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1. INTRODUCTION
Electromagnetic fields at optical frequencies can excite
propagating waves confined to metal-dielectric interfaces
(surface plasmon polaritons) as well as nonpropagating
electromagnetic modes in metallic nanostructures (localized
surface plasmons) [1]. Both kinds of excitations have been
studied extensively, and the field of plasmonics has grown
considerably in the recent past. Plasmonics has found
applications in diverse fields such as biological and chemical
sensing [2], design of devices such as solar cells [3] and photo-
detectors [4], and enhancing optical effects as in surface-
enhanced spectroscopy [5] or nonlinear optics [6]. Designing
plasmonic structures with desired optical properties has
become a field of active pursuit, and the ability to accurately
simulate the optical response of these structures is of para-
mount importance.

Various numerical methods are used to simulate the optical
response of plasmonic nanostructures in the time and fre-
quency domains. The most commonly used ones include finite
difference time-domain [7,8], finite element method [9],
discrete dipole approximation [10], volume integral equation
[11], the T -matrix method [12,13], boundary element method
(BEM) [14,15], and surface integral equation (SIE) [16,17],
also called method of moments (MoM) outside the plasmonics
community [18]. The SIE approach solves Maxwell’s equa-
tions in the frequency domain in the integral form and
provides many advantages over the other methods. The tech-
nique requires the discretization of only the boundaries of
scatterers reducing computational overhead, in terms of both
time and memory, and does not need the artificial truncation
of space as might be required by methods that discretize the
background as well [19,20]. SIE requires the computation of

Green’s tensor, which is straightforward for homogeneous
domains but not for general media. SIE formulations have
been recently developed to deal with periodic structures
[21] and stratified backgrounds [22] by computing Green’s
tensor for these cases.

Even though the surface integral equations themselves are
completely accurate within the realm of classical electrody-
namics, any numerical implementation would only be able
to solve them approximately. The various fields and currents
are expanded in terms of a finite number of basis functions,
which can only approximate the actual values. This problem
can be addressed by using higher-order basis functions or
finer meshes, but it increases computational costs tremen-
dously in 3D problems [23]. In addition, the 4D integrals re-
quired in the calculation of the matrix elements involving
the Green tensor have to be done numerically. If the scatterer
surface is discretized into N elements, O�N2� such integrals
will have to be computed, and using complicated algorithms
to calculate the integrals accurately can be prohibitively ex-
pensive. It is therefore desirable to use low-order integration
routines, as long as it does not compromise the accuracy, and
even validity, of the results. These integration problems
are magnified by the singular nature of the integrand for
some integrals involving overlapping or nearby elements.
In the general context of the MoM, much work has been
dedicated to improving the integral accuracy using schemes
of singularity subtraction [24–26] or improved numerical inte-
gration [27,28].

In this paper, we focus specifically on the relevance of
these problems for the modeling of optical properties of met-
allic nanostructures. We study the link between numerical
quadrature order and integral accuracy and how it relates
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to the accuracy of the physical quantities calculated by SIE.
Since we are mostly interested in finely meshed subwave-
length structures in plasmonics, wave effects due to the
change of phase of Green’s tensor over a triangular element
are not of primary concern. However, the singular behavior
of Green’s tensor at the source causes a large variation in
amplitude over triangular elements close to it. This latter
effect is numerically more relevant in plasmonics. Hence,
we will be addressing specifically the geometric singularities
rather than wave effects.

2. SURFACE INTEGRAL EQUATIONS FOR
PLASMONIC NANOSTRUCTURES
A. SIE Implementation for Plasmonics
There exist various formulations to solve surface integral
equations numerically, with varying numerical accuracy
[29,30]. In this paper, we will be following the formulation
in [16]. Here, we provide a brief description of this SIE imple-
mentation, but only the most relevant formulas are given, as
full details can be found elsewhere [16].

