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A surface integral formulation for the second-harmonic generation (SHG) from periodic metallic–dielectric nano-
structures is described. This method requires the discretization of the scatterers’ surface in the unit cell only. All
the physical quantities involved in this problem are derived in the unit cell by applying specific periodic boundary
conditions both at the fundamental and the second-harmonic (SH) frequencies. Both the fundamental and the
SH electric fields are computed using the method of moments and periodic Green’s function evaluated with
the Ewald’s method. The accuracy of the method is carefully assessed using two specific cases, namely the surface
plasmon enhancement of SHG from a gold film and the SHG from L-shaped nanoparticle arrays. These two exam-
ples emphasize the accuracy and versatility of the proposed method, which can be applied to a broad range
of periodic metallic structures, including plasmonic arrays on arbitrary substrates and metamaterials. © 2013
Optical Society of America
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1. INTRODUCTION
Nonlinear plasmonics, the study of nonlinear optical proc-
esses in metals, is a growing field opening new perspectives
for the control of light down to the nanoscale and optical sig-
nal modulation [1]. This interest is mainly triggered by the
strong electric field enhancement caused by surface plasmon
resonances occurring in metallic nanostructures, which dra-
matically increases the efficiency of nonlinear optical proc-
esses [1]. Among the different nonlinear parametric optical
phenomena, optical second-harmonic generation (SHG), the
optical process whereby two photons at the fundamental
wavelength are converted into one photon at the second-
harmonic (SH) wavelength, is probably the most studied in
plasmonic nanostructures [1–36]. Experimental data report
the SHG from assemblies [3,4] and single spherical metallic
nanoparticles [5], noncentrosymmetric nanocups [6], optical
nanoantennas [7–9], split-ring resonators [10], plasmonic
metamolecules [11], metallic nanotips [12,13], periodic arrays
of nanodots [14], L-shaped [15,16] and G-shaped [17,18] gold
nanoparticle periodic arrays, as well as aperiodic arrays of
nanoparticles [14,19]. It was recently demonstrated that
SHG is a very efficient tool for the optical characterization
of metallic nanoobjects [20,21] and that it is also sensitive
to the nanoparticle’s spatial distribution [22]. Furthermore,
the intrinsic properties of SHG can increase the performances
of plasmonic sensors [23]. SHG from centrosymmetric media
is forbidden in the electric dipole approximation, which limits
the total SHG signal. However, the centrosymmetry is broken
at the interface between nanostructures and their embedding

media, making SHG possible. The role played by bulk contri-
butions induced by field gradients in the nanostructures has
also been discussed [24,25].

A good understanding of the SHG from metallic nanostruc-
tures requires the development of appropriate models and
numerical simulation tools. While the SHG from spherical
homogeneous nanospheres and nanoshells can be handled
with nonlinear Mie theories [26–29], this is not the case for
more complex geometries. As a consequence, several
numerical schemes have been developed, such as the finite
elements method [30], boundary elements method (BEM)
[31], hydrodynamic models [32,35], finite-difference time-do-
main (FDTD) [36,37], volume integral equations (VIE) [38],
and the surface integrals equations (SIE) method [21,39].
Among all these methods, SIE and BEM are particularly ap-
propriated for the computation of the surface SHG from nano-
particles, since they only require the discretization of the
scatterer surface. Furthermore, it was shown that the compu-
tation of the electromagnetic near-field, which is a key for
precise SHG computation, is more accurate using SIE than
VIE [40,41].

While several authors have reported the computation of
SHG from single nanostructures, very little has been published
on the numerical evaluation of the SHG in periodic arrays of
plasmonic nanostructures. Although a few numerical meth-
ods, such as coupled-wave analysis [42], Fourier modal
method [43], or a combination of analytic parametrizations
of SHG and numerical FDTD evaluations [44], have been de-
veloped for the computation of SHG from periodic metallic
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structures, versatile and general methods that can handle
arbitrary structures are also required. It was recently demon-
strated that the linear optical response of periodic structures
can be computed with the SIE method using a periodic
Green’s function [45,46]. The main difference between the
SIE computation of light scattering by individual and periodic
scatterers is the utilizations of a periodic Green’s function for
the latter. The computation of this periodic Green’s function is
quite time consuming, but can be performed efficiently using
Ewald’s method [45–47].

