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Abstract: Efficient optical energy transfer is key to many technologies, ranging from 
biosensing to photovoltaics. Here, for the first time we show that by introducing a random 
medium with appropriate filling factor, absorption in a specific volume can be maximized. 
Using both numerical simulations and an analytical diffusion model, we identify design rules 
to maximize absorption in the system with different geometrical and scattering properties. By 
combining a random medium with an open photonic cavity, we numerically demonstrate a 
23-fold enhancement of the absorbed energy. We also show how absorption as high as 99% 
can be reached in a device as thin as 500 μm for normal incidence illumination. Finally, our 
data indicate that introducing a non-absorbing random medium into a light trapping system 
for thin solar cells can enhance absorption of energy by a factor of 2.2. This absorption 
enhancement, caused by the random medium, is broadband and wide-angle and can help 
design efficient solar cells, light trapping devices, biosensors and random lasers. 
© 2016 Optical Society of America 

OCIS codes: (260.2710) Inhomogeneous optical media; (290.4210) Multiple scattering; (300.1030) Absorption; 
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1. Introduction 

Light propagation in disordered optical materials has been extensively studied for Anderson 
localization [1–3], random lasers [4–7] and light focusing below the diffraction limit [8, 9]. 
Additionally, recent developments in adaptive wavefront shaping techniques have stimulated 
research on highly transmitting (or so-called open) channels in random media [10–12] and 
coherently enhanced absorption [12]. Elongated optical paths – present in random media – 
recently paved the way for new sensing applications: gas camera sensors [13], 
multiscattering-enhanced absorption spectroscopy [14] and multiscattering-enhanced optical 
probes [15–17]. Finally, random media offer the possibility to improve photovoltaic devices 
by enhancing their absorption and increasing the optical path of light [18–20]. The present 
manuscript is devoted to the latter direction. 

Recent trends in photovoltaics suggest moving towards thin film solar cells, where the 
recombination losses of generated hole-electron pairs are minimized [21]. However, such 
trend also requires efficient light trapping methods to maximize absorption within a thin solar 
cell [22]. Existing light trapping schemes utilize geometric engineering [23–27], plasmonic 
nanoparticles [28–30], metallic and dielectric gratings [31, 32], resonant dielectric 
nanoparticles [33, 34] and photonic crystals [35–37]. Geometric engineering schemes and 
gratings can suffer from defects and often require alignment or a tracking system, whereas 
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nanoparticles and photonic crystals are resonant and do not necessarily cover the full solar 
spectrum [37]. In this context, random structures offer broadband and wide-angle 
performances, which is crucial in solar energy harvesting [19]. 

To date, random structures for light trapping applications include randomly textured 
patterns on the front or back side of solar cells [19, 38–41]. Interestingly, these works mainly 
focus on two dimensional structures. Furthermore, their performances are usually only 
evaluated in terms of structural correlations at a given filling factor in the strong localization 
regime: authors seek the optimal conditions, in which light can be efficiently coupled to the 
Anderson closed loops that provide high absorption. On the other hand, it was recently 
theoretically predicted that the so-called diffusive regime with moderate filling factors is also 
beneficial for absorption thanks to the formation of eigenchannels with long optical paths 
[42]. This concept is experimentally implemented using wavefront shaping techniques, 
demonstrating enhanced absorption in 3D media up to 7.4 times [43, 44]. However, this 
technique suffers from a serious limitation: it requires expensive and precise equipment to 
control the input channels. 

Stimulated by these findings and using numerical simulations, we study three-dimensional 
random media in an absorbing background with varying filling factors, ranging from a 
homogenous medium to a diffusion-like and, finally, to a close-packed random medium. In 
that context, we should acknowledge a vast number of theoretical works that studied 
reflection and transmission of light in random media with absorption or gain [45–57]. In 
contrast to those previous studies, we find that for a given geometrical configuration, the 
absorbed energy reaches its maximum at a specific mean free path. As discussed above, most 
of the previous studies concentrated on the strong scattering regime, while the effect of 
maximal absorption happens in the diffusive regime. We further study how the absorbed 
energy changes, depending on the geometrical parameters as well as the scattering properties 
of the random media. Strikingly, embedding the random medium into an open cavity 
increases the absorbed energy, providing 23-fold enhancement compared to the random 
medium without cavity. As a potential application, we theoretically demonstrate that random 
media can improve the absorption of light in existing light trapping systems by 2.2, thus 
demonstrating that the maximal absorption regime in random media is promising for light 
harvesting devices. 