Surface currents are expanded in terms of the standard
Rao–Wilton–Glisson basis functions [31], which are also used
as test functions (Galerkin’s method) to obtain the equations
in matrix form. The tangential boundary values of the
surface integral equations are used, and the Poggio–Miller–
Chang–Harrington–Wu–Tsai formulation [32–34] is chosen
to combine the integral equations over domains. For two
domains, i.e., a metallic object embedded in a dielectric
medium, the SIE matrix can then be written as (here, we use
the same notations as in [16])

�
D1 � D2

−�K1 �K2�
�K1 �K2� 1

Z2
1
D1 � 1

Z2
2
D2

�
: �1�

With the nth basis functions denoted fn�r�, the matrix ele-
ments can be expressed as reaction integrals in terms of the
scalar Green’s functions in each medium, i.e., Gi�r; r0� �
exp�ikijr − r0j�∕�4πjr − r0j�:

Di
nk �

iZi

ki

Z
Sn

dS∇ · fn�r�
Z
Sk

dS0Gi�r; r0�∇0 · fk�r0�

− ikiZi

Z
Sn

dSfn�r� ·
Z
Sk

dS0Gi�r; r0�fk�r0�; (2)

Ki
nk �

Z
Sn

dSfn�r�
Z
Sk

dS0�∇0Gi�r; r0�� × fk�r0�: (3)

Note that the matrices D and K are symmetric, as can be
deduced directly from the expressions above or more formally
as a consequence of optical reciprocity.

The surfaces Sn and Sk are each formed from two triangles
with a common edge (indexed by n and k); the above integrals
are therefore computed by summing the integrals over each of
the four possible triangle pairs. Note that these integrals are
4D and can be carried out as two successive 2D integration on
the source (r0) and test (r) triangles.

Two types of 2D numerical quadratures for the triangle will
be considered to study the effect of the number of integration
points on accuracy:

• Symmetrical Gaussian triangular quadratures, as derived
in [35], which will be called Dunavant quadrature for short.
The quadrature orders used here are nO � 1, 2, 3, 4, 5, 6, 7,
10, 13, 17, and 19, which correspond to Nq � 1, 3, 4, 6, 7,
12, 13, 25, 37, 61, and 73 integration points, respectively.

• Uniform subdivision of the triangle, consisting of subdi-
viding each edge into n elements, resulting in dividing the area
into n2 congruent subtriangles. The centers of the subtriangles
are the Nq � n2 quadrature points. The quadrature orders
used are 21, 30, and 40, corresponding to Nq � 441, 900,
and 1600 integration points, respectively.

Note that, for a given Nq, the total number of quadrature
points for the 4D integral is N2

q.
In practice, the singular nature of Green’s function at r � r0

can be problematic for the numerical evaluation of those in-
tegrals when the triangles are close to each other or overlap-
ping. This problem can be mitigated using various schemes of
singularity subtraction (SS). We here follow the SS method
described in [16]. Source integrals over r0 are evaluated by
separating Green’s function into a smooth part and a singular
part, explicitly with R � jr − r0j:

Gi�R� � Gi
sing�R� � Gi

smooth�R�; (4)

with

Gi
sing�R� �

1
4π

�
1
R
−

k2iR
2

�
: (5)

The first term is trivially singular at R � 0, while the second
results in a singularity for ∇Gi. The singular part can be inte-
grated analytically over r [26], while the smooth part is inte-
grated numerically without accuracy issues. In both cases,
the test integral (over r0) must still be integrated numerically.
Because this scheme breaks the symmetry between source
and test integrals, the symmetry of the matrices is no longer
guaranteed by construction and can therefore be used to
validate the accuracy of the computed matrices.

The formulation presented above has been used in the con-
text of plasmonics withNq � 1 (and is then similar to the BEM
[14,15]) and shown to produce promising results for metallic
nanostructures in the near- and far-field zones [16]. Here, we
will study its accuracy in detail.

B. Additional Improvements
In the course of this study, a couple of additional techniques
were also added to improve the accuracy, as will be shown in
the next section.