In this paper, a surface integral formulation for SHG from
periodic plasmonic nanostructures is developed. The funda-
mental electric field is first computed using a numerical
scheme previously established for the investigation of the lin-
ear response of such a periodic system [45,46]. The nonlinear
polarization, i.e., the SH source, is then evaluated at the differ-
ent metallic interfaces in the system. A surface integral formu-
lation for SHG is then applied by considering the periodicity
of the SH electromagnetic field. Both the fundamental and SH
surface currents are expanded on Rao–Wilton–Glisson (RWG)
functions [48] and the Poggio–Miller–Chang–Harrington–
Wu–Tsai (PMCHWT) formulation is applied to ensure accu-
rate solutions even at resonant conditions [49]. The evaluation
of the periodic Green’s functions is performed by the Ewald’s
method [47]. The accuracy of the proposed method is finally
assessed in two specific cases. First, the surface plasmon en-
hancement of SHG from a gold film is considered, showing
that the computed spectral response is in perfect agreement
with phenomenological predictions. As a second example, the
SHG from L-shaped nanoparticle arrays is considered demon-
strating that the computed SH fields fulfill the required sym-
metry properties imposed by the sample geometry.

2. SURFACE INTEGRAL EQUATIONS FOR
THE FUNDAMENTAL FIELD IN PERIODIC
STRUCTURES
In this section, the optical properties of the periodic structures
are evaluated at the fundamental frequency. We follow exactly
the same procedure as in [45] for computing the fundamental
field in the periodic structure and provide here only the main
results. For SHG, the purpose is to first obtain the linear sur-
face current densities which are required for the evaluation of
the nonlinear sources.

A. Electric and Magnetic Field Integral Equations for
Periodic Structures
Wewill focus on lattices in 2 dimensions, corresponding to the
most experimentally relevant situation, but this approach can
handle periodicity in 1, 2, and 3 dimensions [45]. A lattice vec-
tor t is a linear combination t � P

i�1;2ciai where ci is an in-
teger and ai are the primitive lattice vectors. The unit cell of
the lattice is called Ω. The unit cell contains N domains VΩ

n

n � 1;…N with dielectric permittivity εn and magnetic per-
meability μn. The irreducible representation of the translation
group is associated to a Bloch wavevector k in the first
Brillouin zone. The Bloch functions Uk satisfy the Floquet-
periodic conditions

Uk�r − t� � eik·tUk�r�: (1)

The incident field and the surface current densities are pro-
jected onto this space. The corresponding projections are

denoted Einc
n;k, H

inc
n;k, Jn;k, and Mn;k, respectively. The computa-

tion of the electric field integral equation (EFIE) and the mag-
netic field integral equation (MFIE) can then be restricted to
boundary surfaces ∂VΩ

n ≡ ∂Vn∩Ω in the unit cell Ω [45]

�
iωμn

Z
∂VΩ

n

dS0Ḡn;k�r; r0� · Jn;k�r0�

�
Z
∂VΩ

n

dS0�∇ × Ḡn;k�r; r0�� ·Mn;k�r0�
�
∥

� �Einc
n;k�r��∥; r ∈ ∂VΩ

n (2)

and

�
iωεn

Z
∂VΩ

n

dS0Ḡn;k�r; r0� ·Mn;k�r0�

−

Z
∂VΩ

n

dS0�∇ × Ḡn;k�r; r0�� · Jn;k�r0�
�
∥

� �Hinc
n;k�r��∥; r ∈ ∂VΩ

n : (3)

The subscript ∥ denotes the tangential component of the
fields. The fields

Einc
n;k�r0� � iωμn

Z
VΩ
n

dVḠn;k�r0; r� · j�r� (4)

and

Hinc
n;k�r0� �

Z
VΩ
n

dV �∇ × j�r�� · Ḡn;k�r; r0� (5)

are the incident electric and magnetic fields, respectively, gen-
erated by the electrical current density j�r� in the region VΩ

n .
The dyadic Ḡn;k�r; r0� is the periodic Green’s function

Ḡn;k�r; r0� �
X
t

eik·tḠn�r − t; r0�; (6)

satisfying the relation Ḡn;k�r − t; r0� � e−ik·tḠn;k�r; r0�. The peri-
odic Green’s functions are evaluated using the Ewald’s
method [45,47]. For simplicity, the label k is omitted in the
following.

