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We study electromagnetic trapping in an optical lattice formed by three equiangular in-plane beams. We
demonstrate analytically that this optical lattice offers stable trapping sites for particles satisfying specific
symmetries, irrespective of the exact nature of their electromagnetic response. Under small displacements, the
particles are shown to be subject to equal restoring forces along all directions and the trap is isotropic. Though
the intensity distribution of the trap forms a perfect hexagonal lattice, differences in phase variation along opposite
directions cause the restoring force to be asymmetric for large displacements, resulting in a force landscape
possessing only threefold symmetry. We then show numerically that this asymmetry affects the optical binding
force between particles in adjacent trap positions and results in unequal shifts of their equilibrium positions.
Universal trapping in the optical lattice combined with this asymmetric mechanical response of trapped particle

pairs promises rich optomechanical effects.
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I. INTRODUCTION

Electromagnetic fields can transfer linear and angular mo-
menta to particles, resulting in forces and torques on them [1].
Both propagating waves and field intensity gradients have been
used to generate optical forces and torques [2—4]. Optical
tweezers utilize forces arising from strong field gradients to
trap nanoparticles at desired locations, granting an unprece-
dented ability to isolate, study, and modify them [5]. Trapping
has been performed on a wide range of objects from atoms
to particles and cells [6]. The field of optical manipulation
has consistently gained attention, especially since the advent
of plasmonic trapping, and has resulted in a multitude of
tested as well as promising technological applications in
nanotechnology, biology, and optics [7-21].

Optical tweezer arrays permit the trapping of multiple
particles simultaneously and are fundamental to achieving
large-scale optical nanomanipulation [22,23]. Many tech-
niques have been introduced to generate such arrays including
structured light fields [24,25], plasmonic arrays [17,19], beam
shaping using holograms [26—-30], and micromirror arrays [31].
Standing-wave patterns formed by interfering beams can be
used to generate periodic arrays of trapping sites [32-35].
These optical lattices have the ability to trap multiple particles
in one-, two-, and three-dimensional arrays, creating optical
matter [36-38]. When multiple particles are trapped in an
electromagnetic field, the interaction between them gives rise
to interparticle forces which strongly modify the behavior of
the trapping forces [39-41]. This can result in optical binding
between particles [42,43] and can be used for the self-assembly
of crystals of the particles [44-50].

In this paper, we study trapping in a hexagonal optical lattice
formed by three equiangular beams in a plane. Rather than con-
straining ourselves to specific geometries or approximations,
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we provide a general analytical treatment that shows that the
three-beam trap admits a stable equilibrium for any particle,
irrespective of the exact nature of its electromagnetic response,
as long as it satisfies specific symmetries. We also demonstrate
that though the electric field intensity landscape in the lattice
is hexagonally symmetric, phase variations result in a flip
asymmetry in forces. To obtain a better physical understanding
of the general theoretical results, we also compare them with
the dipole approximation and numerical calculations using the
surface integral equation (SIE) method [51-53]. Finally, we
show that the force asymmetry further manifests in the optical
binding between particles trapped in the lattice.

II. NUMERICAL RESULTS

The optical force F on a particle can be computed using the
formula [1]

Fi =?§(oij)nde, (1)
N

where S is a surface surrounding the particle with normal vector
n and (o;;) is the time-averaged Maxwell stress tensor. For
monochromatic fields with the time dependence exp(—iwt),
the time-averaged stress tensor can be expressed in terms of
the complex electric field E and magnetic field H as

1
<O'ij> = ERC[GQE?EJ‘ + /J,()Hl-*Hj
1 *
— 58 ) _(eoE{ Ex + uoH:Hk)}. )
k

Here the electric and magnetic fields include both the incident
field and the scattered field from the particle. In addition, €
and g are the electric permittivity and magnetic permeability
of the background medium assumed to be a vacuum and §;; is
the Kronecker delta.
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FIG. 1. (a) Schematic of the system. Three coherent plane waves with A = 720 nm and electric field along z with electric field intensity

la A3

|Eo|? are incident along directions k! = £, k% = —1% + ? $,and &> = —1% — £ $. A gold sphere of 100-nm radius is placed with its center
atry = (xo, yo). (b) In the absence of the sphere, the beams form a hexagonal electric field intensity landscape. (c) Placing the sphere disturbs
this landscape, resulting in a force on the sphere (magenta arrow). Locations of the seven intensity maxima closest to the origin when the sphere

is absent are marked with white circles in (b) and (c).

