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ABSTRACT: We establish a general method to bridge the gap between full-field electromagnetic calculations and equivalent
lumped circuit elements to describe the optical response of plasmonic nanostructures. The exact value of each lumped element is
extracted from one single full-field calculation using the Poynting vector and considerations on the energy flow in the system.
The equivalent circuit obtained this way describes the complete response of the system at any frequency and can be used to
optimize it for specific applications or perform parametric studies. This powerful approach can accurately reproduce the behavior
of complex plasmonic nanostructures, such as Fano resonances, retardation effects, and polarization coupling. Furthermore, the
influence of coupling parameters within the different modes supported by a given plasmonic structure can be investigated, thus
providing new physical insights into its functioning mechanisms.
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Over the past decade, a broad variety of plasmonic
nanostructures have been developed to localize light

below the diffraction limit, enhance the electromagnetic near-
field, or shape at will the optical spectrum.1−6 These
developments have been guided by a wealth of results produced
with numerical techniques that can solve Maxwell’s equa-
tions.7−14 These full-field calculations can provide the response
of a plasmonic nanostructure with great accuracy, usually for
one given excitation condition. Yet, they do not provide much
insight into the underlying mechanisms that lead to the
observed response. To gain such insights, coupled oscillator
models15−22 or lumped circuit elements are far more
useful.23−29 They provide a figurative representation of the
plasmonic system and facilitate its application-driven design
and optimization. The harmonic oscillator approach combines
masses and springs to mimic energy reservoirs and coupling.
The parameters are subsequently extracted by fitting the
response to full-wave calculations or to measured data. In a
circuit approach, on the other hand, the values of the RLC
elements (resistance R, inductance L, and capacitor C) are
often derived using simplified models as suggested by Engheta
and collaborators23,26−28 and Greffet et al.30 In the design of the

transmission lines it is convenient to consider the different parts
of the system as lumped circuit elements in order to arrange
them for producing the desired characteristics and, sub-
sequently, to replace each lumped element with its equivalent
component of a transmission line.31 Here, we show how the
equivalent circuit approach can be brought a very significant
step further by bridging the gap between lumped circuit
elements and full-field calculations. We present the quantitative
derivation of the equivalent circuit elements based on the
electromagnetic field calculated using the surface integral (SI)
method. From observables related to energy in the system and
retrieved in the near-field and the far-field, we obtain the exact
elements with respect to an excitation normalized to unity for
the equivalent lumped circuit. The resulting equivalent circuit
provides better insights into the functioning mechanisms of
complex plasmonic nanostructures over the entire spectrum
and accurately reproduces its response, including subtle effects
such as polarization conversion. In addition, this powerful
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approach can be used to design and efficiently optimize
complex plasmonic systems with desired properties.

■ DEMONSTRATION OF THE MODEL AND
EXTRACTION OF THE PARAMETERS

The optical response of a dipole antenna can be mimicked by
an RLC circuit as shown in Figure 1a. In this approach, the

body of the antenna is considered as a wire with inductivity L
and resistivity Rant. Since the antenna losses are related to the
electric current flowing through the resistor Rant (representing
the ohmic loss), it is wired in serial with the inductance L. On
the other hand, the antenna couples to the surrounding
medium through the capacitor C parallel to the L−Rant branch.
In the visible range, plasmonic metals exhibit a negative real
part of their permittivity that is lower than their surrounding
dielectric; thus the electric field is confined to the vicinity of the
structure and the surrounding of the antenna exhibits a
capacitive behavior with capacity C. Radiative losses can be
represented by a resistor Rrad, which is connected in parallel
with the capacitor C. Using such an approach, the capacitor
branch describes both the near- and far-field of the plasmonic
mode.
In a lossless LC circuit at resonance frequency, where