B. Solution by the Method of Moments
In this section, the method of moments for solving the EFIE
(2) and MFIE (3) is introduced [50]. The electric and magnetic
surface densities are expanded on the RWG basis functions fni
building a triangular mesh approximating the boundary
surface ∂VΩ

n [47]

Jn �
X
i

αifni ; (7)

Mn �
X
i

βifni ; (8)

where the summations occur on all the mesh edges. The
conservation of the currents on the boundary between the do-
mains n and n0 implies that fni � −fn

0
i . Applying the Galerkin’s

method and defining the sets fαg and fβg as the sets of the
surface current expansion coefficients, the EFIE and MFIE
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are combined following the PMCHWT formulation in order to
ensure stable and accurate results even under resonant con-
ditions [46]

2
664
P
n
iωμnDn

P
n
Kn

P
n
Kn −

P
n
iωεnDn

3
775 ·

� fαg
fβg

�
�

X
n

"
q�E�;n

q�H�;n

#
; (9)

where the summations are performed over all the domains n
and where the following submatrices are introduced:

Dn
i;j �

Z
∂VΩ

n

dSfni �r� ·
Z
∂VΩ

n

dS0Ḡn�r; r0� · fnj �r0�; (10)

Kn
i;j �

Z
∂VΩ

n

dSfni �r� ·
Z
∂VΩ

n

dS0�∇0 × Ḡn�r; r0�� · fnj �r0�; (11)

q�E�;ni �
Z
∂VΩ

n

dSfni �r� · Einc
n �r�; (12)

q�H�;n
i �

Z
∂VΩ

n

dSfni �r� ·Hinc
n �r�: (13)

The integrals (10)–(13) can be computed numerically using
Gaussian quadrature [51]. Unfortunately, the integrals in
Eqs. (10) and (11) relative to the same triangle element di-
verge. Furthermore, inaccurate results can also be obtained
for matrix elements associated with neighboring triangles.
A regularization scheme, including a singularity subtraction
[52], is applied (see the appendix of [45]). The expansion co-
efficients are obtained solving the set of linear equations with
LU decomposition. Finally, the electric and magnetic fields
scattered by the periodic nanostructures are given by

Escat
n �r� �

X
i

− iωμn

Z
∂VΩ

n

dS0Ḡn�r0; r� · αifni �r0�

−

Z
∂VΩ

n

dS0�∇0 × Ḡn�r0; r�� · βifni �r0�; (14)

Hscat
n �r� �

X
i

− iωεn

Z
∂VΩ

n

dS0Ḡn�r0; r� · βifni �r0�

�
Z
∂VΩ

n

dS0�∇0 × Ḡn�r0; r�� · αifni �r0�: (15)

In the following section, we use the currents from the linear
calculation as sources to develop a surface integral equation
formulation for the SHG from periodic structures.

3. SURFACE INTEGRAL EQUATIONS FOR
THE SECOND-HARMONIC GENERATION
FROM PERIODIC STRUCTURES
A surface integral formulation for the SHG from isolated scat-
terers has already been developed by Mäkitalo et al. [31]. Us-
ing a similar approach, we develop in this section a surface
integral formulation for the SHG from periodic structures

composed of dielectric and metallic domains. The source of
SHG is the nonlinear polarization oscillating at the SH fre-
quency. It is well known that SHG is forbidden in the bulk
of centrosymmetric media in the dipolar approximation. Even
if nonlocal bulk sources could also contribute to the SHG from
metal, only local surface contributions will be considered in
the following since these sources are known to be the dom-
inant ones [24,25]. Note that the nonlocal bulk sources for
SHG can be included following Forestiere et al. [39]. With this
assumption, the nonlinear polarization is given by

