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Abstract Nanoscale photonic systems involve a broad variety
of light–matter interaction regimes beyond the diffraction limit
and have opened the path for a variety of application oppor-
tunities in sensing, solid-state lighting, light harvesting, and
optical signal processing. The need for numerical modeling is
central for the understanding, control, and design of plasmonic
and photonic nanostructures. Recently, the increasing sophis-
tication of nanophotonic systems and processes, ranging from
simple plasmonic nanostructures to multiscale and complex
photonic devices, has been calling for highly efficient numer-
ical simulation tools. This article reviews the state of the art
in numerical methods for nanophotonics and describes which
method is the best suited for specific problems. The widespread
approaches derived from classical electrodynamics such as
finite differences in time domain, finite elements, surface in-
tegral, volume integral, and hybrid methods are reviewed and
illustrated by application examples. Their potential for efficient
simulation of nanophotonic systems, such as those involving
light propagation, localization, scattering, or multiphysical sys-
tems is assessed. The numerical modeling of complex systems
including nonlinearity, nonlocal and quantum effects as well

as new materials such as graphene is discussed in the per-
spective of actual and future challenges for computational
nanophotonics.
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Benjamin Gallinet1,∗, Jérémy Butet2, and Olivier J. F. Martin2

1. Introduction

1.1. Recent progress in nanophotonics

Light is probably the most common way we interact with
our environment and, over the centuries, the human kind has
developed increasingly sophisticated techniques to master
it. This is not an easy task, since light tends to escape and
propagate ad infinitum. Even with a sophisticated lens sys-
tem, it is impossible to confine light over dimensions much
smaller than about one wavelength, the so-called Abbe
diffraction limit [1]. The first attempts to tame light and
confine it to a small volume to achieve new functionali-
ties are certainly associated with the development of the
laser, where a cavity is used both to maintain light in a
gain medium and to define a narrow spectral linewidth [2].
In the second half of the twentieth century, tremendous
progress in semiconductor technology made possible the
miniaturization of lasers, opening up the field of optoelec-
tronics [3]. Microcavities with a well-controlled geometry
are able to produce extremely strong fields and very narrow
optical resonances, leading to very high quality factors Q.
These have been instrumental to the development of cavity
quantum electrodynamics [4, 5] and more recently cavity
optomechanics [6].
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Driven by analogies with semiconductors and their band
structure, photonic crystals have seen extremely vivid de-
velopments, leading to a broad variety of nanophotonic
structures to guide and manipulate light at the microscale
and nanoscale [7, 8]. These structures rely on high-
refractive-index materials and can reach quality factors in
excess of Q = 105 [9]; they also open new possibilities in
photonics, e.g. by controlling the group velocity of optical
signals [10]. While it is possible to confine light inside cav-
ities over dimensions comparable to the wavelength, the
direct observation of such highly confined fields is also
precluded by the Abbe diffraction limit and nanophotonic
systems have also been used to break this imaging limit,
especially in the context of near-field optical microscopy
[11], where optical probes are used to record the light con-
fined around nanostructures with sub-wavelength dimen-
sions [12].

Over the last decade, plasmonic materials have also
emerged as a popular way of producing strongly confined
optical fields through the resonant excitation of free elec-
trons in metals [13]. These structures are often described
as open cavities, since light confinement occurs at the in-
terface outside the metal. Contrary to dielectric cavities,
plasmonic materials have significant losses associated with
the metal and exhibit only moderate Q-factors. However,
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they are still very useful for exploring a broad variety of
physical effects, mainly because the mode volume V as-
sociated with a plasmonic nanostructure is much smaller
than that of a dielectric resonator [14]. Hence, the Purcell
factor FP ≈ Q/V , which dictates the interaction between
the (open) cavity and emitters, can still be very significant
[15]. Finally, plasmonic nanostructures form a very versa-
tile platform for developing sensing applications that rely
on the high sensitivity of the plasmon resonances to minute
changes in their environment [16].

More recently, another family of nanophotonic compo-
nents has emerged: metasurfaces [17]. These systems are
composed of artificial atoms – usually plasmonic nanostruc-
tures – often organized in a periodic lattice on a surface. By
virtue of the optical resonances supported by each atom, the
phase of the incident light can be manipulated, producing a
whole wealth of original optical effects, including negative
refraction [18], complex optical beams [19], and holograms
[20].

From the preceding, we see the emergence of specific
electromagnetic features for nanophotonic systems: they
can incorporate a broad variety of materials, not only the
entire range of dielectric materials including high-index
semiconductors, but also metals with losses and materials
with gain, as well as anisotropic materials; they can com-
bine geometrical features ranging from millimeter dimen-
sions (e.g. a waveguide) down to a few nanometers (e.g. a
plasmonic nanostructure); nanophotonic structures can be
composed of individual elements or of periodic structures,
like for example in many metasurfaces; finally, the dynamic
range of the electromagnetic field in these structures can
span several orders of magnitude, with the amplitude of
the electric field going from zero to several hundreds over
a few nanometers at the edge of a plasmonic nanostruc-
ture, for example. Experimentally relevant optical effects
arising in those systems are plentiful, including both the
linear and nonlinear regimes and often coupling to other
physical effects, such as thermal or electronic effects, to
name just two. All in all, these characteristics make the
accurate and efficient modeling of nanophotonic systems
extremely challenging, but also of utmost importance for
the analysis and the development of new components and
devices.

1.2. Modeling of nanophotonic systems

Nanophotonic systems come in a broad variety. In general,
their physical description is associated with one or several
observables or figures of merit which are critical for their
understanding and design, such as the electric field distri-
bution in a photonic cavity or the scattering cross section
of a nanoparticle. Numerical methods have been developed
to model the physical behavior of complex nanophotonic
systems for which no analytical solution is available. They
rely in particular on the process of discretization, which is
defined here as approximating the physical problem using
a set of appropriate analytical functions defined on a finite
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Figure 1 Examples of nanophotonic systems and applications.
Red arrows and areas represent light propagation and hot spots,
respectively. (a) Coupling and propagation of surface plasmon
polaritons in nanowires. (b) Nanoparticles in the active layer of a
solar cell to enhance light localization and harvesting. (c) Scatter-
ing and re-emission from a nanoparticle. (d) Nanoantenna with
sub-nanometer gap with electron tunneling.

or infinite domain. An algorithm is then used to compute
the solution of the approximated problem (for example a
linear system of equations). The required computational
memory and time depend on the problem and the chosen
approach to solve it. Many popular methods have been
extensively reviewed in the framework of computational
electromagnetics (e.g. Refs. [21,22]), some of them having
been quantitatively compared or benchmarked with analyt-
ical or experimental results in the field of nanophotonics
[23–28]. However, it remains challenging to find practi-
cal cases that can fairly benchmark the different numerical
methods. The approach used to generate the approximated
problem strongly determines the strengths and weaknesses
of the numerical method, and as a consequence the kind of
problems for which it is best suited. In addition, the effi-
ciency of a numerical method also includes many different
aspects besides the computation time and memory require-
ments: among them, ease of implementation, complexity of
discretization, and versatility. Some methods can be used
to calculate a broad range of systems, while others are very
efficient for specific problems. Furthermore, for the user
scientist or engineer, a trade-off between the problem to
solve and the method at hand usually has to be found. For
these reasons, the approach chosen in this review is first to
identify categories of nanophotonic problems which can be
seen as fundamental building blocks for modeling nanopho-
tonic systems, and then discuss the suitability of numerical
methods to these categories. We distinguish four categories
of problems: those involving light propagation, light local-
ization, light scattering, or multiscale problems. We define
the categories and introduce some potential challenges for
their numerical modeling. Some examples, possibly involv-
ing experiments, are chosen from the literature to motivate
the discussion. Figure 1 represents some particular occur-
rences in each category.
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1.2.1. Problems based on light propagation

This first category of problems involves calculations in a
one- or two-dimensional sub-diffraction limited light con-
finement. This can include waveguides, nanowires, or ar-
rays of nanoparticles which support the propagation of sur-
face plasmon polaritons (SPPs) (Fig. 1a) [29]. An example
of a plasmonic waveguide is shown in Ref. [30]: an SPP is
coupled into a thin silver stripe and its propagation proper-
ties are measured with a near-field scanning optical micro-
scope. The propagation in waveguides can be enhanced by
the use of specific substrates such as Bragg mirrors or pho-
tonic crystals [31]. The coupling elements can include grat-
ings or Y-couplers [32]. In such systems, the propagation
properties of light need to be evaluated in view of the future
integration of components in photonic circuits: in partic-
ular, the waveguide modes are studied through their reso-
nance frequency, field distribution, and propagation losses
[33, 34]. Another important figure of merit is the coupling
efficiency between circuit elements. The source can be
modeled as, for example, a point-source emitter or a prop-
agating waveguide mode. These waveguides are usually
modeled in a closed (i.e. spatially limited) or quasi-open
environment (e.g. to study radiation leakage of guided light
in an infinite environment).

1.2.2. Problems based on light localization

One important property of some nanophotonic systems lies
in the three-dimensional confinement of light below the
diffraction limit, possibly with resonant effects. An insight
into the near-field distribution and more generally the modal
decomposition is the key enabler for the understanding and
design of efficient systems such as low-threshold lasers [35]
or sensors with a high signal-to-noise ratio [36]. Studies of
the near field can include the calculation of the different
modes, including their resonance frequencies and field dis-
tribution. An example is shown in Fig. 1b: the hot spots
of the electromagnetic field around the nanoparticles upon
sunlight illumination enhance the absorption in an active
layer. Examples include optoelectronic devices such as so-
lar cells or photodetectors which can be enhanced by the
localization of light in the active material [37–39] and ther-
mal [40–42] or near-field imaging [30] devices. The study
of spontaneous emission in proximity to a nanostructure
involves the calculation of the local density of optical states
and the far-field radiation leakage pattern of a dipole emit-
ter [35]. Efficient sensors such as gas sensors [43] or bio-
logical sensors based on surface-enhanced Raman scatter-
ing (SERS), surface-enhanced infrared absorption, fluores-
cence, or nanoscale refractive index variations rely on the
confinement of the electromagnetic field in specific regions
of space [36].

1.2.3. Problems based on light scattering or emission

This class of problems involves the interaction between a
nanostructure and propagating light waves. In scattering

experiments, the optical response of a nanostructure upon
a given illumination is measured. As the distance between
the source, the detector, and the target is usually orders of
magnitude larger than the characteristic dimensions of the
scatterer, the environment can be modeled as an infinite
homogeneous background. Some examples can include a
nanoparticle embedded in a dielectric material (Fig. 1c),
placed on a substrate or on a multilayered medium such as
a Bragg reflector. The response of an individual nanopar-
ticle is usually characterized by its scattering, absorption,
and extinction cross sections [44]. A large category of prob-
lems include arrays of nanostructures with various sizes. In
periodic systems, the observables are the reflection, trans-
mission, and absorption coefficients. An example of re-
flective surfaces is shown in Ref. [45]: here, plasmonic
nanostructures are used to generate structural colors. The
optical properties of the structured surface are tailored to
generate a variety of colors towards a realistically rendered
image. Structural colors can be also generated from high-
refractive-index nanoparticles [46] or nanowires [47]. In
the design of nanoantennas or metasurfaces, an in-depth
design of the angular emission pattern, including the field
phase and intensity, is also necessary [17, 48]. As another
example, in Ref. [49] electron energy loss spectroscopy
(EELS) measurements are compared to simulations of elec-
tron scattering on nanoparticles: this is usually modeled by
considering a fast-moving dipolar light source.

