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1. Introduction 

Light scattering by nanostructures and nanoparticles is one of the most promising emerging 
fields in nanoscience, since it paves the way for many important applications in several areas 
of biology and medicine (cancer treatments, nanobiosensors, molecular orientation sensing, 
etc) [1,2] as well as in other technologies such as efficient solar cells, high resolution 
microscopy, and optical communications [3–5]. The performances of these devices and 
techniques can be improved by controlling the optical properties of the nanostructures or 
nanoparticles. For example, the excitation of electromagnetic resonances produces an 
important enhancement of the scattered intensity which can be used to enhance spectroscopic 
signals [6], or to destroy cancerous cells [7,8]. 

Quite a few years ago, M. Kerker et al. proposed that light scattered by a dipole-like 
particle with specific optical constants can exhibit a directional behaviour [9]. In particular, no 
scattering occurs in either the backward or forward directions. We have extended this work 
and demonstrated that a minimum in the scattered light can be observed, under similar 
conditions for the optical constants, for finite sized particles and for scattering angles different 
from 0° and 180° [10]. Additional work has focused on the design of nanostructures able to 
redirect scattered light [11]. 

The control of the optical properties of structures and, in particular, nanostructures is the 
motivation for developing, designing and manufacturing metamaterials. These new materials 
are built up from different internal nanostructures in a way such that effective optical 
constants are generated. Changing the density, size, shape or composition of the internal 
nanostructures, modifies the effective optical constants [12]. Efforts in this field have focused 
on obtaining metamaterials in an as wide as possible part of the electromagnetic spectrum, 
with a current push toward optical frequencies [13,14]. The unusual scattering properties of 
metamaterials enable exciting applications such as hyperlensing [6], superlensing [15,16] or 
electromagnetic cloaking [17]. Also, different configurations of these structured-materials are 
able to produce simultaneously negative values for the electric permittivity (ε) and the 
magnetic permeability (µ) [18]. Such materials are called Double-Negative (DNG) and exhibit 
extremely interesting features. When ε<0 and µ<0, the phase of the wave moves in the 
opposite direction from the energy flow, hence the name “left-handed” to describe these 
materials; light refraction in these media is on the “left” side instead of the usual “right” side, 
this effect is the basis for the perfect lens [15]. 

In a previous work we have studied light scattered by very small particles with double-
negative materials properties [19]. Specific resonances can be excited in these systems 
(dipolar and quadrupolar resonances, both electric and magnetic), leading to a strong 
enhancement of the scattered intensity. In particular, materials with permittivity and 

permeability such that ε = µ = −2 produce the simultaneous excitation of electric and 
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magnetic dipolar resonances, producing dramatic values for the scattered intensity. This pair 
of optical parameters also fulfils Kerker’s conditions [9] for zero-backward and zero-forward 
light scattering. The first effect can be observed in this system, but the zero-forward light 
scattering does not appear due to the strong enhancement caused by the dipolar resonances. 

For this reason, the pair of optical constants (ε = µ = −2) represents an exception for the zero-
forward condition proposed by M. Kerker et al. [20]. 

Unfortunately, manufacturing a nanoparticle with simultaneously ε and µ negative and 
equal to -2 is beyond today's technology. However, C. Holloway et al. have demonstrated that 
an array of magnetodielectric particles embedded in a matrix can exhibit double-negative 
optical constants [18]. These authors further studied the reflection and transmission properties 
of these structures [21]. Following these works and the possibility to generate nanoparticles 
and nanostructures that present magnetic plasmonic resonances [22,23], we present in this 
paper a theoretical study of an array composed of resonant electric and magnetic particles that 
exhibit a double-negative behaviour, including a minimum backward scattering amplitude, 
that we analyse in detail as a function of different geometrical parameters of the array. 

The paper is organized as follows: after a brief review of the light scattering theory and the 
approximations that we have used in section 3, we consider and analyze the polar distributions 
of the light scattered by different square arrays composed by four particles, electric and/or 
magnetic, as function of the geometrical characteristics. Design rules are obtained from those 
small systems. In sections 4 and 5 we use these rules to design and study arrays with a larger 
number of particles, as well as additional layers. The last section summarizes the main results 
of the paper. 