First, within the SS scheme, the double integrals involving
the dominant term of Gi

sing�R� (i.e., 1∕�4πR�) can be computed
entirely analytically for identical triangles in D, using the
formulas of [36]. The remaining integral involving Gi�R� −
1∕�4πR� is then integrated numerically without any singularity
issues.

Second, for nonidentical triangles, it has been pointed out
in [25] that there also remains a “small” logarithmic singularity
for K associated with the second term in Gi

sing�R�, which may
cause problems in the numerical integration over the test tri-
angle. Reference [25] also proposed to overcome this problem
by changing the order of integration and replacing the outer
integral (now over the source triangle) by a line integral over
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its edges {Eq. (22) in [25]}. This approach was implemented
and will be referred as the SSL method (singularity subtrac-
tion with line integral). In these cases, the line integral is
computed using a standard Gauss–Legendre quadrature with
Nl � 4nO quadrature points, chosen to be of the same order as
for the 2D Dunavant quadratures (i.e., for nO � 17, we have
Nl � 68 and Nq � 61).

C. Computing the Optical Properties
The SIE solution is obtained by inversion of the SIE matrix (us-
ing direct inversion with the mldivide algorithm in MATLAB),
and the surface currents on each triangular mesh element are
then derived. From these, the fields at any point can, in prin-
ciple, be computed from a surface integral [16]. This integral
can, however, be problematic for points close to the surface.
Moreover, the computation of the scattering cross section by
integration of the fields over a surface far from the particle is
also inefficient. To avoid those problems, the optical properties
here were obtained directly from the electric and magnetic
surface currents as follows. The surface currents are defined
as [16] (n is the normal pointing outward)

J � n ×Hsurf and M � −n × Esurf : (6)

From those and Maxwell’s equations, we deduce the sur-
face fields at any point just outside the particle (domain 1) as

Esurf � n ×M −

iZ1

k1
�∇ · J�n; (7)

Hsurf � −n × J −
i

k1Z1
�∇ ·M�n: (8)

The extinction, scattering, and absorption cross sections
are then derived by integrating the relevant Poynting vectors
on the particle surface [37], namely,

σext � −

1
2

Z
S
Re��Einc ×H�

surf � Esurf ×H�
inc� · n�dS;

σsca �
1
2

Z
S
Re���Esurf − Einc� × �Hsurf −Hinc��� · n�dS;

σabs � −

1
2

Z
S
Re��Esurf ×H�

surf� · n�dS; (9)

where Einc, Hinc are the incident fields. This provides a fast
and accurate way of computing those important properties.

From the surface fields, we can also derive the average field
intensity enhancement factor (EF) as hjEsurf j2∕jE0j2i, where hi
denotes surface averaging. The parallel [first term in Eqs. (7)
and (8)] and perpendicular (second term) components may be
considered separately.

3. ACCURACY OF THE MATRIX ELEMENTS
We first focus on the accuracy of the D andKmatrix elements
used to construct the full SIE interaction matrix. We focus on
the integrals involving Green’s function of the embedding
domain (with relative permittivity chosen as ϵ1 � 1), as they
are not strongly dependent on permittivity. For illustration
purposes, we will consider a cuboid, shown in Fig. 1(d), as
it provides a variety of configurations between pairs of
elements. To avoid wave effects, the structure and, thus, the

triangular elements are made much smaller than the simula-
tion wavelength. The cuboid dimensions are 20 nm × 5 nm×
5 nm, whereas the wavelength is λ � 500 nm. The surface of
the cuboid is discretized into 160 triangles. To study the
accuracy of the reaction integrals, we classify the triangle
pairs �T; T 0� into the following four groups, which we identi-
fied as having different convergence properties:

• Identical triangles, i.e., T � T 0.
• Adjacent triangles, when T and T 0 share a common edge.
• Touching triangles, when T and T 0 share only a common

vertex.
• Other triangles in all the other cases.
The cuboid example conveniently contains several pairs

in each of these groups, including coplanar, noncoplanar,
and orthogonal configurations. The integral accuracy, as
estimated from the relative error with respect to the value
obtained for the largest quadrature order (nO � 19), is studied
as a function of the number of quadrature points Nq. Note,
however, that computing times scale approximately quadrati-
cally with Nq for double integrals.