2. Methods 

To simulate light propagation through a random medium, we use a probabilistic approach 
based on a Monte Carlo scheme, which we briefly describe here. A more complete treatment 
of this framework and its validation can be found elsewhere [58, 59]. The random medium 
consists of spherical scatterers with diameter d distributed homogeneously in an absorbing 
background. The simulation is performed on a finite volume of random medium with the 
form of a rectangular parallelepiped volume with a square basis, Fig. 1(a) inset. Incident light 
is launched though the central point of one of the surfaces at normal incidence unless stated 
otherwise. We use a wavepacket description of light instead of single photons in order to 
simulate absorption along the optical path. Between two successive scattering events the 
wavepacket travels in a straight line losing its energy through absorption in the background 
according to Beer-Lambert’s law [60]. The mean free path of light lfree between two 
successive scattering events is determined as: 

 
2

,
3free

sca

d
l

FQ
=  (1) 

where F = πd3C / 6 is the filling factor, C the concentration of scatterers, Qsca the scattering 
efficiency for each individual scatterer. The transport mean free path is determined as: l* = 
lfree / (1–g) with g = <cos θ> the average scattering angle or anisotropy parameter [61]. The 
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parameters Qsca and g are calculated using Mie theory [59]. We assume that the interparticle 
distance p follows the random distribution expressed by: p = –lfree log Σ, where Σ is sampled 
uniformly between 0 and 1. When a wavepacket experiences a scattering event from a 
particle, it changes its direction. The probability q(θ) of the wavepacket to be scattered at a 
given angle is calculated using the Henyey-Greenstein distribution [62]: 

 ( )
( )

2

3/22

1
.

4 1 2 cos
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π θ
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+ −
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The wavepackets are sequentially traced until they reach the box boundaries, where the 
directions and energies of such output wavepackets are recorded. The total initial energy of 
all wavepackets is set to unity for normalization purposes. To achieve a reasonable 
approximation of a realistic system, 108 wavepackets are launched for every simulation. The 
transmitted energy T (respectively, reflected energy R) is calculated as the total energy of 
wavepackets that exit the system with a zero or positive (respectively, negative) scalar 
product between their direction and the incident light direction. In this way, wavepackets that 
exit the side walls of the medium are also accounted for in the transmission or the reflection. 
Finally, the absorbed energy Eabs is calculated as the difference between incident energy and 
the sum of reflected and transmitted energies. The optical path of light (OPL) for transmitted 
OPLT (respectively, reflected OPLR) direction is calculated by taking the ratio of transmitted 
(respectively, reflected) light energy to the corresponding energy in the absence of the 
absorber T0 (respectively, R0) and utilizing Beer-Lambert’s law: OPLT = –log(T/T0) / α, where 
α is the absorption coefficient and OPLR = –log(R/R0) / α. Unless otherwise stated, we use the 
following values for the simulation parameters: the spherical scatterers have a diameter d = 
0.5 μm; the surrounding medium is a solution with refractive index n = 1.3 and absorption 
coefficient α = 30 m−1; and the incident free-space wavelength is λ = 550 nm. We vary the 
refractive index of scatterers n between 1.6 and 2.6, which corresponds to commercially 
available polystyrene beads and titanium dioxide particles, respectively. We choose small 
values of α because higher values suppress multiscattering effects in random media as will be 
demonstrated in the text. 

3. Results and discussions 

3.1. Maximal absorption regime 

To explain the maximal absorption regime in random media, we first introduce the known 
behavior for light reflection and transmission in random media [63]. As we increase the 
filling factor F of the random medium, OPLT increases from being equal to the thickness of 
the medium L – horizontal dashed line in Fig. 1(a) – to much larger values corresponding to 
the multiscattering regime. However, for F > 1% (lfree < 10 µm) only a small part of the 
energy is transmitted in the forward direction, as indicated by the blue line in the inset of Fig. 
1(b). Concurrently, OPLR rises slightly at first due to the multiscattering, but decreases for F 
> 1% because the sample reflectivity increases. The nature of light propagation evolves from 
ballistic to highly scattering: according to Eq. (1), the mean free path lfree changes from 
several meters (for F < 10-4%) to less than micrometer (F > 10%). 