P�r�� � χ�2�∶E�r−�E�r−�: (16)

The� and − subscripts denote that the nonlinear polarization
sheet is located just above the metal and the fundamental elec-
tric field is estimated just below the interface [53,54]. Due to
the symmetry of the interface, only the χ�2�⊥⊥⊥, χ

�2�
⊥∥∥ and χ�2�∥∥⊥ �

χ�2�∥⊥∥ components of the nonlinear susceptibility χ�2� are non-
vanishing, where ⊥ denotes the component normal to the in-
terface and ∥ denotes the tangential component. Either
experimental [24,25,55] or theoretical values [56,57] of the
nonlinear susceptibility can be included in our model. The
computation of the nonlinear polarization requires the evalu-
ation of the fundamental electric field just below the metallic
interface [53,54]. The corresponding electric field is related to
the electric and magnetic surface current densities by [31]

Mm � −Em × n̂m; ∇∥ · Jm � −iωεmn̂m · Em; (17)

where m denotes the domain corresponding to the metallic
part of the periodic structures in which the fundamental field
is evaluated and n̂n is the outward normal vector on boundary
∂Vn. The fundamental electric field used for the computation
of the nonlinear polarization satisfies the Floquet-periodic
conditions (1). This relation induces the following constraint
for the nonlinear polarization:

PK�r� − t� � eiK:tPK�r��; (18)

where K � 2k is the Bloch vector associated to the SH waves.
The next step is the development of a surface integral formu-
lation for the SH field. Following Mäkitalo et al. [31], we start
from the boundary conditions for the SH field including
the nonlinear polarization sheet standing at the interfaces
between the domains m and d [58]

�ΔESH�∥ � �ESH
d �r�� − ESH

m �r−��∥ � −
1
ε0
∇∥P⊥; (19)

�ΔHSH�∥ � �HSH
d �r�� −HSH

m �r−��∥ � −2ωP × n̂m; (20)

where ε0 is the so-called selvedge region permittivity [50]. The
indexes m and d denote the metallic and the dielectric side of
the considered interface, respectively. As for the fundamental
wave, the SH problem is solved using the method of moments
and expanding the equivalent SH surface densities on the
RWG functions [48]

JSHm �
X
i

αm;SH
i fmi ; (21)
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MSH
m �

X
i

βm;SH
i fmi ; (22)

for the surface currents flowing in the metal and

JSHd �
X
i

γd;SHi fdi ; (23)

MSH
d; �

X
i

δd;SHi fdi ; (24)

for the surface currents flowing in the dielectric above the
metal. Contrary to the case of the fundamental surface cur-
rents, the magnitudes of the SH surface currents standing
at both sides of a given interface are different due to the non-
linear polarization existing at the interface. Nevertheless, the
equality JSHm � −JSHd stands if only the component P⊥ is rel-
evant, as is the case for SHG from metallic interfaces
[24,25]. Therefore, and without loss of generality, only the
component P⊥ of the nonlinear source will be considered
in the following. In this case, the equality αm;SH

i � γd;SHi stands
and the corresponding expansion coefficient is noted αSHi in
the following. Using Galerkin’s test, the following linear
system of equations is derived from the boundary conditions
(19) and (20):

2
666664

P
m;d

i2ωμnDSH;n
P
m
KSH;n −

P
d
KSH;n0

−
P
m;d

KSH;n
P
m
i2ωεnDSH;n −

P
d
i2ωεnDSH;n

0 F F

3
777775 ·

2
664

fαSHg
fβm;SHg
fδd;SHg

3
775

�
X
d

2
664
b�1�;n

0

b�2�;n

3
775; (25)

where the submatricesDSH;n
i;j are equivalent to the submatrices

Dn
i;j and the submatrices KSH;n

i;j are equivalent to the submatri-
ces Kn

i;j , except that the material properties and the periodic
Green’s functions are now evaluated at the SH frequency in-
stead of the fundamental frequency. Furthermore, since
�ESH�∥ and �HSH�∥ are not continuous through the interfaces,
the integrals involved in the evaluation of KSH;n

i;j [Eq. (11)] ex-
ist by means of the Cauchy principal value [39,59,60]. The in-
dexes m and d denote the summation performed over all the
metallic and all the dielectric domains, respectively. Note that
this formulation is correct only for periodic structures with
nontouching metallic domains. The matrix elements requiring
the integration of the periodic Green’s function or its gradient
are evaluated using a singularity subtraction technique ensur-
ing accurate numerical evaluation [40,45]. The submatrix F
corresponds to the symmetric product