1.2.4. Multiscale problems

A large quantity of recently developed nanophotonic sys-
tems require a modeling approach beyond the linear con-
stitutive relations for the electric and magnetic fields or
even Maxwell’s equations themselves. This is the case for
example for magneto-optical systems [50] or nonlinear op-
tical effects such as second harmonic generation (SHG)
or third harmonic generation (THG) in plasmonic nanos-
tructures [51]. In active and optoelectronic devices such as
light-emitting diodes, organic light-emitting diodes, lasers,
or solar cells, the electronic behavior needs to be mod-
eled together with the optical behavior [35, 38, 39]. For
another class of systems where the size of the plasmonic
structures is comparable to the mean free path of electrons
(e.g. Fig. 1 d showing a dipole nanoantenna with a deep
sub-wavelength gap), an in-depth knowledge of the dy-
namics of the material is required, with even in some cases
fully quantum mechanical calculations [52]. In the case of
nanostructured graphene, the two-dimensional nature of the
material requires an accurate description of the electronic
band structure prior to the study of the plasmonic modes
[53]. In nanoparticle-enhanced photochemistry, charge car-
riers are excited on the metal surface and used to activate
chemical bonds and chemical transformations in an adsor-
bate: an understanding of the mechanisms will in general
require knowledge of the energy levels and interactions in
the nanoparticle–adsorbate system [54].
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1.3. Outline

Four categories of problems are identified in Section 1.2
and form together a basis for the modeling of nanopho-
tonic systems: problems involving light propagation, lo-
calization, scattering, or multiscale problems. This review
is organized in two main sections. Section 2 is dedicated
to problems which can be numerically modeled by dis-
cretizing Maxwell’s equations and the linear constitutive
relations for the electric and magnetic fields. The currently
most popular methods are reviewed: for each method, the
main equations are introduced and latest examples of ap-
plications or developments in nanophotonics are provided,
with the goal of illustrating their respective strengths and
weaknesses. However, it is beyond the scope of this review
to give a detailed description of the methods or to quantita-
tively compare their efficiency, for which well-documented
books or review articles are cited in the text. Among the
most popular methods, two main categories can be distin-
guished: differential and integral methods. Popular differ-
ential methods discretize the differential form of Maxwell’s
equations in a finite space. They include the finite differ-
ences in time domain (FDTD) and the finite element (FE)
methods, as well as hybrid methods. Volume or surface inte-
gral methods restrict the discretization to the nanostructure
and make use of the Green’s dyadic function to compute
the solution. Hybrid methods combine advantages of sev-
eral methods together, which broadens their field of applica-
tions. Some popular methods based on scattering and trans-
fer matrices are also discussed. Finally, the advantages and
limits of the different numerical methods are assessed in this
context.

Section 3 reviews specific examples of nanophotonic
systems for which numerical simulations require models
beyond the classical nature of Maxwell’s equations and the
linear form of the constitutive relations for the electric and
magnetic fields, usually with a more accurate description
of the materials at the nanoscale. This comes together with
an increased complexity of implementation and requires
the use of state-of-the-art methods or the development of
novel tailor-made techniques. In particular, nonlinear op-
tical effects, the nonlocal correction to the permittivity of
nanostructures, and the field of quantum plasmonics are
discussed. Finally, the rapidly growing field of modeling of
graphene plasmonics is reviewed.

1.4. Target audience

This review is aimed at providing engineers and experimen-
tal researchers in nanophotonics with a basic knowledge of
the advantages and limitations of numerical methods. Some
fundamental equations of the methods as well as applica-
tions or developments in the recent literature are selected
in order to provide the reader with the ability to make an
informed choice of the method that is the most appropriate
to the problem at hand.

Researchers in computational nanophotonics will also
find a review of the latest developments in the field through

selected publications, as well as a discussion of the future
possible directions in developing new methods or improv-
ing the existing ones. The far-reaching goal of this commu-
nity is to enable the use of multiscale and highly versatile
numerical methods that are able to efficiently handle arbi-
trary large and multiscale systems.

2. Numerical methods based on classical
Maxwell’s equations

In this section, each method is briefly described through
its fundamental equations in order to give an intuitive un-
derstanding of the type of problem for which it is best
suited. The emphasis is put on classical numerical meth-
ods that are designed to handle a relatively broad variety
of systems: the so-called differential and integral meth-
ods. This description is supported by application exam-
ples from the recent literature. At this point, it must be
mentioned that an exhaustive list of examples illustrat-
ing every particular feature of the methods would prac-
tically be impossible, given the variety of methods and
existing nanophotonic systems. Here, the examples are se-
lected because they either clearly illustrate an advantage
or limitation of a given method, or highlight cases where
simulations could model successfully an experimental re-
sult, or bring a new layer of understanding of a particular
effect.

Differential methods solve Maxwell’s equations in their
differential form. They rely on a volume discretization in
a finite computational domain. A first approach consists
of directly discretizing Maxwell’s equations in time and
space using finite differences: this is the core of the FDTD
method which is discussed in Section 2.1. On the other
hand, the FE method in Section 2.2 consists of expanding
the electromagnetic fields as local functions in elements,
which results in higher accuracy in the frequency domain.
Its extension to the time domain is discussed in Section
2.3, together with the discontinuous Galerkin time-domain
(DGTD) method. Integral methods transform Maxwell’s
equations in an integral form through the use of the Green
function and discretization is reduced to the nanostructured
objects. A first approach consists of restricting the dis-
cretization of the problem to the volume of the objects.
These methods are usually called volume integral equation
(VIE) methods and are reviewed in Section 2.4. On the other
hand, for piecewise homogeneous objects, the discretiza-
tion can be further reduced to the surface boundaries. The
methods using these approaches are called surface integral
equation (SIE) methods and are reviewed in Section 2.5. In
Section 2.6, hybrid methods and geometry-specific meth-
ods such as the T -matrix method, the rigorous coupled
wave analysis (RCWA), or semi-analytical methods are dis-
cussed. For further details on the implementation of these
methods, the reader is referred to the related books or re-
view articles. The summary (Section 2.7) takes the form of
a table evaluating the methods and their compatibility with
the different nanophotonic problems identified in Section
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Figure 2 Examples of discretization for computational modeling of an optical nanoantenna. (a) Sketch of the nanostructure sandwiched
between a substrate (e.g. a quartz wafer) and a superstrate (e.g. air). (b) Finite differences in time domain method, with discretization
in the nanostructure, the substrate, and the superstrate using a Cartesian grid. (c) Finite element or discontinuous Galerkin time
domain method, with discretization of the nanostructure, the substrate, and the superstrate using tetrahedral elements. (d) Discrete
dipole approximation, with discretization in dipoles inside the nanostructure. (e) Surface integral equation method, with discretization
in triangular elements at the surface of the nanostructure.

1.2: problems based on light propagation, localization and
scattering.

2.1. Finite differences in time domain

The FDTD method is one of the most popular methods
in nanophotonics because of its ability to handle a large
variety of problems [55]. In this method, both time and
space are discretized, i.e. all spatial and temporal deriva-
tives in Maxwell’s curl equations are replaced by finite
difference quotients[21, 56]. In Fig. 2b, an example of dis-
cretization of a metallic nanoantenna on a substrate in
the framework of FDTD is shown. The respective vol-
umes of the nanostructure, the substrate, and the super-
strate are represented by a staircase approximation. The
popular algorithm introduced by Yee [57] is briefly shown
here; a more detailed account can be found in, for example,
Refs. [21, 55, 56].

In the presence of source currents J and charges ρ,
Maxwell’s equations in their differential form are given
by

∇ × H = ∂D
∂t

+ J (1)

∇ × E = −∂B
∂t

(2)

∇ · D = ρ (3)

∇ · B = 0. (4)

In the Yee algorithm, a Cartesian grid of rectangular
cells with side lengths �x , �y, �z for the spatial dis-
cretization and a time step �t for the temporal dis-
cretization are chosen. Faraday’s law without current is
considered as an example (Eq. (2)). The same proce-
dure can be directly applied to Ampere’s law (Eq. (1))
and to the introduction of current sources at specific
points of the grid. Introducing the notation E(x, y, z, t) =
En( j, k, l), where x = j�x , y = k�y, z = l�z, t =
n�t , j, k, l, n ∈ N, one obtains the discretization of the

x-component of Eq. (2):
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)]
. (5)

Equation (5) implies that the magnetic field at the time in-
crement n + 1/2 is updated from the magnetic field at time
increment n − 1/2 and the electric field at time increment
n in a leapfrog manner. This procedure can be easily gener-
alized to the other components of Eq. (2) where the electric
field at time increment n + 1 is updated from the electric
field at time increment n and the magnetic field at time
increment n + 1/2. This way, the electromagnetic field can
be computed at all time over the computational grid. Only
Ampere’s and Faraday’s laws are explicitly time-stepped,
because the Gauss laws (Eqs. (3) and (4)) are enforced
implicitly with this FDTD approach.

In general, the permittivity undergoes spatial variations
within a grid cell: the permittivity in each cell is then cal-
culated as an average value, following, for example, the
Maxwell–Garnett rule for dielectric materials [21]. The size
of the discrete cells is critical for achieving a sufficiently
high numerical accuracy. It is usually recommended that the
spatial increment �x , �y, and �z should not be larger than
λ/20, where λ denotes the wavelength of the incident wave
[21]. In order to ensure a stable numerical result, the time
increment should in addition satisfy the Courant condition
given by [56]

c0�t � 1√
1

�x2 + 1
�y2 + 1

�z2

. (6)
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It was recently shown that the time increment should be
as large as possible, but within the Courant limit [58]. As
can be seen in Eq. (5), the Yee algorithm uses an orthog-
onal uniform grid. It is second-order accurate by nature
of the central-difference approximation used to realize the
first-order spatial and temporal derivatives. However, such
a simple approach can yield numerical inaccuracies of vari-
ous kinds: (1) when the space increment is not small enough
to resolve the high field gradients in particular regions of
space, for example in a resonant cavity; (2) when the po-
sition of the cell does not follow the shape of the mate-
rial boundaries, resulting in a staircase representation and
implementation for complex geometries. Among the ap-
proaches that can enhance the spatial resolution, one can
cite the use of a nonhomogeneous grid [59] or the gen-
eralization of the Yee algorithm to irregular nonorthogonal
unstructured grids [60]. As electromagnetic fields can reach
high gradients around nanophotonic resonators, great atten-
tion must be given to the modeling of such materials for
accurate and reliable results [55]. Another challenge related
to the FDTD gridding arises from its numerical dispersion.
The numerical phase velocity of waves depends on the prop-
agation direction, which can be problematic for long-range
propagation. This source of inaccuracy can be reduced if
a sufficiently fine gridding is chosen, or with the use of
mitigation algorithms [56]. Only the field from the previ-
ous time step is needed to compute the new field. Thus,
the required computational memory scales only with the
volume of the computational domain, which makes FDTD
efficient for large systems. The number of numerical oper-
ations in FDTD scales with the fourth power of the particle
size [21, 61].

The implementation of time-domain methods to peri-
odic systems has fundamental limitations arising from the
periodic boundary conditions. Valid results can be obtained
at normal incidence (i.e. when there is no phase delay be-
tween cells), but oblique incidence requires using the field
components backwards and forwards in time. Some meth-
ods have been introduced to mitigate this fundamental lim-
itation, among which are those applying a field transforma-
tion to eliminate the time delay across the FDTD grid with
a supplementary computational cost [56].