impedance matching between the inductive and capacitive
branches is fulfilled, the energy oscillates between capacitor C
and inductor L. Consequently, on average, the amount of
energy stored in C and L is equal. However, real radiating
antennas are lossy systems exhibiting radiative and nonradiative
losses, which are represented by Rrad and Rant, respectively. For
a maximal radiation power at the resonance frequency ω0,
impedance matching of the capacitive branch, Zc = Rrad∥1/jωC
(where ∥ means that the two impedances are connected in
parallel), and inductive branch, ZL = Rant + jωL, must be
satisfied. Therefore, the values of Rant and Rrad can be
determined from full-field calculations using the following
procedure. The integral of the Poynting vector over the
antenna surface represents the average power in the inductive
branch, namely, the power stored inside the antenna, which at
resonance frequency ω0 is equal to the power in the capacitive
branch, representing the energy outside of the antenna.
Therefore, capacitor C and resistor Rrad can be extracted from
the integral of the Poynting vector. The electric field, as shown
in Figure 1a, providing the Poynting vector of a single elliptical
antenna has been calculated using the surface integral method
at a distance of 1 Å above the surface of the structure.9 The
integral of the Poynting vector over the entire surface provides

the total power, the real part of which corresponds to loss in
the antenna. As previously mentioned, at resonance frequency
ω0, the same power can be attributed to the radiative loss and
to the capacitive storage. Separating the complex power into its
real and imaginary parts, the values of the equivalent circuit
elements in each branch can be extracted using eqs 1−4:
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where Pr and Pi are real and imaginary parts of the power at
resonance, respectively, and V is the voltage over the branches,
as shown in Figure 1a. The derivation of eqs 1−4 is given in the
Supporting Information. Hereinafter, the current amplitude I is
assumed to be unity.
In addition to the shape of the structure, the optical

properties of the metal strongly influence the response of the
antenna. Since the permittivity ϵ, and therefore the field
penetration depth into the metal, is dependent on the
frequency, the corresponding L and Rant must be determined
for each frequency ω. Here, the skin depth δ(ω) in the metal is
assumed to be a measure for the current cross-section, i.e., for
the resistivity. Hence, the values of L and Rant at a given
frequency ω can be obtained by dividing their values at
resonance by δ(ω)/δ(ω0). Gold nanostructures are assumed
throughout, and the values for ϵ are taken from ref 32.
The equivalent power Pr radiated by the antenna is dissipated

into Rrad and shown for a dipole antenna of length 110, height
40, and width 40 nm in Figure 1b (red solid line). It is in very
good agreement with the scattering cross-section obtained with
the surface integral method (green dashed line). For this
geometry, the circuit elements extracted using eqs 1−4 are C =
47 aF, L = 2.3 fH, Rrad = 59.02 Ω, and Rant = 0.847 Ω. The
shadow areas in Figure 1b represent the capacitive and
inductive energy stored respectively in C and L, calculated
from the equivalent circuit. They reveal that the system
preferentially stores energy in the form of electric energy below
the resonance and in the form of magnetice energy above the
resonance. At resonance, the amount of electric and magnetic
energy becomes equal, a signature of impedance matching, as
was assumed initially. With these values, the time constants of
the capacitive and the inductive branches are τC = RradC =
2.8210−15 s and τL = L/Rant = 2.7210−15 s, which shows that the
capacitive and the inductive branches have similar time
constants. Let us emphasize that the approach developed
here requires only one single full-field computation at the
resonance frequency to retrieve the circuit elements; the
response of the system at any other frequency is then obtained
from the equivalent circuit.

■ CIRCUIT REPRESENTATION OF DOLMEN
STRUCTURES

Using the circuit shown in Figure 1a as a building block, more
complex systems can be investigated by cross-connecting the
individual building blocks using appropriate coupling elements.
For example, dolmen structures as shown in Figure 2a are well-

