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ABSTRACT: In this work, we investigate the generation of second-
harmonic light by gold nanorods and demonstrate that the collected
nonlinear intensity depends upon a phase interplay between different
modes available in the nanostructure. By recording the backward and
forward emitted second-harmonic signals from nanorods with various
lengths, we find that the maximum nonlinear signal emitted in the
forward and backward directions is not obtained for the same nanorod
length. We confirm the experimental results with the help of full-wave
computations done with a surface integral equation method. These
observations are explained by the multipolar nature of the second-
harmonic emission, which emphasizes the role played by the relative
phase between the second-harmonic modes. Our findings are of particular importance for the design of plasmonic nanostructures
with controllable nonlinear emission and nonlinear plasmonic sensors as well as for the coherent control of harmonic generations
in plasmonic nanostructures.
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Motivated by different specific features, the study of
nonlinear optical processes in plasmonic nanostructures

has become a vivid field of research.1,2 First, the intrinsic
nonlinear response of plasmonic materials enables the
investigation of subtle nonlinear mechanisms associated with
the surface,3,4 the shape,2 the roughness,5,6 and the symmetry2

of plasmonic nanostructures. Second, local field enhancement
associated with the plasmon resonances can boost nonlinear
processes including second-harmonic generation (SHG),7−9

third-harmonic generation,10−12 and nonlinear photolumines-
cence,13−16 such that these nonlinear signals provide indirect
entry to the local field enhancement.17−19 Third, the plasmonic
modes associated with a nanostructure are the underlying
framework upon which nonlinear processes can be built.20,21 It
is only quite recently that the role played in nonlinear
plasmonics by the interaction between the different modes
available at the fundamental and harmonic frequencies has been
recognized, leading to different multiresonant nanostructure
designs that benefit from the interaction of several plasmonic
modes at different frequencies.21−25 This is especially the case
for SHG where a dipolar excitation at the fundamental
frequency produces a nonlinear signal that is essentially
quadrupolar.26

In this article, we shed new light on the interplay between the
underlying modal structure supported by a plasmonic
nanostructure and the corresponding SHG. Specifically, we

show that the second-harmonic emission from gold nanorods
can be controlled using interferences between two modes
excited at the second-harmonic wavelength. By recording the
backward and forward second-harmonic signals emitted by
plasmonic nanorods with different lengths at a fixed pump
wavelength, we observed that the nonlinear signal emitted in
opposite directions is maximum for different nanorod lengths,
revealing surprising enhancement mechanisms that do not fit
with the well-established relation between the nonlinear
response and the plasmonic enhancement. We explain these
experimental findings with the help of full-wave computations
performed with a surface integral equation method (SIE); the
numerical results emphasize the multipolar nature of the
second-harmonic emission and the associated interference
effects.27 These observations are interesting for the design of
efficient second-harmonic nanosources as well as for the
development of nonlinear plasmonic sensing, which aims at
probing small refractive index changes with the help of
nonlinear plasmonic nanostructures.
The gold nanorods used in this work are fabricated on a glass

coverslip with a standard electron beam lithography fabrication
method.28 The nanorods were designed to reach a width of 80
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nm and a length varying from L = 90 nm to L = 160 nm by 10
nm steps. For the sake of accuracy, we measured by SEM the
real width and length of nanorods, (see SEM pictures of
nanorods in Figure 1(b)). Widths have been found to be 75 ±
5 nm and lengths are 15 to 30 nm smaller than expected values
from 75 to 138 nm with a precision of ±5 nm. The thickness of
the deposited gold layer is 50 nm. The linear optical response is
obtained from dark-field spectroscopy. Figure 1(a) shows the
evolution of the scattering spectrum for a series of gold
nanorods whose lengths are reported close to the related
spectrum. In order to perform the linear characterization in the
same experimental conditions as those used for the nonlinear
optical measurements, a drop of immersion oil is deposited on
top of the nanostructures. The nanorods are thus immersed in a
homogeneous medium with a refractive index of 1.5. The
scattering spectra show that the localized surface plasmon
resonance red-shifts as the nanorod length increases (from 650
nm for L = 75 to 890 nm for L = 138 nm), as reported in
previous studies of the linear response of gold nanorods.29,30

