a. This
simple problem was chosen to clearly illustrate the advantage of
the method in the case of optical spectrum experiments and to
draw direct relations between the physics of the resonance and
the oscillator parameters.

The idea we introduce in this model is to link the input
parameters toward a summation of Lorentz oscillators that
will fit the output spectrum of the structure. The Lorentzian
equation can be written using four parameters [18]:

l(ω)=
ceiφ

~(ω−ω0)+ iγ
, (1)

where c is a constant, φ is a phase factor, ω0 is the central res-
onance frequency, and γ are the losses associated with the
resonance. A Lorentzian oscillator was chosen since any optical
resonance can be represented by this oscillator’s equation or a
combination of several such oscillators via the phase factor φ
[19,20]. The total transmission for an optical system is given as

t(ω)=Ct e iψ
·

∑
k

lk(ω), (2)

where Ct e iψ corresponds to a background phase factor, which
is also trained. The total network consists of five independent
oscillator networks and the background. Each of these networks
uses the nanoslit parameters a and d as inputs, three fully con-
nected hidden layers, and a layer with four nodes representing
the four parameters of the oscillator, as shown in Fig. 2. A final
output layer takes the sum of all oscillators multiplied by the
background contribution to calculate both the real part and the
imaginary part of the transmission coefficient t . This complex
value spectrum is then compared with the grounded truth to
calculate the loss function that is used to train the network.

For the training of the model, a dataset consisting of 10’167
complex spectra obtained with the coupled mode theory [21]
was used for gratings with periods ranging in between 200 nm
and 400 nm and slit widths ranging from d/6 to d/3. These
parameters correspond to structures that can experimentally be
realized with ease [22]. The thickness of the array was fixed at
200 nm. The input training parameters were scaled in microns.
The networks were developed using the Deep Learning library
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Fig. 1. Schematic of the neural network used. The grating is repre-
sented by the period d and slit width a , which will serve as inputs for
the different oscillators. Each oscillator consists in an independent net-
work. The oscillator functions are summed to give an output spectrum,
which is represented by the real and imaginary part of the transmission
coefficient.

Fig. 2. Schematic of the oscillator network used. The network con-
sists of fully connected layers between the input, three sets of hidden
layers, and the output parameters of a Lorentzian distribution.

Keras under TensorFlow [23]. The hidden layers in each oscil-
lator consist all of 250 nodes with a LeakyReLU activation
function. The output layers of the oscillator used a “softplus”
activation function for the two parameters ω and γ to ensure
positive physical values. An Adam optimizer was chosen with
an adaptative learning rate that started at l = 1× 10−4 and was
reduced by a factor of 0.75 every five epochs. The mean squared
error of the concatenated real and imaginary parts of the trans-
mission coefficient was used as the loss function. The neural
network was trained on each set of parameters of the grating
until the loss function of a validation set no longer improved, for
about 60 epochs.

Once the network is trained, it can be used to predict the
complex optical spectrum for any given set of parameters. A typ-
ical example is shown in Fig. 3 for a periodicity d = 266 nm
and slit width a = 66 nm. The predicted spectrum agrees very
well with the target one, with a mean squared error reaching
〈σ 2
〉 = 3.6× 10−4. In Fig. 3(b), the output for each of the five

oscillators is represented. Two sharp peaks (yellow and blue
curves) accounts for resonances inside the array, which are due
to extraordinary optical transmission [24], while the three other
broad lines (green, purple, and red) contribute together with the
background contribution Ct e iψ to the transmission.

The use of the phase factor φ in Eq. (1) gives the possibility
of interference between the different oscillators of the system
and the background. For example, the extraordinary optical
transmission exhibits a Fano-type resonance that originates
from the interference between one spectrally narrow resonant
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Fig. 3. (a) Predicted (circles) and target (full and dashed line) trans-
mission and phase spectrum for a periodicity of d = 266 nm and a slit
width of a = 66 nm. (b) Output functions of each of the oscillators for
the given parameters. Two curves (yellow and blue) show the resonant
state of the grating array, while the other three curves (orange, green,
and purple) contribute to the background function.

state and a broad background [25–27]. In Fig. 3(a), both reso-
nance peaks show this asymmetrical line shape, which results
from the summation of the individual resonant states (blue and
yellow curves in Figure 3(b)) and the background (red, green,
and purple curves in Figure 3(b)). The Lorentzian oscillators
serve as elementary building blocks from which more complex
resonances can emerge, providing more flexibility to the model
to fit any type of optical resonance. One powerful aspect of this
method is that the training draws a relationship between the
input parameters of the structure and the optical resonances
supported by it. This leads to a more stable and general link
between the two since the function becomes phenomenological
and follows the physical mechanisms of the resonance. Figure 4
shows the relationship between the output central frequency
(ω0) and loss (γ ) of the oscillator related to the first diffraction
order resonance peak of the structure [orange curve in Fig. 3(a)]
as a function of the periodicity for a fixed slit width.