Before we delve into the general theory, let us look at
a concrete example. A spherical gold particle of radius r =
100 nm located on the xy plane with its center at (xg, yo) is
illuminated by three plane waves with wavelength A = 720 nm
having electric field polarized along z and propagating in plane
at an angle of 120° from each other as shown in Fig. 1(a). The
propagation vectors of the three waves are along directions
B =22 =154+ L9 and £ = 1% — 23. Although
such in-plane illumination is unrealistic in the context of trap-
ping experiments, we are interested only in in-plane forces and
neglect the forward scattering force, making the approximation
valid. The three plane waves have equal intensities and are
coherent, and their phases are chosen such that all three beams
are in phase at the origin. Under these conditions, in the
absence of the sphere, the electric field intensity forms a perfect
hexagonal lattice with a lattice constant of 2% =480 nm,
showing a variation from zero to nine times the incident
intensity of a single beam as seen in Fig. 1(b).

Placing the sphere changes the field profile of the optical
lattice. The near-field modification due to the sphere (with the
permittivity of gold described by a Drude fit to experimental
data [54,55]) located at (150 nm, 100 nm) is computed using
the SIE and plotted in Fig. 1(c). Comparing with Fig. 1(b), the

I
@300 - b | P
100 - 5x10722 N;
E S
£ oF 0 =
2 2
-100 - -5x10722 |~
-1x1021
-200 |- =
| \ |
200 -100 0 100 200
Xg (nm)

field intensity at the origin is seen to be considerably weakened
whereas the intensities at other locations such as (%’\, 0) are
enhanced. The near-field landscape modification results in an
optical force F on the sphere according to Egs. (1) and (2).
The force can be decomposed into a radial component F, and
atangential component Fy. The former moves the sphere away
from the origin (when positive) or towards it (when negative).
A negative radial force is thus a restoring force, resulting in
stable equilibrium.

The radial and tangential components of the optical force
on the particle under displacement in the xy plane are shown
in Fig. 2. Each point in the graph corresponds to an SIE
force calculation similar to Fig. 1(c) for the sphere centered
at (xo, yo). The radial component of the force is negative
in a region centered at the origin. The particle has a stable
equilibrium there and returns to the origin if displaced slightly.
The tangential forces are very weak in comparison: For a
displacement under 100 nm, the maximum value of the radial
force is more than five times that of the tangential force. What
seems surprising at first glance is that the force in Fig. 2 does not
have the sixfold symmetry of the hexagonal lattice in Fig. 1(b).
Instead, it possesses a threefold symmetry corresponding to the
three illumination beams. In particular, the restoring force is
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FIG. 2. Optical forces on the sphere as a function of the position of its center in the xy plane: (a) radial component F, and (b) tangential

component Fy.
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asymmetric for positive and negative displacements about the
x axis. The particle is more stable for displacements along +x
than along —x, although the initial field pattern is perfectly
symmetric along that direction.

The reason for this asymmetry is that the force arises not
merely from the intensity gradient but depends on the phase
as well. Though the different peaks in the lattice have the
same intensity, they achieve their maxima at different times,
as seen in Supplemental Material [56], and hence have a phase
difference. We will now explain the forces observed by means
of an analytical treatment of the system.