Figure 1 shows the results obtained for the integrals
pertaining to the D matrix. It is clear that the Dunavant quad-
ratures significantly outperform uniform quadratures. This
should not be surprising, since the Dunavant quadrature is
specifically designed to capture higher-order polynomial
approximations of the integrand with increasing order of in-
tegration. We will therefore only focus on Dunavant quadra-
tures in the rest of this study. Moreover, for all triangle pairs,
relative errors of 10% or better are obtained, even with a single
integration point (Nq � 1). If a higher accuracy is required,
then this is easily achieved with a small number of points
for most triangle pairs, but convergence is slower for pairs
with a common edge or vertex. Overall, using Nq � 61 (order
17) for these pairs and Nq � 7 (order 5) for the others will
guarantee a relative error of 10−4 or better for the entire D
matrix. In addition, for identical triangles, we compare in
Fig. 1(a) the standard SS method with the alternative ap-
proach with 4D analytical evaluation of the singular part of
the integral [36]. The latter provides improved precision and
is also marginally faster, so it should be preferred.

A similar study can be carried out for the K matrix (the re-
sults of which are shown in Fig. 2). The situation is slightly
more complicated here. The integrals are zero for pairs of
coplanar triangles [25], which includes identical triangles,
so these special cases should not be calculated but enforced
to be zero and are therefore excluded from the analysis.
In addition, as seen in Fig. 2(a), a small number of integrals
exhibit an abnormally large relative error. A closer look indi-
cates that these problematic integrals are in fact much smaller
in magnitude than the average integrals and therefore are
unlikely to affect the final results. A fairer estimate of the error
in this case is by normalizing the absolute error to a typical
magnitude of the K matrix, which we chose as the root-
mean-square average of the modulus of the nonzero
matrix elements. As seen in Fig. 2(a), this normalized error
is of the same order as the relative error in most cases but
not affected by the small-magnitude integrals, so it is used
in Fig. 2 to characterize the errors in the K matrix elements.

It is clear from Fig. 2(b) that the integrals for K can be
highly inaccurate in the case of triangles with a common edge.
The normalized error can be of the order of 100% with one
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integration point and remains as large as 1%–10% with
Nq � 61. This slow convergence is in fact associated with a
remaining logarithmic singularity in the numerical integral,
which can be overcome using the SSL method introduced
in [25]. Figures 2(b) and 2(c) also show the errors obtained
using this method. It is evident that this method improves
the accuracy for adjacent triangles by a factor as large as
100 when using Nl � 68, Nq � 61, which results in errors
of 0.01%–0.1% only. Interestingly, as seen in Fig. 2(c), for tri-
angles with only a common vertex (and for all nonadjacent
triangles), the line integral formulation does not offer any im-
provement and is therefore not necessary.

Finally, we note that Figs. 1 and 2 can also be obtained for
the matrices/integrals corresponding to the second domain,
i.e., with the Green’s function of the metal (with
ϵ2 � −8.5� 0.4i). They are not shown here, as they are virtu-
ally identical to those obtained for the free-space Green’s
function. This can be understood because the integration
problems are primary geometrical and associated with the
1∕R dependence in Green’s function, not the exp�ikR� factor,
which is, anyway, almost constant over a given triangle in
meshes relevant to plasmonics.

4. PROPOSED ALGORITHM
Based on these results, we propose the following algorithm to
compute the SIE matrix elements to reasonable accuracy

without making the computation too expensive. Two Duna-
vant quadratures are used, depending on accuracy require-
ments: nO � 5, Nq � 7 for low precision and nO � 17,
Nq � 61 for high precision. The integrals are computed as
follows:

• All the double integrals on identical triangles for D are
computed from the full analytical formulas [36] for the singu-
lar part of the 4D integrals and numerically with nO � 17 for
the smooth part. A lowest order would give the same accuracy
for small triangles but would not result in significant speed
improvements. For K, these integrals are zero.

