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ABSTRACT 
 
During the last decade, important attention has been devoted to the observation of nonlinear optical processes in 
plasmonic nanosystems, giving rise to a new field of research called nonlinear plasmonics. The cornerstone of nonlinear 
plasmonics is the use of the large field enhancement associated with the excitation of localized surface plasmon 
resonances to reach high nonlinear conversion yields. Among all the nonlinear optical processes, second harmonic 
generation (SHG), the process whereby two photons at the fundamental frequency are converted into one photon at the 
second harmonic frequency, is undoubtedly the most studied one due to the relative simplicity of its experimental 
observation. However, the physical origin of SHG from plasmonic nanostructures hides a lot of subtleties, which are 
mainly related to its particular behavior upon inversion symmetry. In order to catch all the peculiarities of SHG, it is 
mandatory to develop dedicated numerical methods able to accurately describe all the underlying physical processes and 
the influence of the initial assumptions needs to be well-characterized. In this presentation, we discuss and compare 
different methods (namely full-wave computations based on the surface integral equations method, mode analysis, the 
Miller’s rule, and the effective nonlinear susceptibility method) proposed for the evaluation of the SHG from plasmonic 
nanoparticles emphasizing their limitations and advantages. In particular, the design of double resonant antennas for 
efficient nonlinear conversion at the nanoscale is addressed in detail. 
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1. INTRODUCTION 

 
Nonlinear plasmonics is the research field devoted to the study of nonlinear optical processes in metallic nanostructures.1 
The basic idea associated with nonlinear plasmonics is to use the enhancement of the electromagnetic field induced by 
the surface plasmon resonances to boost the efficiency of nonlinear optical processes.1 Various nonlinear optical 
processes have been observed in plasmonic nanostructures including SHG,2 third harmonic generation,3, 4 multi-photon 
photoluminescence,5 and Kerr effect.6 Beyond the simple enhancement of the nonlinear responses due to localized 
surface plasmon resonances (LSPR), a lot of fundamental questions arise in nonlinear plasmonic.1 For example, SHG is 
forbidden in centrosymmetric nanostructures in the electric dipole approximation, meaning that centrosymmetry needs to 
be broken either by the nanoparticle shape or by the retardation effect.2 The latter mechanism results in the observation 
of high order multipolar modes, as such quadrupolar7 and octupolar emissions.8 As a consequence, most of the methods 
used in linear plasmonic and developed in the electric dipole approximation cannot be exploited for SHG and new 
methods must be developed for a fast, efficient, and accurate determination of the second harmonic responses of 
plasmonic nanostructures. In this work, we focus on split-ring resonators (SRR) since they are the basic elements for the 
fabrication of nonlinear plasmonic metasurfaces and we compare different methods for the evaluation of their second 
harmonic responses. Following the experimental work published by O’Brien et al.,9 we compare the predictions of the 
Miller’s rule and of the effective nonlinear susceptibility method with the results given by an accurate full-wave solution 
of Maxwell’s equations.10 All the numerical simulations are performed with a surface integral equation (SIE) method.11 
A plane wave propagating along the normal to the SRR is considered in all the computations. The incident wavelength is 
λ = 1305 nm. All the nanostructures are considered in a homogeneous refractive index n = 1.3, mimicking the presence 
of a substrate and a 2 nm ITO layer.9 Here, we first provide the reader with a short description of all these methods, 
before comparing them to assess their validity and their limitation. Finally, an eigenmode analysis, well-suited for the 
identification of the relation between the fundamental and the second harmonic modes and the design of double resonant 
nanostructures is presented.12 
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2. MILLER’S RULE 
 