The inverse of the central frequency, i.e., the central resonant
wavelength, is plotted in Fig. 4(a) as a function of the period to
highlight the linear relation that exists between the periodicity
and the resonance wavelength. This relation remains mono-
tonic and linear even for values outside the training set range,
demonstrating the extrapolation capabilities of this method.
The γ factor shown in Fig. 4(b) for the same resonance peak
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Fig. 4. Dependence of the parameters (a) ω0 and (b) γ of the first
diffraction order resonance of the slit array as a function of the perio-
dicity for a fixed slit width a = 70 nm.

also shows monotonic behavior in an inverse relation with the
period, which is to be expected since the slits structure exhibits
Fabry–Perot typed resonances for which the finesse is propor-
tional to 1/d [21]. The conventional way to measure a model’s
accuracy in machine learning is to test it upon input parameters
not used in the training. This is accomplished by choosing
randomly a subgroup of parameters within the dataset along
with their target spectrum, and by measuring the mean squared
error of the prediction of this set that has not been “seen” by the
model before. While this is sufficient to prove generality of the
model within the values of the dataset, it does not indicate how
well the model performs outside the range of the dataset values,
or how well can the model think “outside the box.” In the case
of the model developed in this study, the periodicity was cho-
sen between 200 nm and 400 nm. We have also compared the
optical responses for gratings with parameters outside this range
and used them to assess whether the network would handle data
outside this range, for values of periodicity ranging in between
400 nm and 550 nm, and slit widths again ranging from d/6 to
d/3. The prediction results for the oscillator model on this new
set is presented in Fig. 5, alongside the results for a traditional
neural network with direct spectrum output. This last model
was simply a set of three hidden layers relating the input parame-
ters to the output spectrum, with a similar number of parameters
to the model with oscillators. The model with oscillators shows a
much better representation of the desired spectrum in this case
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Fig. 5. (a) Target (blue curve) spectrum and predicted spectrum for
a model with (red dashed curve) and without (yellow dashed-dotted
curve) oscillators for parameters outside the range of the training
set (d = 444 nm and a = 132 nm). (b) Mean squared error (MSE)
between the predicted spectrum and the target for values of periodicity
ranging from values inside the training set (200–400 nm) and outside
of it (400–500 nm).

since it is based upon the monotonic variation of the Lorentz
parameters, which is more stable and robust, while the network
without it shows spurious transmission variations.

Both networks behave well within the training set range
with the average of the mean square error inside the training
set range being 1.02× 10−4 and 6.01× 10−5, respectively, for
the model without and with oscillators; this value goes to 0.031
and 0.0016 outside of this range, indicating an improvement of
a factor of 20 when using the oscillator. While the model with
direct spectrum points output becomes rather unreliable in that
range, the model with oscillators shows a smoother transition
with accurate predictions. The main limitation for this model
arises when physical effects not represented in the training set
start influencing the optical spectrum. In the case of the grating,
higher diffraction orders start to emerge in the wavelength range
chosen for this study, which is a limitation for any model built
from machine learning. We can observe this difference in the
high-frequency part of Fig. 5(a) where the small variations of the
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target (blue curve) are somewhat missed by the prediction (red
dashed curve).

In this Letter, we have demonstrated that the inclusion of
harmonic oscillators in the output of a neural network model
improves its generalization ability by creating a more robust
model. The study was conducted on the transmission spectrum
of nanoslit arrays. The optical spectrum prediction shows an
improvement of a factor of 20 compared to a traditional neural
network with direct spectrum output for input data that lie
outside the training set, demonstrating a more generalizable
model. This improvement comes from the parametrization of
the output, which includes phenomenological relations with the
parameters of the slit array.
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