One can note that resonances between the 110 and 120 nm
long antennas seem to slightly blue-shift. However, this shift
also associated to a broadening of resonancesappears to be
not relevant because the shift is smaller than the width at half-
maximum of the resonance. To confirm numerically this
behavior, we compute the scattering from nanorods with similar
dimensions with an SIE method.31 The edges and corners of
the rectangular nanorods are rounded with a radius of 5 nm to
provide a more realistic model.32 The nanorods are excited by a
planewave polarized along the long axis and placed in a
homogeneous medium with a refractive index of 1.5, similar to
the refractive indices of both the glass substrate and immersion
oil. The calculated localized surface plasmon resonance red-
shifts from 710 nm for L = 90 to 990 nm for L = 160 nm. Both
calculated and measured spectra are in quite good agreement.
Having characterized the linear responses of the gold

nanorods, we now turn our attention to their second-harmonic
responses. The second-harmonic generation from colloidal gold
nanorods has already been investigated with hyper-Rayleigh
scattering using a collection at a right angle33,34 and for
nanofabricated nanorods with a collection performed in the
forward direction only.35,36 Note that the second-harmonic

intensity is also commonly collected in the backward direction
using the same objective as that used for illumination.24,37,38 All
these works have emphasized the role played by localized
surface plasmon resonances in the enhancement of the
nonlinear emission. Inspired by a recent study of the second-
harmonic light emitted from AlGaAs dielectric nanoantennas,39

we choose in the present work to collect simultaneously the
second-harmonic intensity in both the forward and backward
directions, as depicted in Figure 2(a). A high numerical
aperture oil-immersion objective (60×, NA 1.49) focuses on
individual nanorods with a 120 fs pulsed laser beam emitted at
a wavelength of 820 nm. The pulse energy is kept constant to a
value as low as 4.75 pJ, well below the damage threshold of the
nanorods (the mean laser power is 380 μW). The intensity of
the second-harmonic emitted in the backward direction is
collected by the same objective (episcopic objective), while the
second-harmonic intensity emitted in the forward direction is
collected with a second oil-immersion objective (100×, NA
1.30, diascopic objective). Two microscope objectives with
distinct working distances are used for convenience of the
alignment procedure. Figure 2(b) shows the second-harmonic
intensity collected in the forward and backward directions for
nanorod lengths ranging from 90 to 160 nm (see the
Supporting Information for the experimental details; the
corresponding measured spectra are shown in Supporting
Information Figure S1; both SHG and nonlinear photo-
luminescence are observed). The error bars correspond to
the sum of the noise level and the error in estimating the SHG
intensity (see Supporting Information for more details). The
intensities of the nonlinear signals in the forward and backward
directions reach a maximum for two different nanorod lengths.
According to the literature, this length-dependent signal is
understood from the resonant excitation of a localized surface
plasmon mode at the fundamental wavelength.1,2 This is
confirmed by the experimental dark-field spectra, Figure 1(a),
indicating a resonant excitation of the longitudinal dipolar
plasmon mode at the pump wavelength (λ = 820 nm) for L =
110 nm and L = 120 nm. While the second-harmonic intensity
peaks at L = 110 nm in the forward direction, the maximum is
reached for L = 120 nm in the backward direction. A similar
behavior has been observed for a dozen of nanorod arrays (see

Figure 1. (a) Dark-field spectra of the gold nanorods with length ranging from 75 to 138 nm. (b) SEM images of four nanorods. (c) The scattering
spectra of the nanorods, whose length vary from 90 to 160 nm, evaluated with a surface integral equation method. The nanorod widths and
thicknesses are 75 nm and 50 nm, respectively. The spectra are shifted vertically for clarity.
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for example the second set of nanorods provided in Figure
2(c)), emphasizing the reproducibility of this observation. This
observation cannot be inferred from the simple plasmonic
enhancement of the nonlinear responses36−38 and points
toward a more complex mechanism.
To understand this behavior, we perform full-wave