• All the double integrals on triangles sharing a common
edge are computed using the SS method with high-precision
(nO � 17) quadrature for the numerical integration over test
triangles. Moreover, for K, the SSL line integral formulation
proposed in [25] is used, with a 1D Gauss–Legendre quadra-
ture with Nl � 4nO � 68 integration points.

• All the double integrals on triangles sharing a common
vertex are computed using the SS method and nO � 17. The
line integral formulation is not needed for these.

• All other double integrals are computed using the SS
method and low-precision quadrature (nO � 5).

• Finally, as pointed out in [25], the SS method is not nec-
essary for triangles that are sufficiently far from each other.
No singularity subtraction is therefore applied if the following
geometric criterion is met: d > 3�p1 � p2�∕6, where d is the

(a) (b)

(c) (d)

Fig. 1. Variation of the relative errors of the Dmatrix integrals as a function of the number of quadrature points per triangle for a cuboid mesh of
160 triangles, as shown in (d). Four cases are distinguished, depending on the pair of source and test triangles: (a) identical triangles; (b) adjacent
triangles sharing an edge; (c) touching triangles sharing a vertex; and (d) other triangles. The Dunavant quadrature (open symbols) is compared
with the uniform triangular quadrature (filled triangles), which is clearly much worse. In (b), the data are shown explicitly for 48 individual pairs of
triangles out of a total of 480 pairs with a common edge to highlight the two different groups corresponding to coplanar and noncoplanar pairs (the
latter are located along sharp edges of the rectangle). In (a), (c), and (d) we show the statistical analysis of the log of the error over 160 (a) or 1400
(c),(d) pairs of triangles; i.e., the symbols represent the geometric mean and the error bars the standard deviation of the log of the error.
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center-to-center distance and p1 and p2 are the perimeters of
T1 and T2. The threshold of 3 was obtained from similar ac-
curacy tests not shown here.

This approach, which we will denote for short acc-SIE
(accurate SIE), guarantees a relative accuracy of 10−4 or bet-
ter for the vast majority of integrals of the SIE matrix. It could
be argued that such a fine accuracy is not needed in most
practical cases, but it may be important for some aspects
of the problem (such as absorption) and for some geometries
(such as those with sharp edges). One could also adjust
these choices to specific needs, but it should be noted that
the limiting step for realistic calculations with a large number
of degrees of freedom in the case of homogeneous domains is
not the matrix calculation but its inversion. This is because
only O�N2� matrix elements have to be computed for a struc-
ture discretized into N triangular elements, whereas inverting
the matrix requires O�N3� operations. Compromising on
matrix accuracy may therefore not result in worthwhile gain
in computing speed for challenging problems with many de-
grees of freedom. However, the situation could be different in
the case of other media where Green’s tensor calculation is
itself a costly operation.

5. VALIDATION OF THE PROPOSED
IMPLEMENTATION
We will now compare the performance of this proposed
optimized algorithm with the approach previously used for
plasmonics calculations (and denoted here std-SIE), where

the SSL method is not used and numerical integrations are
carried out with a single integration point (Nq � 1).

A. Symmetry of Matrix Elements
One relatively straightforward way to assess the accuracy of
the SIE matrix is to check the symmetry properties of the ma-
trix elements. In principle, both D andK should be symmetric,
since Green’s tensor itself is symmetric between source
and observation points in the case of homogeneous media.
This is a consequence of electromagnetic reciprocity [38].
But, numerically, the symmetry is broken when applying the
singularity subtraction method, which involves integrating
over one triangle analytically and the other numerically.
The error in the symmetry of these matrices can therefore in-
dicate their accuracy. Moreover, any significant breakdown of
the symmetry could result in unphysical predictions (for ex-
ample, negative absorption).