In numerical methods based on the differential form
of Maxwell’s equations, boundary conditions are applied
to the fields. They can be of several types: Dirichlet, von
Neumann, or their combination. Also, in systems with dis-
crete symmetry, some nontrivial symmetry-driven bound-
ary conditions can be enforced on truncated domains [62].
For the case of theoretically infinite environments where the
Sommerfeld radiation condition is applied to the fields (e.g.
for scattering or radiation problems), the finite memory al-
location means that the computational domain must still
be finite. The boundary should reproduce as accurately as
possible a homogeneous nonlossy infinite medium, i.e. non-
physical reflections must be minimized. Absorbing bound-
ary conditions were introduced, but they have the limita-
tions of residual reflections depending on the frequency and
the incidence angle [56,63]. In order to solve this problem,
the perfectly matched layer (PML) was introduced [64],

which is a layer of lossy material with a perfectly matched
interface that does not reflect a plane wave for all frequen-
cies and all angles of incidence and polarizations. PMLs can
be seen either as coordinate stretching in the frequency do-
main [66] or as an artificial anisotropic absorbing medium
[67]:

ε = �ε,μ = �μ,� =
⎛
⎝

sy sz

sx
0 0

0 sx sz
sy

0

0 0 sx sy

sz

⎞
⎠, (7)

where the PML parameters s j ( j = x, y, z) are chosen as
s j (ω) = 1 − σ j/(iω) and σ j controls the damping of a wave
propagating along the i-direction. Further designs of the
PML parameters can be implemented to accelerate the de-
cay of propagating or evanescent waves [56, 63]. Special
care should be taken with the use of PMLs, because numer-
ical reflection errors can alter the numerical accuracy. Fur-
thermore, the PML approach breaks down when the distri-
bution of the permittivity at the edges of the computational
domain is not homogeneous in the direction perpendicular
to the PML, such as a waveguide entering a PML with an
angle [68]; in such cases, the use of absorbing boundary
conditions is recommended.

Some materials that can be found in photonic nanos-
tructures such as metals or semiconductors are dispersive.
In particular, the dispersion of a metallic material deter-
mines the plasmon resonance frequency and markedly af-
fects the optical properties [69]. In numerical simulations,
a frequency-dependent dielectric permittivity is included
to account for this effect, which can be evaluated for in-
stance with the Drude model or from experimental data.
An example of a frequency-dependent dielectric function
is illustrated in Fig. 3, where a quantum dot nanocrystal
of CdSe is placed in the gap of a pair of silver nanopar-
ticles. A single Lorentzian peaked at the quantum dot’s
resonance frequency is considered for modeling its permit-
tivity. The real-valued time-domain susceptibility function
χ (t) is obtained by inverse Fourier transformation. At any
point in a linearly dispersive medium, the time-dependent
electric flux density is calculated from the electric field in-
tensity. This implies in particular that the electric flux takes
its value from the history of the system. In time-domain
methods, the implementation of such dispersive materials
is not straightforward. A popular approach is the piecewise-
linear recursive convolution method [70]. In order to avoid
the storage of field values at all times, the piecewise-linear
recursive convolution method introduces a time-dependent
vector variable (the recursive accumulator). At each time
step, the accumulator and the fields are updated recursively
from the previous time step. Another method consists of
adding an auxiliary differential equation in the time do-
main linking the polarization and the electric flux density:
an example of application to the multi-term Debye and
Lorentz models is shown in Ref. [71].

Another challenge concerns the efficient computation of
scattering from long-duration pulses or plane waves. The
total field/scattered field technique, popular in FDTD [72],
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(a)

(c)

(b)

Figure 3 Simulation of scattering and extinction cross sections
of a quantum dot–metal nanoparticle hybrid system using FDTD.
(a) Geometry of the system with domains used for the simulations.
The blue ellipses represent silver nanoparticles and the red circle
represents a semiconductor nanocrystal. In (b) and (c), solid black
squares are values of extinction and scattering cross sections
(×103 nm2), respectively. The quantum dot linewidth is 10 meV.
The solid lines are fits to a phenomenological coupled-oscillator
model. Solid circles are extinction and scattering spectra for the
same system but without quantum dot absorption, also calculated
by the FDTD method. Adapted from Ref. [248] with permission.
Copyright (2010) Optical Society of America.

splits the electromagnetic fields into two contributions, the
incident and scattered fields. If the incident field is a plane
wave, the time iteration is continued until the fields have
converged to a steady-state solution. As an illustration in
Fig. 3, a time-windowed plane wave is incident on a struc-
ture, where it is absorbed and scattered. The computational

domain includes a region containing the scattering where
the total field is computed using the FDTD algorithm and a
region where only the scattered field is computed. The plane
where the wave is generated defines the interface between
the total-field and scattered-field regions. The absorption
spectrum is obtained by taking the Fourier transform of the
flux through a three-dimensional box around the structure in
the total-field region and the scattering spectrum is obtained
by taking the Fourier transform of the flux through a three-
dimensional box around the structure in the scattered-field
region.

The far field can also be accurately computed from
the numerically computed near field without the need of
extending the computation grid [56]: with this technique
called the near- to far-field transformation, the Green theo-
rem is applied on surface currents that are calculated at the
boundaries of the computational domain. In order to obtain
the far-field properties of a system, a pulse can be used as
an incident field and the Fourier transform of the field can
be calculated, which yields an entire spectrum in a single
calculation [56]. This approach requires nevertheless con-
tinuing the time iteration until the field values have decayed
below a given threshold value and is limited in accuracy for
resonators with high quality factors which decay slowly
with time.

Finally, time-domain methods such as FDTD can cover
calculations of light propagation in a natural way. Propa-
gation lengths and radiative as well as nonradiative losses
can be assessed in a variety of nanoscale waveguides made
for instance from nanowires [33], arrays of nanoparticles
[73], or nanobelts [74]. In Fig. 4, FDTD calculations were
performed to determine the propagation lengths of SPPs in
gold nanowires. The calculations could first reveal that sev-
eral modes were supported by the nanowires, as indicated
by the surface charge distribution. A Gaussian beam with
a fixed wavelength was normally incident and focused on
the ends of the nanowires. SPP propagation lengths for dif-
ferent nanowires and polarizations were determined from
linear fits to semilog plots of the time-averaged energy flow
(Poynting vector) along the nanowire length as a function of
distance. It is also discussed in this example that the cross-
sectional shape of the nanowires and the charge distribution
of the modes play an important role in their respective prop-
agation lengths. Apart from commercial softwares, Meep
[75] is an example of FDTD open source code.

2.2. Finite elements

The FE method is another popular differential method
in nanophotonics, which allows for accurate computa-
tion of the electromagnetic field originally in the fre-
quency domain. Hybrid and time-domain methods based
on FEs include the finite elements in time-domain method
(FETD) and the DGTD method. A detailed account of
their implementation and various features can be found in
Ref. [63].

A linear dependence of the magnetic and electric polar-
izations is assumed. Eliminating the magnetic field with the
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Figure 4 SPP propagation lengths in gold nanowires calculated
with FDTD for longitudinal and transverse polarized excitations.
The propagation lengths were obtained from fitting the decay
profiles. (a) Pentagon cross section. (b) Star cross section. In-
sets: scanning electron microscopy images of the chemically
synthesized nanowires and computed surface charge distribu-
tion. Adapted with permission from Ref. [33]. Copyright (2014)
American Chemical Society.

aid of the constitutive relations, the vector wave equation is
obtained from Maxwell’s equations:

∇ ×
(

1

μ
∇ × E

)
+ ε

∂2E
∂t2

+ σe
∂E
∂t

= −∂J
∂t

, (8)

where μ is the magnetic permeability, ε the electric permit-
tivity and σe the electrical conductivity. For time-harmonic
fields, an exponential time dependence in e−iωt is assumed.
Maxwell’s equations with an electric current source J can
be combined to yield the electric field wave equation in the
frequency domain:

∇ ×
(

1

μr
∇ × E

)
− k2

0εrE = ik0 Z0J, (9)

where μr, εr, k0, and Z0 are the relative permeability, rel-
ative permittivity, free space wavevector, and impedance,
respectively. The solution of the electric field wave equa-
tion (Eq. (9)) with current is sought, in combination with
the general boundary conditions:

1

μr
n̂ × (∇ × E) + γen̂ × (n̂ × E) = U, (10)

where γe is a known parameter and U a known vector. The
following functional is considered:

F(E) = 1

2

∫
V

[
1

μr
(∇ × E) · (∇ × E) − k2

oεrE · E
]

dV

+
∫

S

[γe

2
(n̂ × E) · (n̂ × E) + E · U

]
dS

− ik0 Z0

∫
V

E · J dV . (11)

Seeking for the stationary point of the functional with re-
spect to the electric field (δF = 0) is equivalent to solving
the boundary value problem involving Eqs. (9) and (10).
Note that a functional for anisotropic media can be derived
in an equivalent way as in Eq. (11).

The domain V on which the problem is defined is
then separated in a set of elements and the electric field
is expanded in each element on a set of basis functions.
Tetrahedral and hexahedral elements are flexible and can
model accurately material boundaries (Fig. 2c). As a dif-
ferential method, the entire computational domain has to
be discretized: this includes in the example of Fig. 2c the
nanostructure, the substrate, and the superstrate. Seeking
the stationary point of the function in Eq. (11) can lead to
solutions that do not fully satisfy the divergence condition
called spurious solutions (Eqs. (3) and (4)), as well as to
difficulties in imposing boundary conditions and treating
field singularities at edges and corners. Edge elements with
vector basis functions N j were introduced to solve these
issues: these basis functions enforce continuity of the fields
and their curl, and therefore implicitly satisfy Gauss’ laws.
The electric field is expanded as

E =
N∑

j=1

E j N j (r), (12)

where N is the number of unknowns, corresponding to the
number of edges, and E j are the unknown coefficients. Us-
ing the decomposition of Eq. (12), the variational problem
δF = 0 becomes

N∑
j=1

M jk Ek = b j , (13)

where

M jk =
∫

V

1

μr

[
(∇ × N j ) · (∇ × Nk) − k2

0N j · Nk
]

dV

+
∫

S
γe(n̂ × N j ) · (n̂ × Nk) dS (14)

and

b j = −
∫

S
N j · U dS + ik0 Z0

∫
V

N j · J dV . (15)
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The system of equations in Eq. (13) can be written in matrix
notation:

M E = b, (16)

where E is the vector of unknown electric field amplitudes,
b is related to the source terms, and M is a sparse matrix.
The vector wave equation without source can be consid-
ered as well, resulting in the eigenvalue equation M E = 0
which can be useful when calculating the eigenmodes of
a nanophotonic resonator. For example, the eigenvalue in
a dielectric three-dimensional cavity with Dirichlet bound-
ary conditions is k2

0. The calculation of eigenvalue prob-
lems using FEs can also be applied to open or lossy cavities
or waveguides. It must also be mentioned that eigenvalue
equations are not specific to FEs but can also be found in
other methods in the frequency domain. The basis func-
tions are polynomial functions of the position. Although
the first-order basis functions show good accuracy, a higher
order convergence rate can be achieved using higher order
vector elements [76, 77]. As a differential method, the FE
method requires the use of PMLs, an artificial separation
of incident and scattered fields, as well as near- to far-field
transformations which complicate the implementation and
use of the method for scattering problems, as explained
in Section 2.1. However, the dispersion of materials and
periodic boundary conditions can be directly implemented
since the FE method is in the frequency domain. Overall,
the number of numerical operations in the FE method scales
approximately with the seventh power of the particle size
when Gaussian elimination is used, and can be brought to
the fourth power with the conjugate gradient method [21].
The memory consumption scales approximately with the
fifth power of the particle size.

In contrast to FDTD, the use of basis functions en-
ables one to account for the geometry of nanostructures
with a high accuracy, which can be crucial when studying
the effect of nanoscale variations of shapes on the optical
properties [33,78]. The high accuracy of the computed elec-
tromagnetic field allows studying the electromagnetic con-
finement in nanostructures and in particular the influence
of geometrical parameters on the near-field distribution.
This makes FE-based approaches very well suited for the
simulation of systems based on light localization and their
related applications [79]. Dispersive materials can also be
directly implemented as the FE method is in the frequency
domain. In the frequency domain, the modes as well as
their resonance frequencies, losses, and area can be di-
rectly calculated, which are critical in the design of cavities
for nanolasers [80,81] (an example is shown in Fig. 5). An
accurate simulation of the near field is also critical to un-
derstand and design nanostructures for optical trapping and
sensing [82]. In another example, the near-field informa-
tion obtained from FE calculations is used to evaluate the
temperature distribution of plasmonic nanostructures using
a thermal transport equation [42].