III. THEORY

Using the properties of the stress tensor in Eq. (2) and sym-
metry, the optical force on an arbitrary object with threefold
rotational symmetry about the z axis and mirror symmetry
about the xy plane and the xz plane is derived in the Appendix.
When the object is centered at ry, the force is given by

F(ro) = {[cos ¢*' R + cos $>? + cos > RI(U> %)
+ [sin¢*' R” + sin¢™* + sing " RI(VZ$)}, (3)

where ¢™" is the relative phase between the mth and nth beams
at ro, R is the 120° rotation operator, and U?} and V2 are
real parameters depending on the electromagnetic response
of the object. Thus the force response of the particle in the
entire three-beam landscape is dictated only by the two real
parameters U?* and V?* defined in the Appendix.

A. Stability of the trap

Let us now perform the stability analysis of the trap.
Suppose that the particle is only slightly displaced from (0,0) to
ro = (rocos 6, ro sin0). As a result, the phase terms in Eq. (3)
become

¥ = %(—3 cosf + x@sin@),

P = ?(—Zﬁsm@),
" = %(3 cosf ++/3siné). “4)

To study the small displacement limit of 79/A — 0, we substi-
tute the expression for the phase terms in Eq. (3) and perform
a Taylor expansion retaining only terms up to O(ry/A). The
cosine terms cancel because 1 + R + R? = 0 [see Eq. (A5b)]
and we are left with

F(ro) ~ ?[3 cosO(R — R?) — 3/3sin0](V>$)

_ 3/37 V28
==

That is, up to the leading order, the force is radial and of a
restoring nature when V2* > 0. We thus have a stable harmonic
trap with equal restoring force for small displacements along
all directions.

However, we had seen in Fig. 2 that the restoring force is
not cylindrically symmetric. In particular, the force is not equal
for positive and negative displacements along the x axis. Let
us now look at the source of this asymmetry by dropping the

(=To). &)

small displacement approximation and limiting ourselves to
the x axis. If the particle is positioned such that ry = (xo, 0),
we have ¢! = —37% — _ 413 Hence the expression for force
in Eq. (3) becomes

F(xo) = [1 4 cos ¢> (R* + R)|(U*%)
+ sinp*'[R* — RI(VZ9)

= |:1 — CoSs (371x()>i|U23£ — \/gsin (ﬁ>V23£.
A A
(6)

As expected, the force is along x and vanishes at the origin.
The behavior when x /A — 0 agrees with the result in Eq. (5).
For small values of xg, it is the latter term that dominates and
hence the particle experiences a stable harmonic potential if
V2 > 0. However, as the displacement becomes significant,
the U? term makes the potential asymmetric and is the reason
why the particle experiences different forces if displaced to the
left and right. In Fig. 3, the restoring force on the particle is
plotted for displacements along x with the fit to Eq. (6). The
agreement is seen to be perfect. The valleys are deeper than the
peaks, explaining why displacement along +x is more stable
than along —x (note the position of the origin in Fig. 3).

Though the particle has stable equilibrium at the origin only
when V23 > 0, there exist other locations for V2 < 0 where
the radial force is stabilizing. To see this, we place the particle
at an intensity minimum of the lattice at rp, = (2%, 327’%) and
displace it slightly to rp, + ro. Following similar steps as in
Egs. (4) and (5), the optical force in this situation is found to be

2
F(rm +19) = {— sin <Tn>[sin ¢21R2 + sin ¢32
13 234 2_77 .21 2
+ sing "RI(U*X) + cos 3 [sing“ R
+ sin ¥ + sinqs”R](vBy)}
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FIG. 3. Restoring force F, on the sphere for displacements along
the x axis. The SIE computation results (points) and the best-fit curve
from Eq. (6) are shown.
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where the second step makes the small displacement
approximation ro/A — 0. The first term is a tangential
force that does not affect the stability of the trap. However,
its presence indicates that the optical force is nonconservative
since its line integral on a circle around r,, is nonzero. The
second term is a stabilizing radial force pushing the particle
towards r,, for V?* < 0, making intensity minima stable trap
sites when V2* < 0. Combining with the previous result that
intensity maxima are stable trap sites for V>* > 0, we have
the surprising result that all spherical particles experience a
stabilizing restoring force at some location in the three-beam
optical trap irrespective of the underlying electromagnetic
response which dictates the sign of V3. Note that we have not
used any electromagnetic properties of the particle other than
linearity and any geometric properties other than symmetry
(the particle should possess threefold rotational symmetry
about the z axis and mirror symmetries about the xy plane and
the xz plane). Hence this treatment is valid for particles of all
sizes and made out of any material and for other symmetrical
shapes such as a cylindrical disk and an equilateral triangle.
The three-beam optical lattice is thus a universal trap for all
kinds of particles as long as they satisfy the requisite symmetry.