In 1964, R. C. Miller published a study in which he observed that, in various piezoelectric crystals, the ratio between the nonlinear 
susceptibility and the product of the linear susceptibility of the same material at the fundamental and second harmonic wavelengths is 
almost a constant.13 This empirical rule is very important, since it attempts to make a direct link between the nonlinear response of a 
nonlinear material and its linear responses both at the fundamental and nonlinear wavelengths. In other words, only linear calculations 
or experiments need to be performed in order to determine the nonlinear response. With the Miller’s rule, the second harmonic 
intensity from SRR is given by: 
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where the subscripts x and y denote an incident wave polarized along the SRR basis and the SRR arms, respectively. A planewave 
polarized along the SRR arms is chosen at the second harmonic frequency since SHG polarized along the SRR basis is forbidden in 
the forward direction, as easily derived from the selection rules of SHG. In the present implementation of the Miller’s rule, the 
scattered electric field is evaluated 50 μm away from the gold SRR in the forward direction for an incident planewave oscillating at the 
fundamental frequency and polarized along the SRR basis (Fig. 1, step 1) and an incident planewave oscillating at the second 
harmonic frequency and polarized along the SRR arms (Fig. 1, step 2). This permits to determine the linear susceptibility at the 
fundamental and second harmonic frequencies, and then the nonlinear susceptibility according to the Miller’s rule. 

 

 
Figure 1: The different steps involved in the evaluation of the SHG from plasmonic metasurfaces using the Miller’s rule. Step 1: 
The forward scattering in evaluated for an incoming planewave with a wavelength corresponding to the fundamental 
wavelength. Step 2: The forward scattering in evaluated for an incoming planewave with a wavelength corresponding to the 
second harmonic wavelength. Step 3: the second order nonlinear susceptibility is expressed as the linear susceptibility at the 
fundamental frequency squared multiplied by the linear susceptibility at the second harmonic frequency. 

 
3. EFFECTIVE NONLINEAR SUSCEPTIBILITY 

 
The effective nonlinear susceptibility method is a linear-nonlinear hybrid method, which also attempts to bridge the gap between the 
linear and the second order nonlinear responses of plasmonic metasurfaces exploiting Lorentz’s reciprocity.9, 14 Indeed, the effective 
nonlinear susceptibility method exploits the equality between the overlap integral of the field emitted by the nonlinear polarization and 
a current source located at the detector position and the overlap integral of the field emitted by the current source at the detector 
position with the nonlinear polarization.14 The first step is to compute the surface nonlinear polarization induced by a planewave 
coming from the source. The surface nonlinear polarization is derived from the fundamental near-field distribution, as 

)(2)2(
, ωχ nnnnsurfn EP = (Fig. 2, steps 1 and 2). The second step is to evaluated the near-field distribution induced at the SRR surface 

induced by an incident planewave propagating from the detector towards the SRR and oscillating at the second harmonic frequency 
(Fig. 2, step 3). Finally, according to the effective nonlinear susceptibility method, the second harmonic electric field is provided by the 
following surface integral:9 
 

,)2()(2)2(
, dSEE nnnnnsurfSHG ωωχ∫∫∝E       (2) 

 

Proc. of SPIE Vol. 9921  99210W-2



1=130511m

Step 1 Step 2

/

P (20)=xfEn (o)

Step 3

Step 4

E,c oc JJX ,En (o)E (2o)dS

Step 2 Step 3

Step 1 Step 2 Step 3

 

 

where the surface integration is performed over the SRR surface (Fig. 2, step 4).  For the sake of simplicity, only the component 
)2(

,nnnsurfχ  of the surface tensor is considered, where n denotes the component normal to the surface. Indeed, recent experimental 
results indicate that this term dominates the surface response of metallic nanoparticles.15 ,16 The electric near-field is evaluated 1 nm 
away from the metal surface. The second harmonic intensity is obtained by multiplying ESHG by its complex conjugate. 

 
 

Figure 2: The different steps involved in the evaluation of the SHG from plasmonic metasurfaces with the effective nonlinear 
susceptibility method. Step1: The fundamental electric near-field is evaluated at the nanostructure surface. Step 2: The surface 
nonlinear polarization oscillating at the second harmonic frequency is evaluated. Step 3: The electric near-field induced by a 
wave propagating from the detector position towards the metasurface and oscillating at the second harmonic frequency is 
evaluated. Step 4: The overlap integral between the quantity evaluated at the steps 2 and 3 is computed, giving the second 
harmonic electric field at the detector position. 