Figure 5 Near-field properties of an ultraviolet plasmonic
nanolaser device computed with the FE method. (a) Schematic
of the device. (b) Absolute electric field (|E|) distribution (left)
around the plasmonic device with a wavelength of 370 nm, corre-
sponding to the lasing wavelength of GaN nanowires. The electric
field direction is indicated by red arrows. The cross-sectional am-
plitude (right) is also shown. (c) Calculated local Purcell factor
distribution around the GaN nanowire (left) and cross-sectional
Purcell factor plot (right). Adapted with permission from Ref. [81].
Copyright (2014) Nature Publishing Group.

2.3. Hybrid finite elements/finite differences,
discontinuous Galerkin time-domain method

The FE method can be extended to the time domain
by seeking for the stationary point of the functional
corresponding to the vector wave equation (Eq. (8)). This
leads to a differential equation in the time domain which
can be solved for example using a finite difference scheme.
Different time-stepping schemes can be adopted: the most
accurate approaches (second order, central difference, and
Newark methods), however, require solving a system of
equations at each time step, resulting in general in higher
computational costs than FDTD [63]. If linear, rectangular
hexahedral elements are adopted and the spatial integrations
are evaluated using the trapezoidal rule, then the FDTD al-
gorithm is recovered [56, 83]. Hybrid methods have been
recently developed in order to benefit from the advantages
of both FDTD and FE methods. In particular, methods have
been proposed to improve the efficiency of FETD. The
dual-field domain decomposition method divides the com-
putational domain into small sub-domains and couples the
fields between the sub-domains by exchanging the surface
equivalent electric and magnetic currents at the sub-domain
interfaces and computes the electric and magnetic fields
step by step in a leapfrog manner [84]. In the same spirit,
the element-level decomposition method considers each FE
as a sub-domain [85]. Techniques which use a combination
of a Cartesian space lattice with a time-domain FE mesh
consisting of tetrahedra and pyramids have also been devel-
oped [56,86]. Part of the computational domain which does
not require fine geometrical rendering is discretized using
FDTD and the update of the fields with time is made explic-
itly. A FE mesh is implemented on a reduced domain where
accurate computation is required. In this sub-domain, the
fields are updated implicitly and interfaced with the FDTD
grid.
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A popular method is the DGTD method [63]. A detailed
review of the method and its application to nanophotonics
is given by Busch et al. [87]. The DGTD method directly
solves Maxwell’s equations inside each element and con-
nects them through a numerical flux. The discretization in
the time domain can be made using the central difference
method in a similar manner to FDTD. This method allows
the use of higher order expansion and testing functions,
providing great accuracy, while solving equations locally
within each element. It therefore combines the accuracy
of high-order FE methods with a time-domain description,
which makes it efficient for large systems [88]. Similarly
to the FDTD and FE methods and as a differential method,
the DGTD method also requires the use of tailored PMLs
and an artificial separation of incident and scattered field,
as briefly explained in Section 2.1 and detailed in Ref. [89].
Several examples of applications for nanophotonics can
be found, including nanostructured metallic films [89] and
split-ring resonators [87].

Overall, the methods outlined in this section feature
the typical limitations (such as the challenging implemen-
tation of periodic boundary conditions, dispersive materi-
als, open boundary conditions, scattering by long-duration
fields) and advantages (efficient simulation of large sys-
tems, calculation of explicit time-domain decays of waves)
of time-domain methods. Great care has also to be taken
in order to model highly resonant systems which decay
slowly in time. Their advantage as compared to FDTD is
their higher accuracy, which comes at the price of a more
challenging implementation and generally higher compu-
tational cost.

2.4. Volume integral methods

VIE methods transform Maxwell’s equations in an inte-
gral form to solve for the electromagnetic field on a re-
duced volume. There are different approaches for deriv-
ing the numerical equations associated with the solution of
Maxwell’s equations in their integral form. Here we will
follow Ref. [90], starting from the vectorial wave equation
and draw at the end of the section similarities with the
most popular implementation of this approach, the discrete
dipole approximation (DDA) [91].

Assuming nonmagnetic materials, we consider a scat-
terer with permittivity ε(r) embedded in an infinite ho-
mogeneous background with permittivity εb. The scatterer
does not need to be homogeneous, but can be composed of
different materials, including metals with a complex per-
mittivity; furthermore, it can also be made of anisotropic
materials [92], although we consider here a scalar permit-
tivity for simplicity. Since this approach is in the frequency
domain, all calculations are performed at a single frequency
ω and harmonic fields with exp(−iωt) are assumed. The
volume integral methods presented here consider only the
electric field, since it is in principle sufficient to solve any
electromagnetic problem with nonmagnetic materials, as is
the case for most nanophotonic systems. This represents
an important difference from many other numerical meth-

ods, which usually solve simultaneously for the electric
and magnetic fields. In principle, once the electric field is
known for a given problem, the magnetic field can be found
using Eq. (2); however, this task is not trivial with a finite
differences approach, since the discretized form of Eq. (2)
requires knowing the electric field on several points around
the location where the magnetic field is calculated, which
generates quite some computational overhead.

When this system is illuminated with an incident field
E0(r) propagating in the background medium, the total elec-
tric field (incident field plus scattered field) is a solution of
the vectorial wave equation obtained from Eq. (9) in the
absence of currents:

∇ × ∇ × E(r) − k2
0ε(r) E(r) = 0, (17)

where k2
0 = ω2/c2 is the vacuum wave number. The key

step in the derivation of the VIE is to consider the scattering
problem as the superposition of a problem composed of the
infinite homogeneous background εb plus another problem,
where the dielectric contrast,

�ε(r) = ε(r) − εb, (18)

describes how the scatterer differs from that background
[90]. In this way, the total electric field becomes a solution
of the integral equation

E(r) = E0(r) +
∫

V
dr′Gb(r, r′) · k2

0�ε(r′)E(r′), (19)

where the integration runs over the entire scatterer volume
V and Gb(r, r′) is the Green tensor associated with the back-
ground. This dyadic has a very simple interpretation. It is
a 3 × 3 matrix, the columns of which represent the electric
field at position r for three orthogonal dipoles located at
position r′: the first column corresponds to the three elec-
tric field components (Ex , Ey, Ez) for the field radiated by
a dipole oriented in the x-direction (Fig. 6a); the second
column gives the three electric field components radiated
by a dipole oriented in the y-direction; and the third column
is the field radiated by a dipole oriented in the z-direction.
Consequently, in that formalism, the system is discretized
by assigning to each mesh three orthogonal dipolar polar-
izabilities and the corresponding meshes are often repre-
sented by spheres (Fig. 2d). This approach is validated by
the fact that the polarizability of a scatterer much smaller
than the wavelength is essentially dipolar [93].

This physical interpretation of the Green tensor as the
field produced by a dipolar source points to an intrinsic
difficulty associated with this method: when the observation
point r gets closer to the source point r′, the field diverges
(the electric field of a dipole diverges at the position of the
dipole). Consequently, one must take the principal value
for the integral in Eq. (19), which leads to the following
discretized equation:

Ei = E0
i +

N∑
j=1, j �=i

Gb
i, j

· k2
0�ε j E j V j

+ Mi · k2
0�εi Ei − L · �εi

εB
Ei , i = 1, . . . , N, (20)
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Figure 6 (a) The Green tensor used in the VIE represents the
field radiated by a dipole. In free space, only direct radiation ex-
ists (dashed line), while (b) in a stratified medium, reflections at
the different interfaces also exist. (c) Light scattering by scatter-
ers in a stratified background can easily be computed using this
approach. In the example, a light-coupling mask used for nano-
lithography is decomposed into a stratified background plus a few
scatterers. (d) Intensity distribution in the photoresist for such a
light-coupling mask. (e) When an additional anti-reflection layer
is used above the substrate, the standing wave in the photoresist
disappears. Adapted from Ref. [99] with permission. Copyright
(2001) Optical Society of America.

where the discretized field Ei = E(ri ), the discretized di-
electric contrast �εi = �ε(ri ), and the discretized Green
tensor Gb

i, j
= Gb(ri , r j ) have been introduced for the

N meshes corresponding to the discretized scatterer.
This discretization assumes that all these parameters are
constant over one single mesh volume V j . More re-
fined discretization approaches have been proposed for
Eq. (19), using concepts derived from signal processing
[94, 95] or from the FE technique [96], although the lat-
ter case has only been implemented for two-dimensional
geometries.

Since this approach relies on the discretization of the
scatterer into small volumes, inhomogeneous scatterers can
easily be handled and discretized into a collection of meshes
with different permittivities. The accuracy of the method
depends on the mesh size used for the discretization; a suffi-
cient accuracy for most physical situations is achieved with
5 to 10 meshes per wavelength, although the convergence
of the method is not always monotonic [97]. Overall, the
number of numerical operations scales approximately with
the ninth power of the particle size when Gaussian elimi-

nation is used, and can be brought to the sixth power with
the conjugate gradient method [21] or even further down
with the use of fast Fourier transform techniques [61]. The
memory consumption scales approximately with the sixth
power of the particle size. As a matter of fact, a limitation
of this approach lies in the fact that the resulting matrix
is dense, non-Hermitian, and can have a large condition
number [98].

The simple interpretation of the Green tensor as the field
of a collection of orthogonal dipoles illustrated in Fig. 6a
prompts a very interesting extension of VIEs for light scat-
tering in complex backgrounds, especially stratified media.
For an infinite homogeneous space, the field radiated by a
dipole corresponds to direct radiation from the source (at
position r′) to the field point (at position r), as indicated by
the straight radiation line in Fig. 6a. For a stratified back-
ground, e.g. composed of three different materials with
permittivities εb1, εb2, and εb3, in addition to this direct ra-
diation, additional radiation paths exist with reflection at
the different interfaces (Fig. 6b). These additional paths ac-
count for the entire interaction between the scatterer and its
surroundings; hence, by using the Green tensor associated
with such a stratified medium, i.e. the field generated by
a dipole in a layered background, one can compute light
scattering by a scatterer embedded into that background
by merely discretizing the scatterer only [99]. For a ho-
mogeneous medium, the Green tensor Gb

i, j
is analytical;

this is no longer the case in a stratified background, where
the Green tensor must be computed numerically – usually
in the spectral domain using numerical integration in the
complex plane – which has an additional, non-negligible,
computational cost [100]. This approach is especially ef-
ficient when the scatterer volume is limited, compared to
the volume of the stratified background, as illustrated in
Fig. 6c–e. This figure shows the field distribution produced
by a light-coupling mask for nanolithography [101]: the
mask is made of a soft polymer and includes a thin gold
layer to increase the contrast. It is applied onto the photore-
sist, where it produces a strongly localized field distribu-
tion, which can be used to expose sub-wavelength features
[102]. The geometry is easily decomposed into a stratified
background made of the different homogeneous layers, and
a few localized scatterers (Fig. 6c). The numerical solution
of Eq. (20) requires only the discretization of these few
scatterers that link the polymer layer with the photoresist.
Note that for some backgrounds, the dielectric contrast can
take arbitrary values, including negative values; this is for
example the case when one simulates light scattering by air
bubbles within a dielectric background, leading to �ε < 0.
The role played by the background in that type of simulation
is illustrated in Fig. 6d and e, which show two simulations
with exactly the same scatterers accounting for the light-
coupling mask, but a different background. In Fig. 6e, an
additional layer is introduced in the background (i.e. in
the Green tensor), serving as anti-reflection layer (bottom
anti-reflection coating), as is often the case in lithography.
Consequently, the standing wave in the photoresist caused
by the reflections at the substrate interface (Fig. 6d) is
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completely suppressed (Fig. 6e). The numerical effort for
both calculations is almost identical, although the physical
systems are quite different.