Fi;j �
Z
∂VΩ

n

dSfdi �r� · f�r�dj ; (26)

and the elements of the source vectors b are given by [31,54]

b�1�;di � 1
2ε0

Z
SΩ
i

dS∇∥ · fdi �r�P⊥�r�; (27)

b�2�;di � 1
ε0
X
l

pl

Z
SΩ
i ∩S

Ω
l

dSfdi �r� · �n̂d × fdl �r��; (28)

where SΩ
i is the support of the RWG function fdi in the unit cell

and pl is the expansion coefficient of ∇∥P⊥ on the RGW func-
tion fdl [60]. Finally, the SH electric and magnetic fields scat-
tered by the periodic nanostructure are given by

ESH
m �r� �

X
i

− i2ωμm

Z
∂VΩ

m

dS0ḠSH
m �r0; r� · αSHi fmi �r0�

−

Z
∂VΩ

m

dS0�∇0 × ḠSH
m �r0; r�� · βm;SH

i fmi �r0�; (29)

HSH
m �r� �

X
i

− i2ωεm

Z
∂VΩ

m

dS0ḠSH
m �r0; r� · βm;SH

i fmi �r0�

�
Z
∂VΩ

m

dS0�∇0 × ḠSH
m �r0; r�� · αSHi fmi �r0� (30)

in the metallic domains and by

ESH
d �r� �

X
i

− i2ωμd

Z
∂VΩ

d

dS0ḠSH
d �r0; r� · αSHi fdi �r0�

−

Z
∂VΩ

d

dS0�∇0 × ḠSH
d �r0; r�� · δd;SHi fdi �r0�; (31)

HSH
d �r� �

X
i

− i2ωεd

Z
∂VΩ

d

dS0ḠSH
d �r0; r� · δd;SHi fdi �r0�

�
Z
∂VΩ

d

dS0�∇0 × ḠSH
d �r0; r�� · αSHi fdi �r0� (32)

in the dielectric domains. These four equations allow for the
computation of the SH electromagnetic fields at any point
in space.

If the discretized object completely fills the unit cell, a mesh
which is translation symmetric on opposite edges is required
in order to satisfy the continuity of both linear and SH surface
currents. Furthermore, the following periodic boundary con-
ditions are imposed on the surface currents [45]

Jn�r − t� � eik·tJn�r�; (33)

Mn�r − t� � eik·tMn�r�; (34)

JSHm;d�r − t� � eiK·tJSHm;d�r�; (35)

MSH
m;d�r − t� � eiK·tMSH

m;d�r�: (36)

Note again here that the Bloch vector K � 2k is associated
with the SH waves. If two edges are separated by a lattice vec-
tor, the associated expansion coefficients must be identical.
The RWG function associated with this edge is defined over
the existing border triangle inside the unit cell and translation
of the triangle is attached to the opposite discarded edges.
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4. NUMERICAL EXAMPLES
In this section, the numerical method described above is as-
sessed using two different experimental configurations. The
surface plasmon enhancement of SHG from a gold film is first
considered by computing the spectral dependence of the
reflected SH intensity. In the second example, the SHG from
L-shaped nanoparticle arrays is investigated demonstrating
that the computed SH fields fulfill the required symmetry
properties imposed by the sample geometry. Note that the
presented method focus on the nonlinear response of the
metal/dielectric interfaces but the SH signal from noncentro-
symmetric media can also be important for the design of non-
linear metamarials [34,61,62].