In such a system, we find that the absorbed energy Eabs exhibits a non-monotonic 
dependence that peaks at Fcri = 1.3% corresponding to lfree = 7 μm, Fig. 1(b). This behavior is 
associated with different regimes of light propagation: weak (I), moderate (II) and strong 
(III), Fig. 1(c). In the weak scattering regime (F<<1%, lfree ~1 cm), most of the energy is 
transmitted in the forward direction along the path of incident light and, thus, Eabs grows with 
OPLT. In the moderate or so-called diffusion regime, all photons lose their initial direction 
after travelling about 100 μm in the medium and spread over the entire absorber volume. In 
the strongly scattering regime (F>5%, lfree < 2 µm), the energy is mostly backreflected, so 
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that negligible amount of light reaches the distant parts of the absorber – black regions in the 
colormap, Fig. 1(cIII). In this case, Eabs follows the same trend as OPLR, decreasing with 
increasing F. From the other perspective, our calculations confirm that optical absorption 
increases with lfree for strongly scattering media (regime III) [52]. Overall, although regime I 
is intuitive and regime III was studied in the context of random lasers, regime II, where 
maximal absorption occurs, was overlooked. Maximal absorption occurs when the number of 
scatterers is high enough that the incident light experiences multiscattering, but low enough 
that the light is not strongly confined and benefits from the full absorber volume. 

 

Fig. 1. Absorption in a random medium. (a) Optical transmitted and reflected path lengths 
OPLT and OPLR in a cubic random medium (L × w × w) with L = 500 μm and w = 500 μm 
composed of spherical scatterers (d = 0.5 μm, n = 2.6) in an absorbing background, as a 
function of the filling factor F. The dashed horizontal line corresponds to L. The inset shows 
the geometry under study. (b) Absorbed energy Eabs in the random medium as a function of the 
filling factor F. The inset shows the normalized transmitted T (dark blue) and reflected R (red) 
intensity of light. The dashed line corresponds to Fcri = 1.3%. (c) Logarithmic energy 
distribution of the light propagating in the central plane of the random medium described in (a) 
corresponding to (I) F = 10-4%, (II) F = 1%, and (III) F = 10%. The color scale is common to 
all three colormaps. All dimensions are given in micrometers. 

3.2. Influence of geometrical parameters and scattering properties 

Geometrical parameters and scattering properties of random media can be used to tune the 
light reflection and transmission, and consequently its absorption [14, 64]. Although light 
absorption in regimes I and III can be easily understood (as discussed below), the behavior of 
absorption in regime II is much less intuitive. In this section, we study how geometrical 
parameters and scattering properties influence the maximal absorbed energy and Fcri. 

To study the first effect, we consider in Fig. 2(a) random media with various values for 
the width w, while keeping L constant at 500 μm. For F < 10-3% (lfree ~1 cm), Eabs does not 
depend on w because light propagates mostly without scattering events, Fig. 2(a). Defining E0 
as the absorbed energy in the absence of scatterers E0 = Eabs(F→0), we observe that the 
presence of a random medium increases Eabs as compared to E0 for w > 250 μm, Fig. 2(a). At 
the same time, for w = 250 μm and 100 μm, Eabs first decreases with increasing F and then 
reaches a local maximum. This is because for such small lateral dimensions, photons that 
undergo scattering events predominantly exit the system from the sides, resulting in a lower 
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OPL as compared to photons that propagate along the incident direction in the absence of 
random medium. With further increase of F, the emergence of multiscattering improves OPL 
and Eabs reaches a local maximum. However, for F > 10% (lfree < 1 µm), Eabs decreases in all 
cases because of the strong reflection. If w increases above 500 μm, the peak value of Eabs 
(which we call Emax) grows until it saturates for w > 1000 μm, implying that for very wide 
samples Eabs is limited not by the lateral confinement, but by the photons escaping through the 
top and bottom surfaces, Fig. 2(c). Therefore, for those parameters, the presence of a random 
medium improves Eabs as compared to E0, only if w ≥ 0.8L. 