In Eq. (20), the tensors M and L are used to handle the
singularity of the Green tensor [90]. In particular, the tensor
L represents the depolarization of the discretized volume
[103]. There exists a completely different approach to the
discretization of Eq. (19), where the singular terms M and
L are skipped and another value is used for the dielectric
contrast. As a matter of fact, �ε(r) is similar to the di-
electric susceptibility χ (r), which in turn can be associated
with the polarizability α(r) of the scatterer [104]. In the
so-called DDA, also sometimes called the coupled dipole
approximation, the polarizability of the scatterer is used in
Eq. (20) instead of �ε(r) and the singular terms are omitted
[91,105]. To obtain accurate results, the discretization takes
into account the fact that the scatterer is decomposed into
a lattice of dipoles and the polarizatbility of each mesh is
obtained from the lattice dispersion relation instead of the
scatterer’s material properties [106].

The DDA usually considers a homogeneous back-
ground, where the Green tensor has the following additional
symmetry property: Gb(r, r′) = Gb(r − r′). This transla-
tion property is easily understood with Fig. 6a: the field
radiated at position r by a dipole located at position r′ only
depends on the relative distance r − r′ between both points;
note that this property does not hold in the case of a stratified
background, where the distances between these points and
the interfaces also play a role (Fig. 6b). For a homogeneous
background, Eq. (19) can be rewritten as

E(r) = E0(r) +
∫

V
dr′Gb(r − r′) · k2

0�ε(r′)E(r′), (21)

which represents a convolution between the Green tensor
and the source. Such a convolution can be easily computed
in Fourier space, especially when the scatterer is discretized
over a regular mesh and fast Fourier transform algorithms
can be used [107]. This has led to an extremely efficient im-
plementation of the DDA that uses fast Fourier transforms
to speed up the integration [108]. A definite appeal of the
DDA is that a very solid implementation of the technique
is freely available [109].

The VIE method and DDA can be extended to periodic
systems [110–112]. In this case, the periodic boundary con-
ditions are handled by a specific Green function for which
efficient acceleration techniques have been developed for
its computation [113]. Let us finally mention that Eq. (19)
forms the basis for a very general approximation for light
scattering, namely the Born approximation. This approxi-
mation consists of using the illumination field E0(r) instead
of the unknown field E(r′), thus transforming the implicit
Eq. (19) into an explicit equation, with the unknown electric
field only on the left-hand side [114]. The procedure can
be iterated, using the result of this first step as illumination
field in Eq. (19) and so on. From a physical point of view,
the first term in this Born series corresponds to the response
of the different meshes in the system to the excitation, the
second term to the first interaction between the meshes,

and so on. In principle, this procedure should converge to
the self-consistent solution of Eq. (19); unfortunately, the
convergence is rather poor, especially for highly scatter-
ing materials, as encountered in nanophotonics [115]. This
Born series has, however, inspired an iterative algorithm for
the solution of Eq. (19) [116].

2.5. Surface integral methods

Surface integral methods reduce the computation of an
electromagnetic scattering problem with open boundary
conditions to the surface boundaries of materials. They
work therefore best for piecewise homogeneous media. Two
methods are used extensively in nanophotonics, namely the
SIE method [26,117,118] and the boundary element method
(BEM) [119]. We discuss first the SIE method, followed by
the BEM and distinguish them by their usual implementa-
tion in nanophotonics.

The computational space is divided into domains Vn of
relative permittivity εn and relative permeability μn . From
Eq. (9), the electric field E in each region must satisfy the
equation

∇ × ∇ × E(r) − k2
nE(r) = iωμnj(r), r ∈ Vn, (22)

where k2
n = ω2εnμn is the wavenumber for electromag-

netic waves in region Vn and j denotes the volume cur-
rent density. A dyadic Green function G

n
for region Vn is

introduced:

∇ × ∇ × G
n
(r, r′) − k2

n G
n
(r, r′) = 1δ(r − r′). (23)

The equivalent surface current densities Jn = n̂n × H and
Mn = −n̂n × E defined on the boundaries ∂Vn of the do-
mains are introduced. Using Green’s theorem, the electric
field integral equation (EFIE) and the magnetic field integral
equation (MFIE) can be derived on the domain boundaries
[117]. A technique for solving the EFIE and the MFIE is the
method of moments (MoM) [120]. The equivalent surface
currents can be expanded in terms of Rao–Wilton–Glisson
(RWG) basis functions fn

i building a triangular mesh ap-
proximating the boundary surface ∂Vn [121]:

Jn =
∑

i

αi fn
i (24)

Mn =
∑

i

βi fn
i , (25)

where the index i labels the different edges within all re-
gions (Fig. 2e). If two RWG functions fn

i and fn′
i are asso-

ciated with the same edge, the conservation of current on
∂Vn = ∂Vn′ between the two adjacent regions Vn and Vn′

implies fn
i = −fn′

i . If more than two regions are touching
an edge, all the expansion coefficients related to this edge
are identified. In this case, more than one RWG function is
associated with the same edge, but only one per adjacent
region. If the region Vn is not adjacent to the edge i , then
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fn
i ≡ 0. The Galerkin method is applied, multiplying the

EFIE and the MFIE with the basis functions and integrat-
ing over ∂Vn . Defining the sets {α} and {β} of expansion
coefficients αi and βi , the EFIE can be written as a matrix
equation for {α} and {β} for all regions:

[∑
n iωμnDn

∑
n Kn

] ·
[{α}
{β}

]
=

∑
n

q(E),n, (26)

with sub-matrices

Dn
i j =

∫
∂Vn

dS fn
i (r) ·

∫
∂Vn

dS′ G
n
(r, r′) · fn

j (r′), (27)

K n
i j =

∫
∂Vn

dS fn
i (r) ·

∫
∂Vn

dS′
[
∇′ × G

n
(r, r′)

]
· fn

j (r′), (28)

and

q (E),n
i =

∫
∂Vn

dS fn
i (r) · Einc

n (r). (29)

In some cases, solving for {α} and {β} with the EFIE
or the MFIE does not result in the same values and can
lead to large errors. Several combinations of SIEs can be
considered, with different accuracy and convergence prop-
erties [122, 123]. The Poggio–Miller–Chang–Harrington–
Wu–Tsai (PMCHWT) formulation combines EFIE and
MFIE to solve them simultaneously [124]. Although the
PMCHWT formulation might lead to poor conditioning
of the system matrix and a slow convergence of iterative
solvers [125], it has proven to give stable and accurate re-
sults [126, 127], even in resonant conditions [117]. In that
case, the EFIE and the MFIE are combined:

[∑
n iωμnDn

∑
n Kn∑

n Kn −∑
n iωεnDn

]
·
[{α}
{β}

]

=
∑

n

[
q(E),n

q(H ),n

]
, (30)

with

q (H ),n
i = −

∫
∂Vn

dS fn
i (r) · Hinc

n (r). (31)

There are several ways to solve Eq. (30), among which are
Gaussian elimination, LU factorization, and iterative meth-
ods. Overall, the number of numerical operations scales ap-
proximately with the sixth power of the particle size when
Gaussian elimination is used, and can be brought to the
fourth power with the conjugate gradient method [21]. The
memory consumption scales approximately with the sixth
power of the particle size. Once Eq. (30) has been solved
on the domain boundaries, the electric and magnetic fields
can be directly calculated at all points in space.

As a frequency-domain method, the SIE method can
directly handle dispersive materials (similarly to the FE
and VIE methods discussed previously). The matrix ele-
ments of Eq. (27) can be turned into integrals involving
the scalar Green function Gn(r, r′) or its gradient in their
integrand, which is known to be divergent for |r′ − r| → 0.
This behavior of the Green function can also lead to in-
accurate results in the numerical evaluation of the matrix
elements relative to neighboring triangles. An elegant way
to overcome this difficulty is to separate the Green func-
tion into a singular part that can be integrated in a closed
form and a smooth, slowly varying part that can be ac-
curately integrated numerically. Highly conductive metals
with Green function approaching a Dirac distribution can
therefore be handled accurately. The same procedure can be
repeated when evaluating the electric and magnetic fields,
which guarantees an accurate field evaluation close to the
scatterer surface. Similarly to the VIE method and as op-
posed to differential methods, the scattering, absorption,
and extinction cross sections can be directly obtained with-
out the use of absorbing boundary conditions. The dis-
cretization in elements allows for a great flexibility in ren-
dering complex shapes, such as the defects that can arise
in nanofabrication and their effect on optical properties.
The SIE method was used in particular to investigate the
near field and far field of realistic nanoantennas and com-
pared them to that of idealized geometries [128]. Although
their far field is comparable, the location of hot spots of
the electromagnetic near field in the respective structures
markedly varies, following the local variations of the shape.
This has a strong influence on SERS or fluorescence signals
[128, 129].

The SIE method can be generalized to multilayered
plasmonic systems [130]. The Green function of homo-
geneous media (Eq. (23)) is replaced by the Green func-
tion of a layered medium Green function. Although the
computation of this specific Green function is intensive,
the discretization and the resulting system of equations
are reduced to the nanostructured scatterers only. Com-
pared to the VIE method, additional complications arise
in the implementation due to the need to compute the
curl of the Green function. In Ref. [130], this approach
is used to study the spontaneous emission in complex mul-
tilayered plasmonic systems. Similarly to the VIE method,
the SIE method can be generalized to periodic structures
[113,131,132]. Reflection, transmission, and absorption are
examples of measurable quantities that can be delivered, in
addition to phase information of the field as well as orders
of diffraction. An example of implementation to a com-
plex resonator supporting Fano-like plasmonic resonances
is shown in Fig. 7. The ability to monitor simultaneously
the near field and the far field of the SIE method has re-
vealed their relation [133, 134]. In particular, it has been
observed that the maximum in field enhancement does not
correspond to particular features of the far field (neither
a local maximum nor minimum) but is determined by the
condition of Fano interference. Quantitative information on
the field enhancement is also obtained with the SIE method:
in this case, the intensity of the near field at the resonance
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Figure 7 Fano resonance in a periodic system of strongly cou-
pled gold nanowires. (a) Reflectance spectrum for top illumina-
tion. (b) Maximum intensity enhancement sampled at a distance
of 1 nm around the surface. (c) Normalized electric field inten-
sity enhancement with field lines. Adapted from Ref. [133] with
permission. Copyright (2011) Optical Society of America.

wavelength increases to 200 times the intensity of the inci-
dent field.

Other formulations such as the electric and magnetic
current combined field integral equation (JMCFIE) also
involve SIEs with the normal components of the fields
[118,123]. A comparative study by Araújo et al. of the cross
sections of nanoparticles in silver, gold, and aluminum of
various sizes has shown in particular that the PMCHWT
formulation is more accurate than the JMCFIE formulation
[122]. However in these cases, JMCFIE shows a better con-
vergence for iterative solvers, which makes it more suited
for large systems than PMCHWT. The JMCFIE formula-
tion has been combined with the multilevel fast multiple
algorithm (MLFMA) which enables the computation of
large plasmonic systems, with characteristic dimensions up
to several wavelengths [135]. This approach has been in
particular recently applied to the simulation of SERS en-
hancement in a variety of large nanophotonic systems, such
as highly complex disordered stacks of gold nanorods or
three-dimensional photonic crystals [136]. In Fig. 8, a large
amount of nanoparticles are dispersed randomly. The mul-
tiple plasmon couplings with random local arrangements
and mode shifts induce a significant spectral broadening.
The hot spots and their evolution as a function of the fre-
quency can be studied in detail, which is useful in particular
for sensing or SERS. Other approaches for the computation
of large systems using integral methods have been more re-
cently developed, such as the adaptive cross approximation
[137] or the broadband MLFMA [138], which can handle
features small compared to the wavelength.