Figure 1. (a) Single dipole antenna with its equivalent lumped circuit
elements and (b) the normalized far-field scattering cross-section
calculated solving Maxwell’s equations using a surface integral method
(green dashed line) or the lumped circuit elements (red solid line).
The two shadow areas correspond to energy storage in the capacitor
(orange) and in the inductor (blue). The resonance occurs at λ0 = 627
nm.
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known structures that exhibit Fano resonances.33−36 The
hybridization diagram for this type of structure is depicted in
Figure 2b.37 The transversal dipole (blue) can be excited from
the far-field using an appropriate polarization. The parallel
dipoles (green) are then excited via near-field coupling,
resulting in a quadrupolar and nonradiative charge distribution
near the Fano resonance wavelength.35 As illustrated in Figure
2c, this configuration can be mimicked by a combination of
three dipoles, Z1, Z2, and Z3, two pairs of coupling capacitors,
C1 and C2, and a mutual inductor LM. The capacitor C1,
connecting Z1 with Z2 and Z3, represents the capacitive
coupling through the gaps. The capacitor C2 describes the

capacitive interaction between the orthostats represented by Z2
and Z3. The mutual inductor LM represents the mutual
magnetic effect of the two bars on each other. Note that the
magnetic mutual coupling between Z1 and the two other
dipoles Z2 and Z3 can be neglected due to their respective
dipole orientation.
In the dolmen structure shown in Figure 2a, changing the

gap between the blue and the green elements changes the
coupling and therefore the equivalent capacitor C1. Figure 2d
represents the response of the system as a function of a relative
change of C1 with respect to C, as a measure of the coupling
strength between the bright mode of dipole Z1 and the dark-
quadrupolar mode of Z2 and Z3, which is represented by C2.
The response represents well the mode splitting due to the
coupling between the transversal and parallel dipoles leading to
a Fano resonance; see Figure 2d. Let us finally note that the
data obtained from the circuit can be further used to fit
additional models for the Fano resonance (see Supporting
Information).

■ CIRCUIT REPRESENTATION OF CIRCULARLY
POLARIZED ANTENNAS

We finally illustrate the utilization of quantitative equivalent
circuits by considering a more complex plasmonic structure that
can be used to generate circularly polarized light from a linearly
polarized incident beam, Figure 3.38 The structure is composed
of two perpendicularly arranged elliptical antennas with a cavity
at the center of the structure, Figure 3a. When this
configuration is excited using an appropriate linear polarization,
the polarization of the scattered light is converted into a left- or
right-handed circular polarization state, through the super-
position of two spatially and temporally orthogonal modes. The
strength of this conversion is determined by the asymmetry of
the cavity, Figure 3a and c. Since the configuration in Figure 3a
is symmetric upon linear excitation along the x-axis, only
linearly polarized light along the x-direction can be reradiated
and the dipole along the y-axis cannot be excited. Full-wave
calculations were performed on this system, and the
corresponding circuit elements extracted at the resonance
wavelength. Note that the energy level of the x-oriented
antenna is affected by the presence of the arms pointing in the
y-direction, although the y-oriented dipole cannot be excited.
This structure can be decomposed into two dipoles in the x-

and y-direction, with four equal inductive paths, namely, M and
m, between them, Figure 3b. Since the coupling is caused by the
motion of the electrons in the metal, nonradiative resistances
RM and Rm are also included in these paths.
The equivalent circuit of the asymmetric structure is shown

in Figure 3d. In the case of the symmetric structure in Figure
3a, the yellow and blue paths of the circuit are equal and
voltages V2 and V3 become equal, and hence the voltage on the
y-oriented part (pink color) is zero; therefore no coupling
occurs from the x-oriented dipole to the y-oriented one.
Consequently no energy is transferred to the y-oriented dipole,
which becomes obsolete, and the circuit can be simplified as
shown in Figure 3e. In order to extract the values
corresponding to the inductors L and the resistors Rant of
these paths, the structure is divided into two parts, indicated
with blue and green shadows in Figure 3d. While the values of
C and Rrad are extracted with respect to the total power,
requiring integration of the Poynting vector over the entire
surface of the structure, the values of L and Rant are extracted
from the power in the pink and green regions, and the values of