A. Surface Plasmon Enhancement of the Second-
Harmonic Generation from a Gold Film
Let us consider the SH reflected by perfectly flat gold slabs.
The slab thickness L varies from 30 to 50 nm. The upper part
of the slab is covered with glass and the other interface is a
gold/air interface. This sample geometry corresponds to the
Kretschmann configuration for excitation of surface plasmon
polaritons [63]. The mesh used for the computation in the case
of a slab with L � 50 nm is shown in Fig. 1(a). Note that the
SIE requires only the discretization of the scatterer surface,
which is composed of two 100 nm × 100 nm parallel squares
filling the unit cell entirely, mimicking an infinite slab between
two media [Fig. 1(a)]. The number of degrees of freedom
(DOF) is three times the number of edges in the mesh since
three unknowns are associated to a given edge (correspond-
ing to the expansion coefficients of the nonlinear surface cur-
rents) contrary to the linear problem for which the DOF is
twice the number of edges [40,64]. For this problem, the
number of DOF per unit area is 4 × 10−2 DOF∕nm2 at the fun-
damental wavelength and 6 × 10−2 DOF∕nm2 at the SH wave-
length ensuring the numerical convergence at both steps.
Note that a finer mesh is in general required for an accurate
evaluation of the SH problem than for the linear one. The in-
cident wave is a transverse magnetic (TM) plane wave at 45°
incidence. The dielectric constants of gold are extrapolated
from the experimental data [65]. The tangential component
of the fundamental electric field evaluated 1 nm below the
glass/gold interface is shown as a function of the incident
wavelength in Fig. 1(b). An enhancement of the electric field
close to the interface is clearly observed at the plasmon res-
onances. The influence of the slab thickness on the plasmon
resonance wavelength and width is in excellent agreement
with T-matrix computations (not shown). Indeed, the surface
plasmon resonance redshifts as the slab thickness decreases.
Let us now consider the SH reflected by the gold slab. For
simplicity, only the component χ�2�⊥∥∥ of the nonlinear polariza-
tion is taken into account. Indeed, even if this component is
not the largest one for a gold interface [24], surface plasmon
resonances lead to a strong enhancement of the tangential
component of the fundamental electric field just below the
glass/gold interface [Fig. 1(b)]. The purpose of the present
part is not to determine the origin of the SHG from such a gold
slab but to verify the validity of our formulation [24].

Figure 1(c) shows the reflected SH intensity computed as a
function of the incident wavelength. The SH intensity is evalu-
ated in the far-field 50 μm above the gold slab, in the glass
medium. Note that the contribution of both glass/gold and

gold/air interfaces are taken into account in the computation
of the SH intensity. The spectral dependence of the SH
intensity is related to that of the tangential component of
the fundamental electric field. Indeed, the SH intensity is
proportional to the nonlinear polarization squared, i.e., to
jE4

∥j in the present case, as was also observed experimentally
[66–68]. Comparing Figs. 1(b) and 1(c), we observe that this

Fig. 1. (a) Sketch of the geometry used for the computation of the
SHG from a gold slab of thickness L. The upper medium is made of
glass and the lower medium is air. The incident wave is a TM plane
wave at 45° incidence propagating in the glass medium. The mesh
used for the computation is shown in the inset. (b) The tangential
component of the fundamental electric field evaluated using
Eq. (14) 1 nm below the glass/gold interface as a function of the in-
cident wavelength for different slab thicknesses L. The amplitude of
the electric field is normalized to the amplitude of the incident electric
field. (c) Reflected SH intensity as a function of the fundamental wave-
length for the same gold slab, evaluated in the far-field 50 μm above
the slab, in the glass medium.
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condition is also fulfilled in our calculation. Computations
considering the component χ�2�⊥⊥⊥ of the nonlinear polarization
have also been performed (data not shown). An increase of
the reflected SH intensity is also observed in that case, since
the normal component of the fundamental electric field in-
creases. These results demonstrate that the numerical scheme
proposed in this article for the computation of the SHG from
periodic structures provides spectral dependences in agree-
ment with the underlying physics. In the following, the polari-
zation dependence of the SHG from nanoparticle arrays is
considered.