The degree of symmetry in the D and K matrix elements is
shown in Fig. 3. It is evident that the acc-SIE method shows a
much higher degree of symmetry compared to the coarse
approach for all types of matrix elements.

B. Optical Properties
We nowmove on to study the effects of integration quadrature
on the accuracy of physical quantities calculated by SIE. We
will study two systems relevant to plasmonics: a silver sphere
of 30 nm radius and a tetrahedron of side 40 nm both
embedded in water. Both systems are illuminated by plane
waves incident in the z direction and polarized along x. The

(a) (b)

(c) (d)

Fig. 2. Variation of the errors in the Kmatrix integrals as a function of the number of integration points using Dunavant quadratures for the same
cuboid mesh as in Fig. 1. To avoid artificial problems with low-magnitude matrix elements, we compute the normalized error as the absolute error
normalized to the root mean square of the K matrix elements. The two measures are compared in (a) for 21 pairs of adjacent triangles sharing an
edge (which are located along sharp edges). The other cases are shown in (b)–(d) as the statistical analysis of the log of the error, as in Fig. 1. In
(b) and (c), the results from the standard singularity subtraction (SS) and the alternative SS with line integral (SSL) [25] are compared.
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relative permittivity of water is taken to be constant (ϵ � 1.77)
throughout the wavelength range, whereas the relative permit-
tivity of silver is taken from the analytical fit to experimental
data [5,39].

The surface of the silver sphere is discretized by meshes of
increasing finesse, and the structure is simulated using the
proposed optimized algorithm (acc-SIE) and the standard
method (std-SIE). The exact optical response of the sphere
upon illumination by the plane wave is also calculated using
Mie theory [5] and used as a benchmark.

We first consider the wavelength-dependent far- and near-
field properties, which result from the surface plasmon reso-
nances of the nanostructure. Figure 4 summarizes the main
results for a representative coarse mesh (N � 240) and a finer
mesh (N � 840). Both the std-SIE and acc-SIE approaches
predict the main features of the resonance, even with the
relatively coarse mesh. We do, however, observe discrepan-
cies when looking more closely at the details. Notably, the
std-SIE approach exhibits significant errors in the quantitative
determination of the absorption cross section and of the
perpendicular and parallel components of the average local
field intensity EF. The acc-SIE approach is much better in this
respect, although the finer mesh (N � 848) is necessary to
reproduce closely the exact results. This can be attributed
to the fact that the coarser mesh is not yet an accurate
approximation to the spherical geometry.

In order to study the accuracy more quantitatively, we
compute the error in the optical properties for various mesh
finesses. We focus on a single wavelength, λ � 470 nm, which
is close to resonance but not at resonance to avoid placing too
much emphasis on errors associated with resonance shifts.
The convergence properties of both approaches (std-SIE and
acc-SIE) are presented in Fig. 5. It can be seen that the std-SIE
approach provides an accuracy almost comparable to the
acc-SIE approach for the extinction cross section and the
average field intensity on the surface. However, it is an

order-of-magnitude less accurate in terms of predicting the
absorption cross section and the parallel component of the
surface field. Even with a mesh refinement of 2400 triangles,
the std-SIE method shows an error of 5% or more, whereas the
acc-SIE is better by an order of magnitude. Although compa-
rable accuracy could eventually be reached with the std-SIE
approach, it would require a much finer mesh and therefore
more CPU/memory resources. We note that the same conclu-
sions would be obtained by doing the study exactly at reso-
nance (λ � 429 nm, not shown here).