Next, we vary L while keeping a constant width w = 500 μm. Figure 2(b) shows that for L 
= 100 μm, 250 μm and 500 μm (w ≥ L) Eabs follows a bell-shaped curve – for similar reasons 
as in Fig. 2(a). However, we observe a local minimum for L = 750 μm at F = 0.1%, which 
resembles the Eabs behavior for w < 250 μm observed previously. For L > 1000 μm or w ≤ 
0.8L, the enhancement due to the presence of a random medium Emax/E0 tends toward unity 
(with Fcri going to zero), demonstrating that increasing L is not beneficial without 
simultaneously increasing w, Fig. 2(d). If L < 10 μm the sample consists only of a few layers 
of scatterers and does not support multiscattering, therefore Emax/E0 again goes to unity. We 
didn’t observe a similar behavior for large w and L = 500 μm since in that case the medium 
was always in the multiscattering regime. The presence of a random medium brings 
maximum improvement (Emax/E0 reaches its maximum value of 2.4) for a distance of L ~200 
μm, which corresponds to w ~2.5L. 

 

Fig. 2. Absorbed energy Eabs for a square prism with dimensions L × w × w filled with a 
random medium when varying: (a) the width w (L = 500 μm, d = 0.5 μm, n = 2.6); (b) the 
length L (w = 500 μm, d = 0.5 μm, n = 2.6). (c) The maximum absorbed energy enhancement 
Emax/E0 dependence on w for parameters as in (a). (d) The enhancement Emax/E0 as a function of 
L for parameters as in (b). 
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Table 1. Properties of scatterers with different refractive index n and diameter d, and 
their effect on absorbed energy for a square prism with dimensions L × w × w (L = 500 

μm). 

n d (μm) g Qsca w = 5000 μm w = 500 μm 
Fcri (%) l* (μm) Emax Fcri (%) l* (μm) Emax 

1.6 0.5 0.76 0.78 3.0 59.7 0.0364 5.2 34.6 0.0316 
2.0 0.5 0.72 3.63 0.6 58.0 0.0362 1.1 30.0 0.0309 
2.6 0.5 0.45 3.62 0.3 51.6 0.0352 1.3 12.9 0.0252 

2.6 1 0.65 3.31 1.0 55.5 0.0359 3.8 15.3 0.0291 

2.6 2 0.68 2.62 2.8 56.1 0.0359 6.9 23.2 0.0296 

Let us now study the effect of the scatterer refractive index n and size d while the other 
parameters are kept fixed. Figures 3(a) and 3(b), respectively, depict Eabs as a function of F 
for selected values of n, respectively d. These parameters affect the values of Qsca and g for 
individual scatterers as shown in Table 1. While all Eabs curves have similar shapes, the 
values for Fcri and Emax differ. The difference in Emax becomes even more pronounced for 
smaller w; for example, Emax reaches 3% for d = 2 μm while it is only 2.5% for d = 0.5 μm, 
Fig. 3(c). Furthermore, notice how media with scatterers that have similar g (n = 1.6 and 2.0) 
or Qsca (n = 2.0 and 2.6) still have different Fcri. In Table 1, we observe that the main 
parameter determining light transport in the random medium, l*, shows almost identical 
values at Fcri for the different scatterers. Furthermore, from the same table we find that values 
of Emax correlate well with that of g, which we explain further in the text. 

 

Fig. 3. Absorbed energy Eabs for a square prism with dimensions L × w × w (L = 500 μm) filled 
with a random medium when varying: (a) the refractive index n (w = 5000 μm, d = 0.5 μm); 
(b,c,d) the scatterers diameter d (n = 2.6; w = 5000 μm in (b) and w = 500 μm in (c) and (d)). 
Points refer to Monte Carlo simulations, and lines to the analytical diffusion model based on 
Eq. (3). The same data are plotted against the filling factor (c) and the transport mean free path 
(d). 
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3.3. Analytical model based on diffusion approximation 

To explain the difference in Emax for different scatterers, we use a solution of the light 
diffusion equation for an infinitely wide slab with thickness L [63]. The expression for Eabs is 
given by the following formula: 
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where sgn(x) = –1 if x < 0 and sgn(x) = 1 if x > 0; zx,m (x = 1..4) are the distances defined as 
follows: 
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where z0 = l*, ze = 2Al*/3 and A is a parameter that characterizes reflection of light at the 
interface to fulfill the boundary conditions for diffusion: 
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where R(θi) is the Fresnel reflection coefficient for light with incident angle θi at the surface 
of the random medium. 