B. Second-Harmonic Generation from L-Shaped
Gold Nanoparticle Arrays
The SHG from periodic arrays of metallic nanoparticles and
metamaterials has been widely studied in the past [14–19,22].
In particular, Kauranen et al. recently demonstrated that the
nonlinear optical response of L-shaped nanoparticle arrays
strongly depend on the ordering of the constituting nanopar-
ticles [22]. This dependence is explained by polarization-
dependent plasmonic resonances modified by long-range
coupling. As an example, they compared the second-order
nonlinear optical response of two samples with minor
changes in the nanoparticle organizations [Figs. 2(a) and
2(b)]. The two considered arrangements are called sample
A and sample B. The nanoparticle’s arm length and width
are 250 and 100 nm, respectively. The nanoparticle thickness
is 20 nm. The period is 500 nm along the u and v directions.
Contrary to the experiments reported by Husu et al. [22], all
the computations presented in this part are performed in vac-
uum. Let us use the numerical method developed in this paper
to compute the SH properties of these two samples. For all the
results presented in this section, only the component χ�2�⊥⊥⊥ of
the nonlinear surface polarization is considered, since it is the
dominant one in the case of SHG from metallic nanoparticles
[25]. The fundamental wavelength λ is fixed at 1060 nm. As a
consequence, the dispersion of χ�2�⊥⊥⊥ can be neglected in the
following and this tensor element is chosen equal to one. The
amplitude of the incident wave was also fixed to one and
the computed SH intensities are then relative to each other.
Figures 2(c) and 2(d) show the SH intensity as a function
of the incident polarization for a SH signal polarized along
the vector v (squares) and along the vector u (circles). The
SH intensity is evaluated at 50 μm from the sample, in
the forward direction. As reported by Husu et al., the SH in-
tensity strongly depends on the sample geometry [22]. The
u-polarized SH wave is considered first. For both samples,
the SH intensity vanishes for u- and v-polarized incident waves
and the SH intensity is maximum for intermediate polarization
states. This behavior is explained by the mirror symmetry of
the nanoparticle organization, which limits the number of
nonvanishing tensor elements [69]. Indeed, the macroscopic
response of the sample can be described by a nonlinear
response tensor Ajkl linking the incoming fundamental wave
with the outgoing SH wave [69]

Ej�2ω� �
X
k;l

AjklEk�ω�El�ω�: (37)

Due to the mirror plane in the v-direction, the tensor elements
with odd number of index u must vanish [69]. The results

obtained with our method clearly fulfill this selection rule
for both sample A and B (Fig. 2).

Now we turn our attention to the v-polarized SH wave. Con-
trary to the u-polarized SH wave, the polarization of the SH
signal depends on the sample geometry. Indeed, the SH inten-
sity from sample A is maximum for a v-polarized incident
wave while the SH intensity from sample B is maximum for
a u-polarized incident wave. In order to understand the rela-
tion between the sample geometry and the SHG, the near-field
distributions at both the fundamental and SH wavelengths
are shown for sample A (Fig. 3) and sample B (Fig. 4).
Figures 3(a)–3(d) and 4(a)–4(d) show the local field intensity
at the fundamental wavelength evaluated at the middle of the
nanoparticles (z � 0 nm) for the u and v components. Consid-
ering all the different input/output polarization configurations
and comparing the near-field properties at the fundamental
wavelength and the far-field SH intensity for each couple of
polarization states, it is obvious that the SHG is minimum

Fig. 2. (a) and (b) Sketch of the nanoparticle array sample A and
sample B discussed in the text. The nanoparticle arm length and width
are 250 and 100 nm, respectively. The nanoparticle thickness is 20 nm.
The unit cell dimension is 1 μm × 1 μm. Computed SH intensities as a
function of the incident polarization for (c) sample A and (d) sample B
considering the SH signal polarized along the vector v (squares) and
along the vector u (circles).
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when the hotspots on a given nanoparticle of the sample are
facing hotspots on another nanoparticle, see Figs. 3(a)–3(c)
and Figs. 4(a) and 4(b). Indeed, a strong fundamental near-
field intensity does not necessarily lead to a high SH signal
since SHG is a coherent process and destructive interferences
may occur in the far-field region. This phenomenon was re-
ported in the case of SHG from symmetric nanoantennas. De-
spite an enhancement of the fundamental intensity in
nanogap, the corresponding SH intensity is weak due to de-
structive interferences between out-of-phase nonlinear
sources [8]. As previously mentioned, the SH response in gold
is dominated by the tensor element χ�2�⊥⊥⊥ and the nonlinear
polarization is then perpendicular to nanoparticle surfaces.
As a consequence, the contributions of facing electromagnetic
hotspots to the scattered SHwave are inclined to cancel out. If
destructive interferences are sometimes predicted by the
mirror symmetry of the sample [see Figs. 3(a) and 3(b) and
Figs. 4(a) and 4(b)], they could also occur in other cases
due to specific fundamental near-field distribution, as visible
in Fig. 3(c) for the case of the v-component of the electric
near-field. On the other hand, the far-field SH intensity is