The only exception to this treatment is the case when V23
becomes exactly zero during a sign flip. When this happens,
according to Eq. (6), the force graph becomes tangent to the x
axis. That is, though the force vanishes, it is not a position
of stable equilibrium but of neutral equilibrium. Similarly,
when displaced tangentially from r,, in Eq. (7), the radial
force vanishes but the tangential force is sufficient to take
the particle away because of the lack of a restoring force.
However, this case can usually be neglected since V?* =0
happens for a particle only for a specific wavelength and even
small deviations away from it will take us back to one of the
two cases of equilibria dealt with previously.

B. Dipole approximation

To understand the physical significance of the U3 and V23
parameters, let us consider the limit when the sphere is small
enough to be treated as a dipole with dipole moment

p(rg) = aEo(rp), (8

where « is the complex polarizability of the sphere and Ey is
the incident electric field at the location of the sphere ry. Under
the dipole approximation, the force is given by [57]

F(rg) = lRe((p* - V)Eg + Mod—p X HS) )
2 dt

The first term arises from the electric part of the Lorentz force.
However, since the dipole moment is always along the direction
of the incident electric field (z) and the electric field gradients
are in the xy plane, this term vanishes. Hence the only nonzero
term is the second one, which results from the magnetic part
of the Lorentz force, and can be written as

F(r) = wTMOIm(o:EO x HY). (10)

In the same fashion as before, we can express the total incident
field as the superposition of the incident fields from the three

beams,

F(ry) = “)T’““’ImZaEg’ x HI*
s m nx\.n
= XImZa(EO Ept)k

Eo|? R
_ me' ImmZ’;ozexp(w’"”)k". (11)

Maxwell’s equations have been used for the simplification.
This expression can now be processed in the same manner as
was done with Eq. (A6). For displacements along x, we find

that
[ <3n ):| 71|E0|2
F(xg) = —|1 —cos Im(x) x

2
—3sin (3’1 )R( )”'E‘)' £, (12)

Comparing with Eq. (6), we obtain that

U - im ()n|E|0

~ (13)
_ Re(a) 22 ELG ”'E'O

under the dipole approximation. The V23 term depends upon
the real part of the polarizability. This suggests that this force
term arises from the electric field intensity gradient. On the
other hand, the U?* term depends on the imaginary part of
the polarizability and is thus related to the extinction. Since
the real part of the polarizability of the sphere can change sign
across a plasmon resonance, this suggests that V23 will flip
sign as well.

Numerically retrieved values of U?* and V? from SIE
simulations using Eq. (6) are plotted in Fig. 4 with solid
lines. For a sphere of radius » = 50 nm, V% is positive and
dominates U? at high wavelengths [Fig. 4(a)]. This should
not be unexpected since the polarizability of the sphere is
dominantly real and positive at frequencies much lower than
the resonance. As the wavelength is decreased, we approach
resonance and the absolute value of U? is maximized. Further,
V23 passes through zero and changes sign across the resonance,
resulting in a reversal in the direction of force [58]. The
negative signin U can be found to be consistent on comparing
Egs. (6) and (12). We also computed the polarizability from
the dipole moment induced on the sphere and evaluated U2
and V2 using Eq. (13), which are presented as dashed lines
in Fig. 4(a). The agreement is nearly perfect, suggesting that
modeling the sphere as a dipole is an excellent approximation
in this limit.