The results obtained with the diffusion approximation Eqs. (3)–(5) are shown as solid 
lines in Figs. 3(a) and 3(b) and compared with Monte Carlo simulations for a very wide slab – 
in our case we choose w = 5000 μm since Emax does not change significantly above this value, 
Fig. 2(c). For F > 0.1% (lfree < 100 µm) we find excellent agreement between the two 
methods, Figs. 3(a) and 3(b). For smaller values of F the diffusion approximation does not 
hold because l* becomes comparable with L meaning that in this regime the light propagation 
is not completely randomized. Thus, the diffusion approximation can be used as a fast and 
precise method to determine Fcri for maximal absorption. From Eq. (3) it can be concluded 
that for a given α, L and one type of scatterers (with given n and d), Eabs reaches a maximum 
for specific l*(Emax), which can be found numerically. Interestingly, from Table 1 it can be 
seen that l*(Emax) varies only slightly for different scatterers when w = 5000 μm. Therefore, 
for wide slabs l*(Emax) – of one type of scatterers – can used as an approximate value of 
l*(Emax) for another scatterers. This provides a simple design rule to find an approximate 
value of Fcri and to optimize the absorption. Slight differences in l* for different scatterers are 
caused by small variations in A (numerical calculations using Eq. (5) show typical values of 
A(Emax) between 1.05 and 1.12). The difference of l*(Emax) for different types of scatterers is 
more pronounced for the narrower cavity, w = 500 μm. However, a constant l* still provides a 
good approximation, Fig. 3(d). For example, scatterers with d = 0.5 μm and n = 1.6 reach Emax 
at l* = 34.6 μm while scatterers with the same d and n = 2.6 have l*(Emax) = 12.9 μm. 
Numerical calculations show that Eabs(l* = 34.6 μm) = 0.242 for n = 2.6, which corresponds 
to more than 90% of Emax ( = 0.0255). Similar results are valid for other combinations of n 
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and d and for w > 500 μm (data not shown). The approximation l* = const breaks for smaller 
w because light escaping by the side walls becomes significant. 

For l* << L (in our case for l* < 5 × 10−5 μm), all exponents in Eq. (3) that contain L will 
cancel each other, simplifying the expression to: 

 

1 1 3 4
1 exp( 3 ) exp[ ( )].

2 2 3absE l* l* Al*
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 (6) 

Thus, Eabs increases with A. As evident from Eq. (5), A is determined by R(θi). Numerically 
R(θi) is calculated using an effective refractive index of the random medium [63]. Physically, 
reflection at the interface is caused by the light scattering from spheres located in the surface 
layer of thickness b. Thus, semi-qualitatively we can relate the reflection coefficient to the 
total scattering efficiency of this surface layer. In certain area A and thickness b, there is CAb 
scatterers. The probability of light being scattered in this layer is: CAbQscad

2/(4A). The 
reflectivity R is then proportional to this probability: 
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From Eqs. (5) and (7), we expect strong dependence of A on g. Indeed, numerical values for 
Eq. (5) show that A(g) grows with g for a constant l* (data not shown). It follows from Eq. (6) 
that Eabs(g + Δg, l*) > Eabs(g, l*) and, in turn, Emax(g + Δg) > Emax(g). Hence Emax increases 
with g, which we indeed observe in Table 1. This simple design rule predicts that scatterers 
with higher g will show higher Emax. This is an important result since g goes to unity when n 
decreases, thus we can use scatterers with low n to achieve high Emax values. However, if g 
approaches unity, we have to increase F to infinity in order to reach the l* = const condition 
discussed in the previous paragraph. Since F is limited to values of 50-70% for closed packed 
systems, it sets the upper limit for the maximal value of g and, in turn, Emax. Moreover, our 
formalism breaks down for high values of F (F > 20%, lfree < 0.5 µm) when short-range order 
and near-field effects have to be taken into account [65]. The maximal absorbed energy Emax 
also grows with g for finite w (Table 1). Indeed, the relation Eabs(g + Δg, l*) > Eabs(g, l*) is 
clearly visible in Fig. 3(d). This comes as no surprise since the expression for Eabs for finite w 
has a similar structure as Eq. (3) [66]. Finally, we would like to stress that in order to point 
out interesting design rules, we only semi-qualitatively explain tendencies observed in 
numerical simulations, leaving rigorous proofs beyond the scope of this paper. 