In contrast with a sphere, a tetrahedron contains, as with
many other objects relevant to plasmonics, sharp corners and
edges, around which the fields are expected to vary signifi-
cantly. One therefore expects numerical predictions to be
much more challenging. To capture the field variations rea-
sonably well using linear basis functions, the mesh has to be
refined near the edges and corners. The mesh we used to sim-
ulate the tetrahedron contains 4680 triangles and is shown in
Fig. 6(d). The wavelength dependence of the extinction and
absorption cross sections and average surface field intensity
as computed by both the std-SIE and acc-SIE approaches are
plotted in Fig. 6. Despite the finesse of the mesh, the std-SIE
approach clearly fails to predict any physical results. In par-
ticular, the absorption cross section is found to be negative.
This sort of nonphysical behavior arising from the inaccuracy
of SIE using coarse quadratures has been previously reported
[40]. In comparison, the acc-SIE approach shows smooth
behavior without any such glaring nonphysical results (the ac-
curacy of the results would, nevertheless, need to be checked
by considering finer meshes, but this is outside the scope of
this work). The particularly poor behavior of the std-SIE ap-
proach can be understood from the fact that the optical prop-
erties here are likely to be sensitive to potentially large errors
in the integration of nearby elements around the edges and
corners, which play a significant role in the optical properties.

We note that sharp edges or corners may be an idealization
of realistic nanostructures, which often exhibit some degree
of rounding of the edges and corners. They are, nevertheless,
an important theoretical tool, as rounding of the edges
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Fig. 3. Symmetry of the matrix elements for the cuboid mesh in
Fig. 1(d) obtained from the coarse (std-SIE, Nq � 1, left) and opti-
mized (acc-SIE, Nq � 7; 61 with SSL, right) methods presented in
this paper. Only a subset of 50 × 50 elements are shown for clarity.
The color maps represent the number of digits agreement, i.e., α �
− log 10�ϵ� for a given error ϵ between transposed elements. The
relative error is considered for (a),(b) the D matrix, and (c),(d) the
normalized error for the K matrix. Note the different scales in each
panel, and that the error is larger than 100% (α < 0) for some elements
in (a),(c).
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Fig. 4. Wavelength dependence of (a),(b) the far-field and (c),
(d) near-field optical properties for a 60 nm diameter silver sphere
in water modeled with SIE utilizing the std-SIE and acc-SIE ap-
proaches. Panels (a) and (c) show the results for a coarse mesh
(N � 240), whereas panels (b) and (d) have a finer mesh (N � 848).
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introduces additional parameters that are often difficult to
measure experimentally. Moreover, the modeling of structures
with sharp edges or corners will be necessary to understand
the consequences of such rounding on the optical properties.

6. CONCLUSION
We have analyzed the effect of the integral quadrature on
the accuracy of SIE matrix elements and the physical quan-
tities calculated by SIE. This led us to propose an optimized
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Fig. 5. Comparison between the results calculated by SIE utilizing the std-SIE and acc-SIE approaches for a 60 nm diameter silver sphere in water
at λ � 470 nm, as a function of the number of triangles on the mesh. (a) Seven meshes of increasing finesse are considered. The properties studied
are the (b) extinction and (c) absorption cross sections, (d) the average electric field intensity, and (e) the average parallel electric field intensity.
The relative error is obtained by comparison with the exact results of Mie theory.
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Fig. 6. Wavelength dependence of the optical properties for a silver regular tetrahedron of 40 nm side embedded in water, computed using the std-
SIE and acc-SIE approaches. (a) Extinction cross section. (b) Absorption cross section. (c) Average surface field intensity. (d) Mesh used for the
calculation.
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algorithm to evaluate SIE matrix elements to a high accuracy.
The optimized algorithm involves some extra computational
overhead, but it becomes negligible for the most challenging
cases where a large number of degrees of freedom is required.
Even though a coarse integration approach might be sufficient
for studying the qualitative behavior of some systems, quan-
titatively it performs poorly in comparison to the improved
algorithm. The improved algorithm performs significantly
better in calculating properties such as absorption and paral-
lel fields and for geometries with sharp corners and edges,
as often considered in plasmonics. It is necessary to use the
improved algorithm to obtain any sort of meaningful results in
such challenging cases, as shown here with the example of a
tetrahedron.
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