When the sphere size is increased, the higher-order modes
dominate and the dipole approximation is expected to fail. In
Fig. 4(b) we keep the wavelength fixed at 600 nm and plot U?3
and V?? as a function of the sphere radius. The deviation from
the dipole approximation starts becoming noticeable below
100 nm. The higher-order modes in the sphere cause reversals
in the sign of both U?* and V?? for a radius around 160 nm.
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FIG. 4. Dependence of parameters U2* and V2 in Eq. (3) on (a) wavelength for fixed radius » = 50 nm and (b) radius for fixed wavelength
A = 600 nm. Solid lines denote the values computed directly from the force in SIE simulations using Eq. (6), whereas dashed lines are calculated

from the dipole moment according to Eq. (13).

A reversal in the sign of U? is impossible under the dipole
approximation because that would lead to a negative imaginary
part of the dipole moment and thus to negative extinction.

IV. OPTICAL BINDING FORCES

The asymmetry in the force seen here could also manifest
in the coupling between particles at different trap sites and thus
the optical binding [59]. To study this, we consider the same
system presented in Sec. II, with an additional identical gold
particle. The two particles are placed at the two trap locations
(0,0) and (480,0) and we compute the restoring force on each
of them when they are displaced along the x axis to locations

(x1, 0) and (x,, 0), respectively. The geometry of the system is
shown in Fig. 5(a). The electric field intensity for symmetric
displacement by 100 nm (x; = 100 nm, x, = 380 nm) plotted
in Fig. 5(b) clearly demonstrates field asymmetry.

The restoring force on the first particle is shown in Fig. 5(c).
Keeping the second particle fixed at (480 nm, 0) moves the
equilibrium position of the first particle to the right by more
than 100 nm. Displacing the second particle has a tremendous
effect on the equilibrium position of the first; moving it
away by less than 50 nm brings the first particle back to the
origin. On the other hand, the restoring force on the second
particle in Fig. 5(d) shows a much weaker shift. When the
first particle is kept fixed at the origin, the second particle is
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FIG. 5. (a) Schematic of the two-particle system. Two gold particles of 100-nm radius are placed at adjacent electric field intensity maxima
at (0,0) and (480 nm, 0) and displaced along the x axis to (x;, 0) and (x;, 0), respectively. (b) The resultant electric field intensity landscape
is highly asymmetric. (c) Force F,; on the particle at (x;, 0). (d) Force F,, on the particle at (x,, 0). The single-particle equilibrium positions
x; = 0 and x, = 480 are marked with vertical and horizontal lines, respectively, in the force plots.
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shifted by less than 20 nm. Moving the former does not affect
the equilibrium position that significantly either. We can also
consider the combined equilibrium of the two particles. This is
the pair of locations when the restoring force on both particles
vanish. It thus corresponds to the intersection of the white
curves showing equilibria in Figs. 5(c) and 5(d). Surprisingly,
the second particle is seen to be barely displaced from its
original equilibrium location, whereas the first particle has
shifted towards it by more than 100 nm. The phase asymmetry
in the trapping field has thus been clearly magnified in the
two-particle response. The result is that at equilibrium, the
two particles are much closer than the separation between
intensity maxima in the unperturbed lattice. Having more
nearby particles would modify the optical binding force and
the equilibrium positions further.