 
4. FULL-WAVE COMPUTATIONS 

 
For the full-wave computations of SHG, we use a SIE method first developed by Mäkitalo et al.,17 and then extended to study 2D 
arrays of plasmonic structures.18 In this framework, the magnetic and electric linear surface currents are used to evaluate the 
fundamental electric fields just below the gold surfaces and then utilized for the calculation of the surface second harmonic 
polarization (Fig. 2, steps 1 and 2).17 ,18 These two first steps are similar to the ones of the effective nonlinear susceptibility method. 
The second harmonic surface currents are obtained by solving the SIE, enforcing the boundary conditions at the nanostructure surface 
considering the presence of the surface nonlinear polarization.19 This results in a new set of magnetic and electric surface currents 
oscillating at the second harmonic, from which the second harmonic field can be evaluated everywhere (inside and outside the SRR). 

 
 

 
 

Figure 3: The different steps involved in the evaluation of the SHG from plasmonic metasurfaces with Full-wave computation. 
Step1: The fundamental electric near-field is evaluated at the nanostructure surface. Step 2: The surface nonlinear polarization 
oscillating at the second harmonic frequency is evaluated. Step 3: The second harmonic wave, scattered in various and arbitrary 
directions, is evaluated. 

 
5. COMPARISON BETWEEN THESE THREE METHODS 

 
In this part, we compare these three methods for the evaluation of the SHG from SRR with various shapes. The evolution 
of the shape is quantified by a factor R, called asymmetry ratio. The factor R is defined as the ratio between the length of 
the SRR arm and total length of the SRR (two times the SRR arm length plus the basis length). The total length of the 
SRR is fixed to 300 nm here. Figure 4(a) shows the second harmonic intensity in the forward direction as a function of 
the asymmetry ratio R evaluated with the Miller’s rule (dashed blue line), the effective nonlinear susceptibility method 
(black line), and the full-wave method (red line). The full-wave computation and the effective nonlinear susceptibility 
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method predict that the asymmetry ratio giving the highest SHG is close to 0.20, in agreement with the experimental 
results reported by O’Brien et al..9 However, the Miller’s rule results in a SHG optimized for a lower asymmetry ratio, 
for R= 0.10, emphasizing that this method fails to determine the best SRR geometry. This inadequacy of the Miller’s rule 
is explained by its inability to reproduce the evolution of the near-field enhancement as the SRR geometry changes. It is 
worth to note that the anharmonic oscillator model, which is deeply related to the Miller’s rule,20 has been successfully 
applied for the determination of the third harmonic generation from plasmonic nanoantennas3 and metamolecules 
supporting Fano resonances.4 In these two studies, some of the important geometrical parameters are kept constant. This 
could explain why the Miller’s rule provides adequate results in these two cases. However, it seems that the Miller’s rule 
cannot be blindly applied in the field of nonlinear plasmonics, but requires a careful use. Having discussed the Miller’s 
rule, we now compare the effective nonlinear susceptibility with full-wave computations. Figure 4(b) shows the far-field 
second harmonic intensity as a function of the scattering angle for a 40 nm x 40 nm x 300 nm gold nanobar (an 
asymmetry ratio R = 0). The full-wave computations emphasizes that the SHG is higher close to the forward direction 
than close to the backward direction, while the effective nonlinear susceptibility method predicts that the second 
harmonic intensities close to the backward and forward directions are the same. The inability of the effective nonlinear 
susceptibility methods arises from its intrinsic nature. Due to the surface integration performed in Eq. (2), the 
information on the exact position of the nonlinear sources is lost and the retardation effects are not accurately 
reproduced, explaining that the second harmonic emission pattern is identical in the forward and backward directions. 
This result shows that the effective nonlinear susceptibility method is not able to reproduce the SHG from 
centrosymmetric nanoparticles. In plasmonic nanostructures, the border between the SHG induced by shape and 
retardations effects is not well-defined and the nonlinear susceptibility method must be applied with great care.21 
 