3.4. Random medium in an open cavity 

To increase the absorbed energy in the random medium, we now embed it into an open fully 
reflective cavity, which contains two square openings with dimensions s × s: one at the center 
of the top and one at the center of the bottom face, for the reflected and transmitted light, see 
the inset in Fig. 4(a). We demonstrate that the regime of maximal absorption is also present in 
such hybrid system. We choose such a configuration to compare the performances of the 
random medium in an open cavity (henceforth referred to as the open cavity) to that of the 
random medium without reflective walls with exactly the same geometry (henceforth referred 
to as the free random medium). Additionally, we introduce different enhancement factors k to 
quantify the enhancement provided by the open cavity. 

The open cavity configuration leads to an increase in the effective volume which, in turn, 
enhances OPLs. For instance, OPLR increases by a factor kR = 32 for low F compared to the 
free random medium, Figs. 4(a) and 4(b). The OPLT enhancement, kT reaches a maximum of 
27 at the critical filling factor Fcri = 0.07% and then drops along with OPLR. This is because 
for F > 1% (lfree < 10 µm) most of the light is confined in a volume smaller than the size of 
the cavity; hence very little is reflected from the walls leading to the decrease of the 
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enhancement factors k to unity, Fig. 4(b). The energy absorption Eabs peaks at Fcri = 0.13%, 
with an enhancement kE = 23 for the absorbed energy compared to the free random medium, 
Figs. 4(c) and 4(d). The fact that the maximum energy absorption occurs at different filling 
factors for the free random medium and for the open cavity is caused by the different 
effective volumes for these two geometries. To visualize the absorption in the cavity, in Fig. 
4(e) we plot the light intensity in the central plane of the cavity with the same color scale as in 
Fig. 1(c). The second diagram illustrates the maximum of the absorbed energy, whereas the 
third diagram shows strong backreflections corresponding to high F values. 

 

Fig. 4. Absorption in a random medium (d = 0.5 μm, n = 2.6) surrounded by a fully reflective 
cavity (L = w = 500 μm) containing two square openings with size s = 100 μm. (a) OPLT and 
OPLR. The inset shows a schematic of the geometry. (b) OPL enhancements compared to the 
free random medium kT and kR. (c) Eabs in the medium. (d) Enhancement of the absorbed 
energy compared to the free random medium kE. (e) Logarithmic intensity distribution of light 
propagating in the central plane corresponding to (I) F = 10-4%, (II) F = 0.05%, (III) F = 10%. 
The color scale is common for all three colormaps. The dimensions are given in micrometers. 

Let us now study the influence on light absorption of various parameters describing the 
random medium in the open cavity. The probability of light escaping from the open cavity is 
given by the ratio of the openings area to the total cavity area. This is demonstrated by 
changing w while keeping s fixed: Eabs changes, but retains a bell-shaped profile for all w, in 
contrast to the free random medium, compare Figs. 2(a) and 5(a). Similarly, the light 
confinement changes with s, leading to different Eabs, Fig. 5(b). By reducing s to 5 μm, we 
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can achieve absorption of 99% simply due to the high confinement of the cavity. Similar to 
the free random medium, the filling factor Fcri producing the largest absorption shifts when 
the refractive index n of the scatterers changes; for the three different indices investigated in 
Fig. 5(c), we observe that lfree at Fcri is close to 132 μm, which is about nineteen times larger 
than in the case of the free random medium. Furthermore, in contrast to the free random 
medium, now the Emax values remain similar for the different refractive indices. This is caused 
by the reflective walls, which now play the major role, rather than l*, for confining the light, 
as is evident from the 23-fold enhancement observed for Eabs in Fig. 4(d). 