V. CONCLUSION

We have proved theoretically that the three-beam optical
lattice provides stable trap sites for all particles with threefold
rotational symmetry and two flip symmetries irrespective of
their specific electromagnetic response. Though the restoring
force is isotropic for small displacements, the trap potential
is asymmetric due to the phase dependence of the force. In
turn, this strongly affects the optical binding force between the
particles at adjacent trap sites. The presence of other particles in
the lattice can thus modify the equilibrium positions and spring
constants of the trap. This suggests that particle ensembles
formed from the lattice could be significantly displaced from
the expected positions, especially near the edges. This should
be taken into consideration when performing experiments on
optical matter. The modification of collective equilibria are
expected to show interesting optomechanical behavior, which
should be further investigated experimentally.
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APPENDIX: RESTORING FORCE

We can express the total electric and magnetic field as a
field vector element |y) = |E, H). Let us now define a vector-
valued operator T acting on two field vector elements |y!) and

),
a1
W Ty >,—2y§

N

1
~ 5% > (Bl E; + MOHQ*H,&)}nde,
k
(AD)

where E™ and H™ are the electric and magnetic fields corre-
sponding to the field vector element [{/™). The stress tensor
integral for the force in Eqgs. (1) and (2) reduces to applying
the operator 7 on the field vector element |y/),

F =Re(y|Ty). (A2)

Itis easily seen from the definition that T is conjugate linear
in the first argument and linear in the second, as they are chosen
to correspond to the first and second fields in each term of
Eq. (2). If there are multiple illuminations which individually
result in field vector elements | ), under the assumption that
the response of the particle is linear, the field vector element
as a result of the combination of all the illuminations is given
by [¥) =", [¥™). The total force on the particle is then

F— Re<2<¢m|)|T|(Xn: W))

m

=Re) (¥"ITly"). (A3)

That is, the total force can be found by applying the operator on
the fields pairwise. The sphere is illuminated by three waves.
Let the field vector elements due to the waves propagating
along k', k2, and k* when the sphere is at the origin be
[v1), [¥?2), and |y3), respectively. Defining the 120° rotation
operator R, we have from symmetry

W) = RIY?) = Ry ). (A4)
We will use the following properties:
Ry) =1y, (ASa)

[¥) + R|Y) + R*|y) = 0 (for in-plane vectors), (A5b)

and

Y™ IRITIRIY")) = RY™TY").

When the center of the sphere is displaced from the origin to
ro = (X0, Yo), the three total fields due to the three beams get
multiplied by different phase factors. The field vector element
due to the mth beam would now be

(A5c¢)

: 27 rm m s m m
exp | i——k" -ro J[Y") = exp(i¢™)[Y™).
The total force on the sphere centered at ry is hence

F(ro) =Re ) _expli(¢" — ¢" (Y |TI¥").

m,n

(A6)

For compactness of notation, we will henceforth denote ¢™ —

¢" by ¢"" and (YT |y") by T™".
Considering only the terms with m = n,

DT =T+ (WIRTRIY) + (W R TRy
=7" + RT" + R?T"
=[14+ R+ RIT!
=0, (A7)

where we have used Eqgs. (A4), (ASb), and (A5c). The terms
with m = n have canceled out. Note that 7" would be the
force on the particle if it was illuminated by only the mth beam.
This first-order force has hence vanished due to symmetry
and we are only left with the coupling terms m # n. Thus we
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obtain
F(ro) = Re{expli¢' 17" + expli¢*1T> + expli¢"* 1T
+explig21T?" + explip>1T3% + expligp® T3}
= Refexpli¢? |R2 T+ expligp? 1T+ expligp*1RT*
+ explip21R* T + explip> 1T+ explip> IRT )
= Re{[cos p*' R? + cos ¢*> + cos p P RI[TH + T3
+i[sin p*' R? + sin ¢>? + sin ¢ R][T? — T]}.

(A8)

The total force can thus be expressed in terms of the 2-3 cou-
pling alone (note that we could have done the same with 1-2 or

3-1 coupling as they are identical up to a rotation). To further
simplify this, considering only the in-plane components, let

T23 — a23)fe +b23A, (Ag)

where a?* and b are complex numbers. If we rotate the

coordinate system by 180° about the x axis, the identities of
beams 2 and 3 are switched, and the direction of the y axis
is flipped as well, whereas the x axis remains invariant. From
this we can see that

T =a®% — b*3. (A10)

Setting U =2Re(a?) and V?* = —2Im(bh**), we obtain
Eq. 3).
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