computations of the second-harmonic response of the gold
nanorod with a SIE method assuming a surface contribution to
the nonlinearity40 (see the Supporting Information for the
implementation details). The second-harmonic spectra are
evaluated for fundamental wavelengths spanning between 600
and 1100 nm and for nanorod lengths varying between 90 and
160 nm. The second-harmonic intensity is integrated over a
sphere in the far-field region (sphere radius 50 μm). As
expected and illustrated in Figure 3(a), the second-harmonic
emission is generally enhanced when the fundamental wave-
length matches the dipolar longitudinal plasmon resonance.
However, compared to the calculated scattering cross sections

displayed in Figure 1(b) that exhibit a stronger linear response
for larger antennas, the simulations in Figure 3(a) indicate an
enhanced SHG intensity for the small nanorods. Indeed, as the
nanorod length decreases, the dipolar surface plasmon
resonance blue-shifts at the fundamental wavelength, augment-
ing the retardation effects and then the SHG.26 For a fixed
pump wavelength centered at 820 nm, the strongest enhance-
ment of the nonlinear response occurs for 120−130 nm
nanorod lengths.
We then calculate the emission pattern of the second-

harmonic wave for the different nanorod lengths considered in
this work. Figure 3(b) shows the computed emission diagrams
for four sizes (L = 100, 110, 120, and 130 nm). In the
Supporting Information, Figure S3 gathers the computed
patterns for all nanorod sizes. To compare these numerical
results with experimental data, the computed second-harmonic
pattern is divided into two parts, corresponding to the second-
harmonic intensity integrated on the top hemisphere for the
forward second-harmonic intensity and that integrated on the
bottom hemisphere for the backward second-harmonic
intensity. In the following, all the simulations are done with a
fundamental wavelength of 820 nm. The results are shown in
Figure 3(c). We find that the length of the nanorods drastically
influences the emission pattern. For L = 90 nm, the second
harmonic is essentially forward emitted, while for the longest
nanorod, the diagram shows a stronger emission in the
backward direction. We verified that this behavior is not
modified by taking into account the different numerical
apertures for the episcopic and diascopic objectives (see
Supporting Information, Figure S3). The evolution of the
forward and backward second-harmonic emissions in Figure
3(c) is similar to the one observed in the experimental results
shown in Figure 2(b).
Before studying the underlying mechanisms of this effect, we

recall that in the case of a normal planewave illumination of the
nanorods the SHG signal comes essentially from (i) a dipolar
mode oriented along the illumination propagation direction
and (ii) a quadrupolar mode oriented along the nanorods axis.2

The dipolar second-harmonic emission is thus due to the
retardation effect induced by the fundamental wave: the phase
variation of the fundamental wave across the rod thickness
induces a second-harmonic dipolar moment along the wave-
vector of the pump wave; see the left inset in Figure 3(d). On
the other hand, the quadrupolar second-harmonic emission
arises from the fundamental dipole excited along the nanorods
axis; see the right inset in Figure 3(d). In order to disentangle
the contribution of these two modes, we perform a multipolar
decomposition of the second-harmonic emission; that is, the
second-harmonic field is expressed using the vector spherical
harmonics (VSHs)41 as

∑ ∑= +
= =−
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where al,m and bl,m are the complex expansion coefficients, El,m is
a normalization factor, Nl,m and Ml,m are the VSHs, and lmax is
set to 8. The definition used for the VSHs and the
normalization factor can be found in ref 41. The expansion
coefficients are found by projecting the computed electro-
magnetic fields onto the VSHs at a distance of 10 μm from the
nanorods. The amplitudes of the three coefficients for the
dipolar (a1,m) or the five coefficients for the quadrupolar (a2,m)
second-harmonic emissions are then summed up to determine