 

Fig. 5. Absorbed energy Eabs for a random medium (d = 0.5 μm) surrounded by a fully 
reflective cavity (L = 500 μm) containing two square openings with size s– see Fig. 4(a) inset – 
as a function of: (a) the cavity width w (s = 100 μm, n = 1.6), (b) the openings size s (w = 500 
μm, n = 1.6) and (c) the refractive index n of the scatterers (s = 100 μm, w = 500 μm). 

3.5. From weak to strong absorbers 

Different light trajectories have different OPLs in the random medium. With the presence of 
the absorber, the energy transmitted through the system for a given trajectory is modified 
according to Beer-Lambert’s law [60]. The trajectories with longer OPL undergo stronger 
absorption. As a result, the nature of light propagation also depends on the value of the 
absorption α: while for weak absorbers it is diffusion-like, it becomes dominantly ballistic for 
strong absorbers, reducing multiscattering effects [42]. In the latter case, Fig. 6 shows that 
Emax/E0 decreases to unity for α > 104 m−1, meaning that the benefits of multiscattering are 
then lost. 

To characterize the effect of absorption in the medium, we introduce the absorption mean 
free path labs that can be related to l* and to the inelastic mean free path li, which is defined as 
the travelled length over which the light intensity is reduced by a factor 1/e due to absorption 
(li = 1/α); labs is then defined as the average distance between begin and end points for paths 
of length li [4]: 
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The parameter labs reflects the nature of light propagation in random media with gain or losses 
[6]. Till now, we considered a case of weak absorption, meaning that li was larger than L. As 
absorption increases, li becomes smaller and smaller, meaning that light will be absorbed even 
with ballistic propagation over the length of L. In this case, introduction of random media 
becomes disadvantageous as it only brings unnecessary reflection losses, as indicated by the 
dark blue line in Fig. 6. In general, the effect of absorption on light propagation in random 
media is not novel [42], but the behavior of the absorbed energy peak requires special 
attention. As we increase the absorption α in the background, Fcri decreases, as indicated by 
the dashed line in the inset of Fig. 6(a). This line follows the position of the Eabs maximum 
(corresponding to Fcri). This shift is less pronounced for the open cavity since the light 
confinement in that geometry is dominated by the reflective walls (for F > 10%) and, thus, 
weakly depends on labs, Fig. 6(b). 

 

Fig. 6. Dependence of Emax/E0 on the absorption coefficient α for: (a) a free random medium (L 
= 500 μm, w = 500 μm, d = 0.5 μm, n = 2.6); (b) an open cavity with the same parameters as in 
(a) and s = 100 μm. The insets show Eabs for the respective geometries at α = 30 m−1 (black), 
150 m−1 (red), 750 m−1 (green), 1500 m−1 (orange) and 6000 m−1 (dark blue). 

3.6. Improving light trapping for solar cells 

To illustrate an application of maximal absorption, we now consider the optimization of the 
light trapping system shown in Fig. 7(a). Using such a device for thin solar cells, Tvingstedt 
et al. demonstrated a 25% increase in the absorption of the solar cell and photocurrent [24]. 
Additionally, such a system demonstrates that the regime of maximal absorption is also 
present in the buried absorber system, i.e. where absorption happens only in some parts of the 
random medium as explained below. The proposed geometry includes highly reflective 
mirrors with light trapped in the space between them. The absorption happens only in the thin 
layer (50 nm) of active material with the absorption coefficient α = 105 m−1, while all the 
remaining material is non-absorbing. A concentrator focuses all the light reaching its surface 
into the opening in the top mirror. Here, an array of glass lenses with focal distance f = 1 mm 
acts as concentrator [24]. The choice of lens material and the quality of fabrication constrain 
the value of f for a given w [67]. The cone of light entering the solar cell covers a range of 
incident angles between β = 0 and β = 14° for w = 500 μm. Such a low β does not allow the 
solar cell to efficiently trap light inside, since the incident light is just reflected back by the 
structure. To overcome this limitation, we introduce a random medium in the space between 
the top mirror and the active layer. To simulate the light behavior in this device, a truncated 
unit cell with reflective side walls is considered, Fig. 7(b). 