As compared to SIE, the BEM introduced to nanopho-
tonics by Aizpurua et al. uses the Green function to compute
the scalar and vector potentials at surface boundaries [139].
The discretization of the surface integrals is performed over
a set of points, contrary to the use of elements and basis
functions for SIE. The BEM is therefore in essence easier
to implement than SIE but on the other hand is also more
limited in the computation of plasmonic systems with large
field gradients and fine geometrical variations. It has proven
to be highly efficient in computing the optical properties
of nanoparticles such as produced by chemical synthesis
[23, 140]. In a recent experiment, the BEM was used to

Figure 8 Far-field and near-field properties of highly complex
disordered plasmonic structures computed with the SIE–JMCFIE
method accelerated with the MLFMA algorithm. (a) Top view
of an in-water colloidal deposition of 1447 gold nanorods (size
80 × 21 nm2) with a minimum separation distance of 1 nm. (b)
Electric field intensity enhancement map. (c) Scattering, absorp-
tion, and extinction cross sections. Adapted from Ref. [136] with
permission. Copyright (2014) American Chemical Society.

Figure 9 EELS maps of individual nanoprisms measured ex-
perimentally and compared to BEM calculations. (a) High-angle
annular dark field image of a nanoprism. (b) Experimental EELS
map of a dipolar mode. (c) Corresponding BEM calculation. (d)
Experimental EELS map of a higher order mode. (e) Correspond-
ing BEM calculation. Adapted from Ref. [49] with permission.
Copyright (2015) American Chemical Society.

correlate EELS and cathodoluminescence signals with op-
tical scattering and extinction, respectively [49]. As can be
seen in Fig. 9, a good agreement between the EELS maps
of gold nanoprisms and BEM calculations is observed. In
particular, the existence of two modes of different orders
is revealed. The near field calculated in the BEM can also
be used for particular applications such as optical heating
[141]. A robust implementation of the BEM in Matlab is
freely available [142].
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Table 1 Summary of methods and nanophotonic problems: xxx, very good match; xx, good match; x, can be adapted.

Method Propagation Localization Scattering

Finite differences in time domain xxx x x

Finite elements xx xxx x

Discontinuous Galerkin in time domain xxx xx x

Volume integral equations x x xxx

Surface integral equations x xx xxx

Rigorous coupled wave analysis x x xx

2.6. Other methods

This section covers other approaches for solving Maxwell’s
equations than the differential and integral methods. First,
the hybrid differential–integral methods are particularly ef-
ficient in solving certain problems such as anisotropic or
inhomogeneous scatterers [63]. The finite integration tech-
nique (FIT) is a discretization scheme for Maxwell’s equa-
tions in their integral form [65]. In contrast to differential
and integral methods which can cover a broad range of sys-
tems, some other methods are known to be very efficient
for specific conditions and geometries as they rely on ex-
pansions of the electromagnetic field on basis functions that
have a particular symmetry. In the T -matrix method, the in-
cident and scattered electromagnetic fields are expanded on
a set of spherical basis functions, with boundary conditions
enforced at interfaces between the different materials. This
method is particularly efficient for calculating the scatter-
ing of spherical or quasi-spherical particles or aggregates
[143]. It has been extended to layered particles and particles
interacting with substrates, and applied to plasmonics, with
applications in particular for sensing, SERS, and plasmonic
trapping [144, 145]. The multiple multipole program, also
known as the generalized multipole technique, is a semi-
analytical method that expands the electromagnetic field
in multipoles which allows it to tackle a broad variety of
geometries [146, 147], including plasmonic nanostructures
[25]. With this approach, only the boundaries of the do-
mains have to be discretized and no integrals have to be
solved numerically. For clusters of nanoparticles, the mul-
tiple elastic scattering of the multipole expansions decom-
poses the scattered fields into multipoles with respect to
centers close to each of the objects of the cluster and mul-
tiple scattering is carried out until convergence is achieved
[141, 148].

The RCWA applies the diffraction of electromagnetic
waves by periodic grating structures. The periodic permit-
tivity and the electromagnetic field are expanded in Fourier
series and boundary conditions are enforced at material
boundaries [149]. This results in a rather poor rendering
of abrupt surfaces which require a high number of Fourier
harmonics. The method is very efficient for the calculation
of far-field reflection and transmission coefficients, as well
as diffraction orders, but the accurate computation of the
near field at material boundaries remains challenging [150].
It had originally a limited accuracy for the TM polarization,

which was later improved [28, 151, 152]. Examples of im-
plementation of the RCWA include anti-reflection coatings
for solar cells [28] and plasmonics [153]. The Chandezon
method (or C-method) is a popular stable method for the
simulation of diffraction gratings [154] which can also be
applied to plasmonics [151]. Methods based on transforma-
tion optics use the solution of a simple system, which can
be solved analytically, and use coordinate transformations
to find the solution of a more complex system [155, 156].

2.7. Summary

Numerical methods for solving Maxwell’s equations to-
gether with linear constitutive relations for the electric and
magnetic fields have been reviewed. Their applications to
typical problems in nanophotonics have been discussed
based on their fundamental equations and recent examples
from the literature. We base our discussion on the categories
of fundamental nanophotonics problems identified and de-
fined in Section 1.2: problems related to light propagation,
localization, and scattering. Problems requiring modeling
beyond Maxwell’s equations are discussed in Section 3.

Table 1 recapitulates the discussion of this section by
evaluating the match between problems and methods. There
exist a manifold of different methods, but the methods in
Table 1 have been selected as particularly representative for
certain categories. Other methods that are similar in their
fundamental equations would also have similar efficiency
in solving the corresponding problems. We now comment
on how the points were attributed in Table 1. Methods in
the time domain such as FDTD and DGTD can deliver
explicit information of light propagation in waveguides (or
more generally systems confining light in one or two dimen-
sions) such as decay lengths in lossy waveguides, and are
therefore most suited for problems based on light propaga-
tion. This is a challenging task for frequency-domain meth-
ods. On the other hand, the FE method can give access to
mode frequencies in waveguides. Problems involving light
localization involve resonant effects and usually require
knowledge of the near field and spectral properties. The
DGTD method, as an accurate time-domain method, par-
tially satisfies these requirements. Frequency-based meth-
ods are better suited, with the exception of VIE methods
(as defined in this review) which have limited accuracy in
evaluating the near field. In general, integral methods are
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also limited to smaller systems as the FE method. For light
scattering, integral methods are the preferred choice. SIE
can handle larger systems than VIE but is also limited to
piecewise homogeneous scatterers. RCWA has in compari-
son less flexibility in geometries, although it is particularly
efficient for periodic systems.

In general, it has been shown that there always exists one
or several methods that are particularly suited for a given
category of problems. In these cases, the structure of the
fundamental equations of the methods shows that they are
able to directly and efficiently provide a solution. In most
cases when the match between the method and the systems
is not optimal, the method can still provide a solution but
an additional development or computational effort may be
required. The modeling of nanophotonic systems should
involve finding the solution of one or several problems in-
cluded in these categories. The reader is invited to consider
the ranking of the associated columns in order to make a
choice of method: for example, in the case of a quantum dot
with a nanoantenna (such as in Ref. [48]), the coupling from
the quantum dot to the near field as well as the radiation
pattern of the nanoantenna are important for the emission
efficiency. In such cases, the input from the localization and
scattering columns should be considered together and SIE
methods appear to be the most efficient. In another example,
if the quantum dot is coupled to a waveguide, the FE and
DGTD methods are the most appropriate by considering
inputs from the propagation and localization columns.

3. Next modeling challenges in
nanophotonics

In this section, we review the different numerical techniques
for nonlinear and quantum nanophotonics and the upcom-
ing challenges related to these recent topics. Nonlinear and
quantum effects play an important part in the development
of modern optics in general and in nanophotonics in par-
ticular. Furthermore, a multitude of nonlinear optical pro-
cesses can be observed in nanostructures. The aim of the
present section is not to provide a complete overview of
nonlinear optical processes, but to present some of their
particularities in relation to suitable numerical treatments
(Section 3.1). In Section 3.2, active systems requiring op-
tical and electronic simulations are discussed. The recent
advances in nanofabrication have revealed that the predic-
tions from classical electromagnetism fail for tiny nanos-
tructures and narrow gaps, and the development of new nu-
merical approaches including nonlocal dielectric functions
(Section 3.3) or quantum effects (Section 3.4) is mandatory
in order to provide accurate evaluation of their optical prop-
erties. Finally, the specific and important case of graphene
nanostructures is addressed (Section 3.5).

3.1. Nonlinear optical processes

The observation of nonlinear optical processes requires
high pump intensity. Interestingly, the localization of light
in nanovolume increases the local field intensity making

Figure 10 (a) Jablonski diagrams describing TPPL, SHG, and
THG. Near-field distributions of the second harmonic intensity
and the corresponding nonlinear emission patterns computed for
(b) an idealized nanoantenna with rectangular arms and (c) a
realistic nanoantenna described by a mesh adapted from a scan-
ning electron microscope image. Adapted with permission from
Ref. [176]. Copyright (2013) American Chemical Society.

the observation of nonlinear optical processes possible at
the nanoscale [51]. Various nonlinear optical processes are
observable in nanophotonics depending on the matter prop-
erties and the excitation conditions (Fig. 10a) [51]. Obvi-
ously, it is important to classify them in order to develop
systematic approaches for their numerical evaluations. The
first necessary distinction is between parametric and non-
parametric optical processes. Boyd writes is his textbook
about nonlinear optics [157]: “The origin of this terminol-
ogy is obscure but the word parametric has come to denote
a process in which the initial and final quantum-mechanical
states of the system are identical.” And “A difference is that
photon energy is always conserved in a parametric process;
photon energy need not be conserved in a nonparamet-
ric process, because energy can be transferred to or from
the material medium.” In other words, there is no transfer
of energy, momentum, or angular momentum between the
nonlinear medium and the electromagnetic wave during a
parametric optical process.

Before discussing the parametric processes in greater
detail, it is worth saying a few words about an impor-
tant nonparametric nonlinear optical process, namely two-
photon photoluminescence (TPPL), mainly because this
process has been widely studied and observed in gold
nanostructures [158–160]. TPPL is a three-step process
involving the excitation of an electron–hole pair by the
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absorption of two incident photons, the relaxation of the
excited electrons and holes, and the emission of light due to
the recombination of electron with hole. TPPL results in a
broadband signal. The TPPL intensity for an emission fre-
quency ω2 resulting from a pumping beam with a frequency
ω1 is given by[161]

I (ω2) = η(ω2)|E0|4|L4(ω1)L2(ω2)|, (32)

where ω1 and ω2 are the incident light and TPPL frequen-
cies, respectively, and η is a factor related to the intrinsic
luminescence spectrum of the material. The local field fac-
tors L(ω) at the excitation and emission frequencies are
related to the electric field enhancement close to the con-
sidered nanostructure [161]. More specifically, the local
field factors are defined as the ratio between the local elec-
tric field and the incident electric field. The computation
of the electric field enhancement can be performed using
one of the numerical methods discussed in this review. The
evaluation of the parameter η is more complicated and re-
quires considering the band structure of the studied material
[158]. However, this evaluation is not mandatory for under-
standing the trend of the influence of plasmon resonance on
TPPL and for designing efficient plasmonic nanostructures
with high TPPL for specific applications [162].