Figure 2. (a) Sketch of the experimental setup used for the
simultaneous detection of the forward and backward second-harmonic
light. (b) Forward (shown in black) and backward (shown in red)
second-harmonic intensities as functions of the nanorod length. The
corresponding dark-field spectra are shown in Figure 1(a). (c)
Forward (shown in black) and backward (shown in red) second-
harmonic intensities for a second set of nanorods, showing the
reproducibility of the experimental observations. The error bars
represent the error in estimating the SHG intensity.
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the relative weight of the dipolar or quadrupolar emissions;
orders higher than the quadrupole as well as the magnetic
modes, related to the bl,m coefficients in eq 1, are found to be
negligible. In Figure 3(d), we observe that the second-harmonic
dipolar mode is the highest contribution to the second-
harmonic emission, except for nanorod lengths between 110
and 130 nm, for which the longitudinal dipolar mode is
resonantly excited at the pump wavelength (820 nm); see
Figure 1(b).
The evolution of the amplitudes of the dipolar and

quadrupolar second-harmonic emissions cannot explain the
flip of the nonlinear responses discussed previously since these
two contributions are symmetric with respect to the forward
and backward directions as pictured by the insets in Figure
3(d). The literature suggests that the interference between
different second-harmonic modes, and thus their relative phase,
plays an important role in the observed emission patterns.42,43

Especially, it was shown that the phase induced by the
fundamental dipolar mode allows controlling the forward and
backward second-harmonic emission.27,42,44 For this reason, the
multipolar analysis is further refined in Figure 4. The projection
of the second-harmonic field on the VSHs reveals that the
dipole contribution comes from the two expansion coefficients
a1,−1 and a1,1 and that the quadrupole contribution comes from
the three coefficients a2,−2, a2,2, and a2,0, with the remaining
coefficients a1,0, a2,−1, and a2,1 being negligible. Note that the
coefficient values are dependent on the axis orientation; see
Figure 3(b). A careful analysis of the dipole vector and the
quadrupolar matrix (see the Supporting Information),
combined with symmetry considerations, provides the relation

between the coefficients a1,m and a2,m. For the dipole, the
relations a1,1 = a1,−1 and a1,0 = 0 are obtained and, for the
quadrupole, |a2,−2| = |a2,2| and arg(a2,0) = arg(a2,−2) + π =
arg(a2,2) + π, in agreement with the results shown in Figure
4(a,b). This observation confirms that second-harmonic
emission corresponds to that of a transverse dipole and a
longitudinal quadrupole. Since the phase between the quadru-
pole coefficients is roughly constant (close to π) over the whole
nanorod size range (see the green curves in Figure 4(b)) and
the two dipole coefficients are in phase, only the relative phase
between the dipole coefficients and the quadrupole coefficient
a2,0 is considered in the following. In Figure 4(b), we observe
that the phases of the dipolar and quadrupolar components do
not evolve at the same rate (compare the blue and green
curves), hinting that the flip in the second-harmonic emission
occurs when the phase difference between the two components
reaches a specific value. Figure 4(c) shows the evolution of the
phase difference between the dipole and quadrupole
coefficients, revealing that the flip indeed occurs for a specific
phase difference Δϕ between 0.19 π rad and 0.28 π rad,
corresponding to nanorod lengths between 115 and 120 nm.
To confirm the role of this phase difference in the flip of the
second-harmonic emission, the VSHs associated with the
dipolar mode have been added to those of the quadrupole
mode with expansion coefficients of constant amplitudes but
different relative phase Δϕ as

= + +

+ +

ϕ
− −

Δ
− −a a a
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Figure 3. (a) Second-harmonic intensity as a function of the illumination wavelength for nanorod lengths ranging from 90 to 160 nm. The spectra
are shifted vertically for clarity. (b) Second-harmonic emission patterns for nanorod lengths of 100 to 130 nm. The black solid lines correspond
respectively to the pattern profiles in the planes x = 0, y = 0, and z = 0. (c) Computed forward (shown in black) and backward (shown in red)
second-harmonic intensities as functions of the nanorod length. (d) Decomposition of the second-harmonic intensity in dipolar (shown in blue) and
quadrupolar (shown in green) emissions. The insets show the emission patterns of the dipolar and quadrupolar second-harmonic modes. The
fundamental wavelength is 820 nm, except for panel (a).
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with a1,−1 = a1,1 = 1, a2,−2 = a2,2 = −1, and a2,0 = 0.82 to
reproduce the dipolar and quadrupolar emissions. The result is
shown in Figure 4(d), where we observe that the direction flip
occurs for a phase difference Δϕ = 0.15 π rad, a value very close
to the one extracted from the scattering spectra in Figure 4(c).
Concerning the relation between |a2,−2| and |a2,0|, we observe
that the flip between backward and forward emission does not
depend upon the VSH N2,0 and thus of the amplitude of the a2,0
coefficient (data not shown). This observation suggests that the
flip in the nonlinear emission is due to a fundamental symmetry
relation between the VSHs. Although not required to obtain
the flip in the nonlinear emission, the specific relation |a2,0| =
0.82|a2,−2| = 0.82|a2,2| reproduces a radiation pattern with the
expected cylindrical symmetry around the x-axis (see the
Supporting Information). The electric field associated with a
VSH does not have a constant phase over the sphere (i.e., is a
function of both θ and φ), leading to a complex interference
process.
Beyond their importance for the fundamental understanding