Quite strikingly, an appropriate concentration of scatterers confines light inside the 
structure – even for low illumination angles β – and enhances absorption inside the active 
layer, Fig. 7(c). For instance, even for β = 0° (corresponding to light incident normally on the 
structure), the Emax/E0 ratio reaches 55. Whereas for light incident at β = 0° and 8°, Eabs peaks 
at F = 0.5% (lfree = 19 µm) showing similar values of Emax in both cases; for β = 15°, Eabs 
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dependence is much broader with a peak at F = 0.025% (lfree = 380 µm). The latter effect is 
due to the different effective geometry that light experiences at a given angle as compared to 
β = 0° case. To summarize the angular performance of the light trapping scheme in the 
presence of a random media, we show in Fig. 7(d) the absorbed energy Eabs for different 
angles. For β < 8°, the incident light is reflected from the bottom mirror and exits through the 
same opening as entered, not being absorbed significantly, while for higher β light is 
efficiently confined inside the cell. This is why there is a jump in Eabs at β = 8° in the absence 
of scatterers. On the other hand, for F = 0.5% Eabs shows a weak dependence on β since light 
experiences strong multiscattering. Therefore, light absorption significantly improves in the 
presence of random medium for angles β < 8°. Considering the total angular range of β = 0 – 
14°, we observe a 2.2 enhancement of Eabs for F = 0.5% and 1.4 for F = 0.025% as compared 
to the case without scatterers. Furthermore, the proposed multiscattering phenomenon is non-
resonant and hence broadband, which is important when working with solar energy. Although 
light trapping is more efficient with smaller s, larger values of s provide robustness and 
tolerance for the alignment of the solar concentrator with respect to the incident light [26], 
e.g. for the solar concentrator in Fig. 7 this tolerance is only 2.9°. 

 

Fig. 7. (a) Schematic of light trapping device with two reflective surfaces, active photovoltaic 
layer (in red) and an array of concentrators on top. (b) Schematic of the truncated unit cell used 
in the numerical simulations. (c) Eabs as a function of F for light entering the opening at 
different angles in the presence of a random medium (d = 0.5 μm, n = 2.6, L = 100 μm, w = 
500 μm, s = 50 μm). The blue dashed line corresponds to F = 0.025% and the red one to F = 
0.5%. (d) Eabs as a function of β; the yellow area corresponds to β = 0 – 14°, the angular range 
of light after it has passed through a concentrator with f = 1 mm. 

4. Summary 

We have shown that the maximal absorption regime for a random medium corresponds to the 
conditions for diffusion-like energy transport: the filling factor F has to be high enough to 
sustain multiscattering in the medium and, at the same time, low enough to allow light to 
penetrate inside the material. We identified design rules for geometries where the introduction 
of a random medium becomes beneficial in terms of absorbed energy. The filling factor Fcri 
which maximizes light absorption depends on the relation between the transport mean free 
path of light l* and the geometrical size of the medium. Moreover, l* remains almost constant 
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for different scatterers. The maximal absorbed energy Emax increases with the asymmetry 
parameter g. Typical values of Fcri are in the range from 0.5% to 10% (the corresponding 
mean free path values range from 7 to 132 μm). 

The amount of absorbed energy can be further increased (from 1.7 to 23-fold) by 
introducing a hybrid system: an open cavity around the random medium. Such hybrid system 
has an advantage over an open cavity because the absorption enhancement is alignment-free; 
and over the random medium because the value of the enhancement is higher. Furthermore, 
the enhancement provided by the scattering medium decreases as the absorption α grows, 
because the nature of light propagation changes from diffuse to ballistic. The application of 
these principles to absorption for a photovoltaic system has been illustrated by demonstrating 
a 2.2 absorption enhancement when introducing a random medium with appropriate filling 
factor in the system. The combination of an open reflective cavity with a random medium 
ensures strong photon confinement, with the additional benefits of wide-angled and 
broadband operation. This approach is promising for improving the efficiency of solar cells, 
decreasing lasing threshold in random lasers as well as for sensing applications where the 
optical absorption of minute quantities of analyte must be detected. 
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