Let us now turn our attention to parametric processes.
Such nonlinear effects are described by re-writing the po-
larization as [157]

P(t) = ε0(χ (1)E(t) + χ (2)E2(t) + χ (3)E3(t) + · · ·). (33)

The quantities χ (2) and χ (3) are the second- and third-
order nonlinear susceptibilities, describing, respectively,
the second- and third-order nonlinear optical processes.
The second- and third-order nonlinear susceptibilities are
responsible for different nonlinear optical processes. For
example, the second-order nonlinear susceptibility is re-
sponsible for SHG, the process whereby two photons at the
fundamental frequency are converted into one at the sec-
ond harmonic (SH) frequency. The third-order nonlinear
susceptibility is responsible for THG, the process thereby
three photons at the fundamental frequency are converted
into one at the third harmonic (TH) frequency [157]. The
properties of nonlinear susceptibilities are directly related
to the properties of the nonlinear medium and closely re-
lated to the symmetry selection rules. For example, it is
well known that SHG (a second-order nonlinear optical
process) is forbidden in centrosymmetric media in the
electric dipole approximation, which explains its surface
sensitivity [163, 164]. Numerical methods based on FE
methods [165–167], BEM [123, 168, 169], hydrodynamic
models [170–173], FDTD [174], VIE [175], and SIE meth-
ods [176–178] have been developed for the computation of
SHG from plasmonic nanosystems. The frequency conver-
sion in nanostructures is relatively weak meaning that the
undepleted pump approximation is valid and that the com-
putation of the nonlinear signal can be decomposed into
three distinct steps: evaluation of the fundamental near-field
intensity/electric field, evaluation of the nonlinear sources,

i.e. the nonlinear polarization, and evaluation of the nonlin-
ear electromagnetic field.

The main challenge for accurate computation of the
surface SHG is the correct evaluation of the fundamental
electric field very close to the boundary surface. For doing
so, BEM and SIE have been shown to be methods of choice
since the electric field close to the interface can be evaluated
directly from the surface current. Furthermore, numerical
methods requiring the discretization of the boundary sur-
faces only are more suitable for surface SHG, reducing the
computation time and the necessary memory [168, 177].
In contrast, THG is not forbidden in a centrosymmetric
medium and the TH intensity is expected to arise from the
volume of the nanostructures [179]. In this case, a volume
discretization is required for a convenient evaluation of the
TH signal and the use of FE or volume integral methods
seems to be more appropriate [180–183]. Even though SIE
can, in principle, be used to model THG, the expression of
the nonlinear sources taking place in the nanoparticle vol-
ume in terms of surface unknowns is not straightforward.
The symmetry properties of SHG not only influence the
origin of the SH signal but also strongly affect the influence
of the nanostructure shape on the SH scattered wave [165].
Indeed, the SH signal is strongly modified by any deviation
from perfectly symmetric shapes. This point is very impor-
tant for nonlinear nanophotonics and plasmonics opening
the possibility of nonlinear ultrasensitive optical characteri-
zation[176]. Indeed, despite the recent progress in nanofab-
rication, it is not possible to realize perfect nanostructures
and small defects, such as surface roughness for example,
are always observed. Computations using a SIE approach
have demonstrated that the SHG from a realistic nanoan-
tenna differs from that from an idealized one although both
nanoantennas have an identical linear response (Fig. 10b,c)
[176]. As a consequence, depending on the expected degree
of accuracy required for describing experimental results, it
is necessary to use a mesh describing accurately the real
shape of the fabricated samples.

Although the numerical modeling of nonlinear optical
processes in nanosystems is nowadays well established,
there are still open questions and a higher level of refine-
ment is still possible. For example, the relative role of the
conduction and core electrons in the nonlinear response has
not been unambiguously determined. Indeed, it was shown
that the electronic transitions with initial and intermediate
states standing in the d-band contribute significantly to the
SHG from a gold surface [184], while the hydrodynamic
model only considers the influence of the core electron on
the motion of the conduction electrons [185]. So far, the
crystallinity of nanoparticles has been neglected in the nu-
merical modeling of nonlinear effects but it can play an
important role, even for surface response, due to the tenso-
rial nature of the nonlinear response [157].

3.2. Active systems

Some nanophotonics systems such as gain media in
amplifiers and lasers require a modeling of electron
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populations with multilevel quantum systems in addition to
the electromagnetic field. The constitutive equations for the
electric field are not linear. In a semi-classical approach, the
equations of a multiple level quantum system can be solved
numerically in the time domain, simultaneously with the
equations for the electromagnetic field [56, 186]. Recent
examples of such a problem solved by FDTD with auxil-
iary differential equations are shown in Ref. [187] where
the output emission intensity of a nanolaser built from a
strongly coupled plasmonic nanoparticle array is computed
as a function of the input pump pulse energy, or in Ref. [188]
for modeling metamaterials with gain. As nonlinear terms
are involved in the rate equations coupled to Maxwell’s
equations, time-domain methods (such as FDTD, FETD,
and DGTD) are more appropriate than frequency-domain
methods.

In light harvesting systems such as solar cells [38, 39],
various light management strategies have been imple-
mented in order to increase the absorption in the active
layer. Modeling of the efficiency of such complex systems
requires state-of-the-art optical simulations in addition to
the transport physics. In Ref. [189], coherent simulations of
light propagation in a thin-film silicon solar cell have been
performed to study the influence of interface patterning on
the photocurrent. Various light management scenarios in-
volve nanoscale patterning of the active layer or even the
introduction of plasmonic nanostructures to enhance light
absorption by near-field effects [38,39]. A complete under-
standing of their influence on the efficiency would require
modeling of the electronic properties in such complex sys-
tems with nanopatterned interfaces.

3.3. Nonlocal effects

A nonlocal correction of the linear Maxwell’s equations
is required for particles of small size, which implies chal-
lenges in the computation of their optical properties. An im-
portant parameter for the description of the material prop-
erties is the dielectric constant. In the local approximation,
the electric displacement at a given point is a function of the
electric field at this given point and D(r, ω) = ε(ω)E(r, ω),
where ε(ω) is the local permittivity at the frequency ω.
This dispersive local permittivity can be either interpolated
from experimental results or theoretically evaluated. How-
ever, the local bulk permittivities fail to accurately describe
the optical responses of small plasmonic nanoparticles.
If the nanoparticle diameter is reduced below ∼ 10 nm,
then the nanoparticle size is comparable to the mean free
path of the conduction electrons increasing the electron
scattering rate at the nanoparticle surface. In order to de-
scribe this effect, the dielectric function of a metal can be
phenomenologically rewritten as [190]

ε(ω) = εloc(ω) + ω2
p

ω(ω + iη)
− ω2

p

ω(ω + iη + ivF/a)
,

(34)

where εloc(ω) is the local part of the response which can
be taken from optical measurements [191], ωp is the elec-
tron gas plasma frequency, η is the width of the metal bulk
plasmon, vF is the Fermi velocity, and a is the nanopar-
ticle radius. The size-corrected dielectric function leads
to satisfactory values for both plasmon energy and width
(Fig. 11a) [192]. In comparison with the bulk permittivity,
the corrected dielectric function results in a broadening of
the surface plasmon resonances supported by small spheri-
cal nanoparticles due to additional energy dissipation. Note
that the size-corrected dielectric function does not repro-
duce the surface plasmon resonance blueshift induced by
nonlocal effects. Furthermore, such a phenomenological
modification of the dielectric constant is possible only in
the case of compact metallic nanospheres but is difficult to
apply for nonspherical nanoparticles [193, 194]: even the
description of plasmonic nanoshells is not straightforward
since the electron scattering rate depends on both the core
radius and the shell thickness [195].

In a more general way, the electric displacement in a
nonlocal medium must be written as

D(r, ω) =
∫

dr′ε(r, r′, ω)E(r, ω), (35)

where ε(r, r′, ω) is the nonlocal dielectric function. This
expression is said to be “nonlocal” because the dielectric
function at one given point of the nanostructure depends
on the electric field at other points. Analytical expressions
have been developed for describing the important case of
the free electron gas. It has been proposed to model the
dielectric constants of metals by subtracting the Drude part
εD from the measured permittivity εloc and then adding the
Mermin dielectric function εM [196]:

ε(q, ω) = εloc(ω) + εM(q, ω) − εD(ω), (36)

where q is the momentum. In the specular reflection model
[197, 198], the response of a nanostructure is expressed in
terms of the nonlocal dielectric function of the bulk mate-
rial and the continuity of the potential and the electric dis-
placement are imposed at the interface assuming that each
medium is infinitely extended. Auxiliary boundary charges
are defined on each side of the interface to guarantee these
boundary conditions. The specular reflection model has a
good agreement with experimental results (Fig. 11a) [198].
However, this approach is still restricted to simple geome-
tries including spherical nanoparticles due to the required
computation memory. Note that the nonlocal optical prop-
erties of nanoshells and nanodimers can be evaluated with
this approach [199]. As observed in the case of compact
nanospheres, the nonlocal effects result in a blueshift of the
surface plasmon resonances supported by gold nanodimers
(Fig. 11b) [199].

Recently, numerical schemes combining a hydrody-
namic description of the conduction electron response with
FE or FDTD methods have been proposed [200–202]. The
nonlocal calculations require more computation memory
than local ones. Indeed, the numerical grid size has to be
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Figure 11 (a) Extinction cross section as a function of incident
wavelength evaluated with various numerical approaches. The
sphere diameter is D = 2.9 nm (top panel) and D = 5.4 nm (bot-
tom panel). Adapted with permission from Ref. [199]. Copyright
(2011) American Chemical Society. (b) Comparison between the
local and the nonlocal responses of gold nanodimers with var-
ious gap dimensions. Adapted with permission from Ref. [198].
Copyright (2008) American Chemical Society. (c) Focusing prop-
erties of a silver nanotip computed with a local description (top
panel) and a nonlocal description (bottom panel). Adapted with
permission from Ref. [201]. Copyright (2012) American Chemical
Society.

much smaller than the Fermi wavelength (λF ∼ 0.5 nm
for silver and gold) and not only smaller than the inci-
dent wavelength and the nanostructure size. Examples of
the nonlocal response of complex plasmonic nanostruc-
tures, e.g. gold bowtie nanoantennas and a gold nanotip,
have been reported (Fig. 11c) [200–202]. In the case of
nanoparticle dimers and gold nanotips, the field enhance-
ments predicted considering a nonlocal response are smaller
than those obtained with a local description. Furthermore,
spectral differences arise when nonlocality is addressed ap-
proximately, compared to a full quantum treatment of the
dynamical screening [203]. This behavior is dramatic for
most of the applications in plasmonics including SERS and
nonlinear optics because the scattered intensity varies non-
linearly with the fundamental intensity for these optical
processes [200–202]. The combination of a SIE method
with the hydrodynamic Drude model has been proposed in
order to reduce the required memory for the evaluation of
nonlocal effects in plasmonic nanostructures [204]. In this
case, an additional SIE is required for taking into account
the longitudinal waves existing in the metal. This method
has been used for describing nonlocal effects in infinite
plasmonic nanowires standing on the top of a dielectric
substrate [204]. A blueshift of surface plasmon resonances,
which increases as the radius of the nanowire decreases, is
also induced by the nonlocal effects. The same approach
for three-dimensional nanostructures, where the advantages
associated with a surface method are even more important,
has to be developed taking into account the boundary con-
ditions for the longitudinal waves. This will be particularly
appealing in the case of realistic nanostructures modeled
with SIE [128].