Figure 2. (a) Dolmen structure. The dipole shown in blue is excited
by the incoming light, while the dipoles forming a quadrupole shown
in green cannot be directly excited. (b) Hybridization diagram
between the dipolar and quadrupolar modes. (c) Equivalent circuit
model for the dolmen structure shown in (a). The elements in the
blue and green building blocks belong to the corresponding dipoles in
(a). (d) Scattering spectrum as a function of the perturbation
introduced through C1. The horizontal bar is the logarithmic scale of
C1/C, and the scattering intensity is normalized between 0 (black) and
1 (yellow).
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M, m, RM, and Rm are extracted from the power in the yellow
and blue regions. Note that in the case of the symmetric
structure M = m and RM = Rm. Upon introducing an elliptical
asymmetric cavity in the structure, the blue and yellow paths
become unbalanced, and consequently the energy can couple to
the branch corresponding to the y-oriented part of the antenna.
The dimensions of the structure and the extracted values for
the circuit elements are provided in the Supporting
Information. Figure 3f shows the scattering cross-section with
respect to the power dissipated in the far-field resistors Rrad
upon changing the values of M and m. The sum M + m is equal
to 2M0, where M0 corresponds to the unperturbed system. In
Figure 3f we present the scattering cross-section of the system
as a function of the amount of perturbation applied on M. This
figure clearly shows the mode-splitting associated with the
strong coupling regime.
The circular polarization factor αc is defined as

α =
| | − | |
| | + | |
C C

C Cc
right left

right left (5)

where Cleft and Cright are the left- and the right-handed circular
polarization coefficients of the decomposition into the two
orthogonal polarizations. The values αc = +1, αc = −1, and αc =
0 correspond to completely right-handed circular polarization,
completely left-handed circular polarization, and linear polar-

ization, respectively. Since the voltages V1 − V4 and V2 − V3
correspond to the voltage drop on the x- and y-oriented
antennas, the coefficients can be extracted using the following
equations:

= | − − − |C V V j V V( ) ( )right 1 4 2 3 (6)

= | − + − |C V V j V V( ) ( )left 1 4 2 3 (7)

Figure 3g shows the absolute value of αc for different
perturbations. The value is very low when the perturbation
(and hence the coupling) is weak. With increasing perturbation
αc approaches 1. By further increasing the perturbation, i.e., in
the strong coupling regime, this value drops again. This
behavior is in perfect agreement with the full-field calculations
reported in ref 38.

■ CONCLUSION
We have proposed a general method to bridge the gap between
full-field electromagnetic calculations and equivalent lumped
circuit elements to describe the optical response of plasmonic
nanostructures. The exact value of each lumped element is
extracted by considering the impedance matching between the
capacitive branch and the inductive branch of the circuit,
corresponding to the energy stored in the surrounding medium
or in the antenna itself, respectively. It has been shown that this
approach provides a very powerful method for extracting
numerical values of all the lumped elements describing a
complex plasmonic system. In turn, the extracted equivalent
circuit can be used to optimize the response of the system
without performing heavy full-field electromagnetic calculations
at every frequency. As examples, the lumped elements
associated with plasmonic structures supporting several dipolar
modes, such as dolmen and time-retarded structures, have been
retrieved. This powerful approach can accurately reproduce
behavior of complex plasmonic circuits, including Fano
resonances, retardation effects, and polarization coupling.
Furthermore, the influence of coupling parameters within the
different modes supported by these structures can be
investigated. This approach provides a useful alternative to
the oscillator model, since each block in the circuit relates to a
specific geometrical part of the system, therefore providing
straightforward correspondence.
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Figure 3. (a) Symmetric structure made of two orthogonal ellipses
with a circular hole in the center. (b) The pink-green and blue-yellow
regions correspond to the area where the integration of the Poynting
vector is been performed for the calculation of the normal inductance
and the coupling inductance, respectively. (c) Schematic of the system
with a nonsymmetrical hole, which perturbs the system by coupling
the two orthogonal ellipses, leading to a circular polarized response.
(d) Equivalent circuit model for (c). (e) Simplified circuit of the
symmetric system (a). (f) Scattering cross-section and (g) degree of
circular polarization obtained upon introducing the nonsymmetrical
hole, leading to a coupling between both ellipses.
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