 
 

Figure 4: (a) Second harmonic intensity from SRR with asymmetry ratio R ranging from 0 to 0.30 emitted in the forward 
direction. The predictions of different methods (the Miller’s rule, the nonlinear effective susceptibility, and full-wave 
computation) are compared. (b) The far-field second harmonic intensity as a function of the scattering angle for an asymmetry 
ratio R = 0 (corresponding to a 40 nm x 40 nm x 300 nm gold nanobar). The red curve shows the prediction of full-wave 
computation and the black curve the one of the effective nonlinear susceptibility method. 

 
6. EIGENMODE ANALYSIS 

 
Finally, we present the eigenmode analysis that we developed for the study of the SHG from plasmonic nanostructures. 
In the methods discussed previously, the gold SRR is driven by an incident wave oscillating at the fundamental 
frequency, generating a nonlinear polarization oscillating at the second harmonic frequency. However, the incoming 
planewave is able to excite various eigenmodes of the SRRs and distinct excitation channels for the SHG are available, 
resulting from the combination of these different eigenmodes.19 As a consequence, it is not possible to unambiguously 
discriminate between all the symmetry-allowed excitation channels. To overcome this limitation, we propose to evaluate 
the SHG directly from the eigenmodes themselves. Figure 5 shows the different steps involved in this process. The 
fundamental mode is first determined using a SIE method developed for searching nanostructure eigenmodes.12, 22 
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Figure 5: The different steps involved in the optimization of the SHG from plasmonic metasurfaces with the eigenmode 
analysis. Step 1: The fundamental mode is determined. Step 2: The surface nonlinear polarization oscillating at the second 
harmonic frequency is evaluated. Step 3: The different parameters are optimized to improve the mode matching between the 
fundamental and the second harmonic modes. 

 
The nonlinear surface polarization is then directly evaluated from the charge distribution associated with the fundamental 
eigenmode. With further analysis of both the second harmonic near-field distributions and second harmonic emission 
patterns, it is possible to determine which second harmonic mode is indeed related to the fundamental one. For example, 
this approach confirms that, in the case of SRR, the fundamental magnetic mode is coupled to an electric dipole mode.23 
This final step consists to optimize the SRR geometry to satisfy the mode matching condition and to improve the SHG.22 
The main advantage of this approach is to avoid cross coupling between different modes at the fundamental excitation. 
This is important for the design of double resonant nanoantennas, for which the mode matching is fully satisfied.   

 
7. CONCLUSIONS 

 
In summary, we have presented and compared different methods for the evaluation of the SHG from plasmonic 
nanostructures.10 Considering SRR as an example, the building blocks of most of nonlinear plasmonic metasurfaces 
studied so far as,24, 25 and using full-wave computations as a benchmark, we have determined the validity range of 
Miller’s rule and the effective nonlinear susceptibility method. As previously observed by O’Brien et al.,9 Miller’s rule is 
not able to determine the SRR geometry resulting in the highest SHG and must be used with a great care. On the other 
hand, the effective nonlinear susceptibility method permits to predict this geometry but fails to reproduce the properties 
of the second harmonic wave generated in plasmonic nanoparticles with centrosymmetric shapes. This observation 
emphasizes the necessity to accurately include the retardation effects and the exact positions of the nonlinear sources in 
this case. Finally, we have presented an eigenmode analysis of the SHG from plasmonic nanostructures, tailored for the 
identification of the excitation channels and for the design of double resonant nanoantennas. These results pave the way 
for an efficient and accurate design of the nonlinear optical conversion in plasmonic nanostructures and metasurfaces. 
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