maximum when the hotspots on a given nanoparticle are
not facing hotspots on the neighboring nanoparticles, see
Figs. 3(d), 4(c), and 4(d). Indeed, destructive interferences
are not expected in the latter case. Let us finally note that
for experimental measurements, nanodefects in the fabricated
structures can produce some discrepancy between experi-
mental results and theoretical predictions [21]. In conclusion,
while symmetry selection rules provide insight into the
nonlinear optical properties of periodic nanoparticle arrays,
these results clearly demonstrate that complete electromag-
netic computations are required to fully predict and under-
stand them.

5. CONCLUSIONS
In summary, a surface integral formulation for SHG from peri-
odic metal/dielectric nanostructures has been presented. The
linear optical response was first computed at the fundamental
wavelength and the nonlinear polarization, i.e., the SH source,
and was then evaluated at the metallic interfaces. A surface
integral formulation for SHG was then introduced considering
the periodicity of the SH electromagnetic wave. In order to
ensure accurate results even at resonant conditions, both

Fig. 3. Near-field distributions of fundamental intensities evaluated
for (a) and (b) the u-component, and (c) and (d) the v-component of
the electric field computed for sample A considering (a) and (c) a
u-polarized, and (b) and (d) a v-polarized incident wave. The same
color scale is used for all the plots but some have been multiplied
by 2 for clarity. Near-field distributions of the SH intensity computed
for sample A considering (e) a u-polarized and (f) a v-polarized inci-
dent wave shown in a logarithmic scale. The SH intensity in (e) has
been multiplied by 10 for clarity.

Fig. 4. Near-field distributions of fundamental intensities evaluated
for (a) and (b) the u-component, and (c) and (d) the v-component of
the electric field computed for sample B considering (a) and (c) a
u-polarized, and (b) and (d) a v-polarized incident wave. For compari-
son, the color scale is identical to the one in Figs. 3(a)–3(d). Near-field
distributions of the SH intensity computed for sample B considering
(e) a u-polarized and (f) a v-polarized incident wave shown in a
logarithmic scale.

2976 J. Opt. Soc. Am. B / Vol. 30, No. 11 / November 2013 Butet et al.



the fundamental and SH surface currents were expanded us-
ing RWG functions and a PMCHWT formulation was applied.
The evaluation of the periodic Green’s functions was
performed by Ewald’s method in order to reduce the overall
computation time. The accuracy of the proposed method was
assessed using two experimentally-relevant cases. First, the
surface plasmon enhancement of SHG from a gold film was
considered showing that the computed spectral response is
in agreement with phenomenological predictions. As a second
example, the SHG from L-shaped nanoparticle array was
investigated in detail, demonstrating that the computed SH
fields fulfill the required symmetry properties imposed by
the sample geometry. The proposed method is versatile and
can be used to investigate the second-order nonlinear optical
response for nanoparticle arrays [70,71], metallic subwave-
length hole arrays [72,73], and metamaterials [74–76]. Further-
more, the proposed numerical scheme paves the way for a
deeper investigation of the SHG driven by long-range surface
plasmon polaritons and the impact of the mode symmetry
[77–79]. The proposed numerical scheme can also be ex-
tended to the computation of SHG from plasmonic systems
embedded in multilayered systems using suitable Green’s
functions [80,81].
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