3.4. Quantum plasmonics

The phenomenological inclusion of nonlocal effects in var-
ious classical modeling approaches has been discussed in
the previous section, showing a good agreement between
theoretical predictions and experimental results. However,
full quantum calculations are necessary for the accurate
description of specific physical effects such as electron
screening effects, spill-out, and tunneling [52]. In this con-
text, time-dependent density functional theory (TDDFT)
has been widely used for the computation of the optical and
electronic properties of small metallic clusters [205–209].
The dynamics of the conduction electron fluid is described
with a jellium model, for which the discrete ionic back-
ground is replaced by a continuous box with a constant
potential reproducing the electron density in a real metal.
Even though the TDDFT is a considerable simplification
of the quantum description of the many-body problem, the
number of involved conduction electrons, and then the di-
mension of the considered nanostructures, is still limited by
computer memory [210, 211]. As a consequence, TDDFT
has been only used to describe metallic nanostructures with
simple geometries including objects with spherical symme-
tries, such as compact nanospheres [211] and nanoshells
[212, 213], but also elongated objects such as Na wires
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Figure 12 (a) TDLDA absorption spectrum for dimers of spheres
(sphere radii R = 24 Bohr radius) and gap separation ranging
from 0 to 24 Bohr radius. The nanosystem contains 1018 conduc-
tion electrons. (b) Maximum field enhancement in the nanogap
for classical computation (red line) and TDDFT (blue line). (c)
field enhancement close to the dimer for various gap dimensions.
Classical computations are shown in the top panels and the re-
sults from TDDFT are shown in the bottom panels. Adapted with
permission from Ref. [220]. Copyright (2009) American Chemical
Society.

[192] and silver nanorods [214, 215] with different aspect
ratios.

The quantum interaction between close nanostructures
is even more complicated to compute [216–219]. The main
physical effects that cannot be taken into account in clas-
sical modeling are the electron tunneling and the current
occurring in very small gaps (below ∼ 1 nm). Figure 12
shows the absorption and compares the field enhancement
obtained for classical electromagnetic modeling and time-
dependent local density approximation (TDLDA) for dif-
ferent separation distances [220]. For gaps ranging from 1
to 0.5 nm (the so-called crossover regime), the nanogap is
characterized by an electron potential which can be tun-
neled by the conduction electrons making the quantum ef-
fects important in this regime. In this case, classical mod-
eling approaches are not able to accurately describe the
optical response due to the charge transfer between the
nanoparticles. For even smaller nanogaps (< 0.5 nm),
the conductive regime is reached and the conductance in
the nanogap is high allowing the conduction electrons to
flow between the nanoparticles and resulting in a new plas-
monic mode called a charge transfer plasmon. The charge
transfer plasmon blueshifts when the distance between the
nanoparticles decreases.

Beyond these first-principles methods, a quantum cor-
rected model (QCM) has been recently proposed for study-
ing the quantum effects in the optical properties of large
coupled plasmonic nanoparticles [217, 221]. In this model,
a fictitious load is added between the nanoparticles in order
to mimic the quantum electron tunneling. The permittivity
of the load is evaluated with a quantum mechanical calcula-
tion of the electron transmission probability. Although the

BEM was used in Ref. [217], the calculation of the opti-
cal response of plasmonic nanostructures in the QCM can
be done with most of the numerical methods discussed in
Section 2. However, FE method and VIE seem to be partic-
ularly well suited for this purpose since the permittivity of
the fictitious load is a function of the position. The QCM is a
powerful approach and will probably be the bridge between
quantum plasmonics and nonlinear plasmonics in the near
future [222, 223]. It will also be interesting to determine
how the QCM can be extended to nanogaps with complex
geometries [128, 224].

3.5. Graphene nanostructures

Graphene is a single two-dimensional layer of carbon atoms
organized in a honeycomb lattice [225]. Graphene has re-
cently emerged as an important material for the design of
new nanophotonic elements [226–228]. Indeed, the unique
electronic band structure of graphene results in interesting
optical properties promising for the design of optical de-
vices [229]. For an example, a single undoped graphene
layer can absorb a quantity of light as high as 2.3%, which
is promising for the development of compact optical detec-
tors [230]. Close to the Fermi level, the specificity of the
electronic band structure of graphene, is the existence of
two singular points in the first Brillouin zone [229]. The
injection of charge carriers opens up a gap of 2EF, where
the Fermi energy EF is related to the carrier density. As
a consequence of the Pauli blocking effects, photons with
energy lower than 2EF are not absorbed in doped graphene.
It was also demonstrated that highly doped graphene can
support surface plasmon resonances. Interestingly, the plas-
monic properties of graphene have the ability of being elec-
trically tunable, underlying the flexibility of this material
for nanophotonics [231,232]. Tunable plasmon resonances
have been reported in various graphene systems such as ex-
tended graphene [53], ribbons [233, 234], disks [232, 235],
rings [236], graphene nanoantennas [237], and metasur-
faces [238, 239].

The key point for determining the optical response of
extended graphene and graphene nanostructures is the eval-
uation of the electrical conductivity σ (k‖, ω), where k‖ is
the in-plane electron momentum. This has been done us-
ing the random phase approximation (RPA) using a tight-
binding description of the π -band electron wave functions
[240, 241]. In the limit of a collision rate of carriers small
in comparison with the frequency and spatial dispersion of
the AC electric field, the graphene conductivity reduces to
[242, 243]

σ (ω) = e2ω

iπ�

[∫ +∞

−∞
dε

|ε|
ω2

d f0(ε)

dε

−
∫ +∞

−∞
dε

f0(−ε) − f0(ε)

(ω + iδ)2 − 4ε2

]
, (37)

where f0 is the electron distribution which depends on
both the Fermi energy EF and the temperature T , e is the
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elementary electric charge, � is the reduced Planck constant,
ε is the energy, and δ is the infinitesimal quantity determin-
ing the bypass around the integrand pole. The second term
of this equation corresponds to the intraband transition,
which results in the Drude conductivity at zero tempera-
ture:

σ intra(ω) = e2

π�2

i EF

ω + iτ−1
. (38)

The second term corresponds to the interband transitions
across the gap. When the collision rate τ−1 tends to 0, this
term is easily computed as [242, 243]

σ inter(ω) = e2

4�

[
G

(ω

2

)
− 4ω

iπ

∫ +∞

0
dε

G(ε) − G(ω/2)

ω2 − 4ε2

]
,

(39)

where

G(ε) = sinh(ε/T )

cosh(μ/T ) + sinh(ε/T )
, (40)

in which μ is the chemical potential. This formula gives
reasonably accurate results for the analysis of graphene
plasmons [231, 232]. The dielectric function of graphene
is directly related to the conductivity by the formula
1 + 4π iσ/ωt . The electromagnetic response of nanostruc-
tured graphene has been computed implementing this di-
electric function in the FE method [237] and the BEM
[231, 232]. Figure 13 shows a comparison between first-
principles calculations based on the RPA and classical com-
putation. Note that the classical computation takes into ac-
count the quantum nature of the electronic response but the
edges are treated in a classical way [237]. A good agree-
ment is found for the classical computations and the RPA
ones considering armchair (ac) edges but not for zigzag
(zz) edges. This discrepancy is explained by the near-zero-
energy electronic states observed in zz edges, which result
in additional losses. The faster plasmon decay induces a
lower field enhancement in graphene nanoantennas with zz
edges [237].

The ultrafast transient response of graphene sheets has
been recently investigated and the relative role of the in-
traband and interband transitions discussed [244,245]. The
ultrafast response of graphene nanostructures is of great im-
portance for the design of high-speed and compact optical
devices. To the best of our knowledge, numerical methods
for evaluating the transient response of graphene nanos-
tructures have not been reported in the literature yet. The
direct introduction of the transient dielectric constant of
graphene in classical modeling methods, as discussed pre-
viously in the continuous regime, is a rough approach but
can probably be used as a first step for the understanding
of experimental results.

4. Summary and outlook

Nanophotonics includes the science and engineering of
light manipulation and confinement at the nanoscale. The
modeling of nanophotonic systems has been decomposed
into four categories of problems: those involving light prop-
agation, light localization, light scattering, and multiscale
systems. A broad variety of materials and geometries can
be involved with a dynamic range of the electromagnetic
field which can span several orders of magnitude, with the
amplitude of the electric field going from zero to several
hundreds over a few nanometers at the edge of a plasmonic
nanostructure, for example. These characteristics make the
accurate and efficient modeling of nanophotonic systems
extremely challenging, but also of utmost importance for
the analysis and the development of new components and
devices.

A large portion of problems in nanophotonics can be
currently modeled with classical Maxwell’s equations. A
diversity of methods have been developed and used for the
modeling, understanding, and design of nanophotonic sys-
tems, shared between commercial and freeware implemen-
tations. Among them, two categories of versatile methods
have been reviewed: differential (FDTD, FE, and hybrid
FD/FE) and integral (VIE, SIE) methods . Other methods
are specific to certain geometries but also very efficient
(such as RCWA). Each method is based on a specific equa-
tion derived from classical Maxwell’s equations, which de-
termines the typical problems it can tackle. Therefore, there
is no ultimate method for modeling nanophotonic systems
as such and it is very important to have a basic understand-
ing of the assumptions behind a given numerical method in
order to use it at its best and obtain the most reliable results.
This review was aimed at providing the reader with suffi-
cient information to choose the most appropriate method
for the problem at hand. References were provided, which
point to detailed descriptions of the methods. The main
conclusions of Section 2 are summarized in Table 1. In
particular, methods in the time domain such as FDTD and
DGTD have been identified as very well suited for prob-
lems involving light propagation. For problems based on
light localization, the FE and SIE methods are particularly
efficient. Finally, VIE- and SIE-based methods as well as
RCWA are very well suited for problems involving light
scattering.

Current and future developments tend to enlarge the
scope of these methods, that is, adapt them to systems
for which they were not originally designed. This can of
course be an advantage for the user of a method if the
capability can be extended without the requirements for
investing in the implementation or purchase of another
software. The simulation of larger systems or with higher
accuracy calls for further developments and optimizations
of both methods and solvers. Nanophotonic systems are
also at the stage where they can be implemented and com-
bined together in integrated devices. This requires a mul-
tilevel modeling where several methods are combined to-
gether to simulate the entire device. The engineering of
nanophotonic devices also calls for the use of optimization
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Figure 13 Extinction cross section as a function of photon energy and induced charges associated with the observed dominant
plasmon features (shown by red arrows) for (a–c) individual graphene triangles and (d–f) bowtie graphene dimers. The quantum
mechanical description (RPA) of (a,d) zz and (b,e) ac triangles is shown. The classical description is shown in (c,f). The triangle side
length is L = 20 nm, the Fermi energy is EF = 0.4 eV, and the intrinsic width is τ−1 = 1.6 meV in all cases. Adapted with permission
from Ref. [237]. Copyright (2013) American Physical Society.

algorithms [9, 246, 247]. There, hundreds or more systems
are usually screened or iteratively studied and the efficiency
of the method (in terms of computational time and memory)
is crucial. It is therefore important to determine the figure
of merit for which the system has to be optimized prior to
selection of the method.

With the progress in nanofabrication and optical charac-
terization methods, optical effects which call for modeling
beyond Maxwell’s equations in their classical form are now
observed. In particular, novel materials such as graphene
with a two-dimensional geometry appear in plasmonic de-
vices. It has also been seen in Section 3 that quantum and
nonlocal effects appear for nanostructures with nanomet-
ric and sub-nanometric features, and other nonlinear effects
are generated with high optical intensities. An extremely ac-
curate rendering of the geometries including their defects
is required. A more precise modeling of the permittivities
is a possible direction for future developments, which in-
cludes the details of structural properties, crystallinity, and
complex dispersion. In other classes of active and optoelec-
tronic devices such as lasers, solar cells, or photodetectors,
the electrodynamics needs to be combined with transport
properties and dynamics of charge carriers. The emerging
field of plasmon-enhanced photocatalysis has many mod-
eling challenges before it, which are related in particular
to the mechanisms by which surface plasmons can induce

chemical reactions on metal surfaces, or the mechanisms re-
sponsible for the transfer of charge from an excited nanopar-
ticle to an adsorbate [54].
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