of the mechanisms that lead to second-harmonic emission in
plasmonic nanostructures, these observations are also very
important for the development of nonlinear plasmonic sensing:
the nonlinear analog of plasmonic sensing aiming at the
detection of small refractive index changes using the nonlinear
properties of plasmonic nanostructures.45−47 Indeed, nonlinear
signal collected in such an application, i.e., the second-harmonic
intensity, is not necessarily maximized when the fundamental
wavelength matches the scattering maximum. Furthermore, the

modal interplay occurring between the dipolar and quadrupolar
second-harmonic emissions could be directly used for sensing.
Finally, when designing a practical device for nonlinear sensing,
it is crucial to collect the signal where it is strongest. Figure 5(a)
shows an example of such an application where the forward and
backward second-harmonic intensities are plotted as a function
of the refractive index of the surrounding medium. A nanorod
length of 100 nm has been chosen as an example, and the
fundamental wavelength is 820 nm. The dependence upon the
refractive index is identical to the one discussed previously
considering the nanorod length influence; that is, a flip of the
nonlinear pattern is observed in Figure 5(a). To quantify this
flip, the ratio between the forward and backward second-
harmonic intensities is shown in Figure 5(b). This ratio evolves
between 0.8 and 1.9 for a refractive index of the surrounding
medium between 1.5 and 2. In the region of the largest slope,
the estimated sensitivity is 4.7 RIU−1 (refractive index unit).
Although the comparison with other methods, especially the
ones developed in the linear regime, is not straightforward,48,49

the approach proposed here is a credible alternative to standard
methods for in situ characterization during nonlinear and
ultrafast optical measurements.
In conclusion, we have shown that the emission pattern of

the SHG emitted from gold nanorods strongly depends on the
length of the nanorods. We have experimentally demonstrated
a different evolution of the second-harmonic intensities
recorded in the forward and backward directions using an
original experimental configuration. Specifically, we have

Figure 4. (a) Normalized amplitude and (b) phase of the expansion coefficients alm for a nanorod length ranging from 90 to 160 nm. (c) Phase
difference between the dipolar coefficient a11 and the quadrupolar coefficient a20. The horizontal line is at 0.15 rad and the vertical band isshows
where the flip occurs in the full-wave computations, Figure 3(c) (d) Evolution of the emission direction with the phase difference between a11 and
a20. The black solid lines correspond respectively to the pattern profiles in the planes x = 0, y = 0 and z = 0. The second-harmonic emission is
computed as = + + − + −ϕ

−
Δ
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observed that the nonlinear emission in these two directions is
not maximal for the same nanorod length, a behavior departing
from the well-known plasmonic enhancement of the nonlinear
response. Using a full-wave numerical method, we have clearly
identified the underlying mechanisms that lead to the
experimental observation and revealed that it stems from the
evolution of the phase between the different multipoles
involved in the second-harmonic emission. This result indicates
that, while the modal structure associated with a plasmonic
nanostructure is key to understanding its spectral response, the
dephasing between the different modes can govern fundamen-
tal properties, such as the emission direction and detected
intensities. Since the recorded signal depends upon the
experimental configuration of the detection, special care is
required to determine the nonlinear conversion rate and to
design efficient nonlinear plasmonic nanostructures. Further-
more, we showed that the modal interplay occurring in the
SHG from plasmonic nanostructures may be used to measure
small refractive index changes.45−47 These results can also open
interesting directions for the dynamic control of harmonic
generations in plasmonic nanostructures based on engineering
the relative phase between the different modes.50,51
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