2. A short review of coupled electric and magnetic dipole method 

Light scattering by a homogeneous, isotropic and spherical particle with radius R illuminated 

by a linearly polarized plane wave traveling in the z-direction [ (0,0, ) (0,0, / )k k cω= =
�

, k 

being the wavenumber in the surrounding medium and ω the angular frequency] can be 
analyzed using the Lorenz-Mie theory [24]. If the particle is very small compared to the 
incident wavelength (λ), its refractive index is not very large and it is isolated of far from other 
particles (D>>R), light scattering obtained by the Mie theory can be approximated using only 
the dipolar terms of the multipolar expansion. This approximation is called the Dipolar 
Approximation (DA) [25]. Under this approach, the polarizabilities of the particle can be 
expressed, using the Clausius-Mossotti relation [24], as 
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In Eq. (1) αΕ and αΗ are the electric and magnetic polarizabilities, εP and εm the electric 
permittivity of the particle and the surrounding medium and µP and µm the magnetic 
permeability of the particle and the surrounding medium, respectively. As can be seen in Eq. 
(1), in the usual case where εm = µm = 1, the scattered intensity by the particle presents a 

resonance when εp and/or µp is equal to -2 [19]. From Eq. (1), we can write the electric ( p
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) 
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) moments as 
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where 0E
�

and 0H
�

are the electric and magnetic incident fields and ε0 is the vacuum electric 

permittivity. The scattered electromagnetic fields can be calculated easily from Eq. (2) [26]. 
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This method has been generalized to calculate the scattered intensity by a group of very small 
particles, taking into account the possible interactions between them. This approximation for 
the scattering by agglomerates is known as Coupled Electric and Magnetic Dipole Method 
and was proposed by G. Mulholland et al. [27]. This method considers each particle as 
composed of two dipoles, one electric and one magnetic, each characterized by an electric and 
a magnetic polarizability according to Eq. (1). The incident electric and magnetic fields 

( 0E
�

and 0H
�

in Eq. (2)) at each particle are the sum of the incident electromagnetic field 

( pwE
�

and pwH
�

) plus the contributions from the other particles. Hence, the electric and 

magnetic fields at the ith particle caused by the jth particle are written as 
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where jin
�

 is the direction vector from the jth particle to the ith one, and the coefficient aij, bij 

and dij are given by [27] 
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where rij is the distance between the two considered particles (i and j) and k = 2π/λ. Then, the 
total incident field at the particle ith (sum of the incident wave plus Eq. (3)) can be derived, as 
it is explained in Ref [27], in the following way 
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��   (5) 

M and I being the matrix that contains the particles interactions given by coefficients aij, bij 
and dij and the identity one, respectively. Once known the total local fields, we can propagate 
it, using the expression of the dipolar moments (Eq. (2)), in order to obtain the scattered field. 

This method agrees with Mie calculations very well for the light scattered in the far-field 
by very small particles [27]. Furthermore, this approach needs only very short computation 
times, which makes it the method of choice for the systems studied in this paper. 

At this point it is important to remark that the dipolar approximation considered for our 
calculations do not fulfilled the Optical Theorem. The non-unitarity of it forces to use other 
expressions to calculate the extinction efficiency [28]. A small correction in the 
polarizabilities, that is the radiative correction [29], can be considered to fulfill the Optical 
Theorem. However, in our case, we have considered optical properties near the resonant 

conditions (ε = −2, µ = −2) for which the radiative correction is negligible. 

3. Description of the system: geometrical and optical conditions 

Using the Coupled Electric and Magnetic Dipole Method (CEMD), described in the previous 
section, we now analyze the scattering patterns for an aggregate of four spheres forming a 
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square. Two types of particles are considered, the electric ones with an electric permittivity (ε) 
equal to -2.01 and a magnetic permeability µ = 1 and the magnetic ones with ε = 1 and µ = 
−2.01. These values are chosen because the electric and the magnetic plasmon resonances are 
still excited and a very high scattered intensity is observed, but we do not produce infinite 
values for the electric and magnetic polarizabilities, as it would happen if ε or µ were equal to 
-2. Similar results, but with much smaller values for the scattered intensity, can be obtained 
for arbitrary values for ε and µ, under the condition that the electric permittivity of the electric 
particles is equal to the magnetic permeability of the magnetic ones. We have used the 
diagonal of the square to determine the distance between particles. In this case, it is fixed to  
D = 0.5λ, while the radius of the particles is R = 0.01λ. As can be seen in Fig. 1, different 
combinations of electric and magnetic particles are analyzed. 

The system is illuminated by a plane wave linearly polarized. Both polarizations, with the 
electric field parallel (P polarization) or normal to the scattering plane (S polarization), are 
considered. The position of the array of nanoparticles is considered in the scattering plane (left 
column of Fig. 1) or in a plane normal to the incident direction (right column).When only one 
particle – either electric or magnetic – is different from the rest of the array (Fig. 1a) and 1b)), 
the exact location of this different particle does not produce any remarkable changes in the 
scattering pattern. For this reason, we only report here results produced for one specific 
location of that different particle. 

 

Fig. 1. The different array configurations under study. The dark particles are electric (ε = 
−2.01, µ = 1) and the yellow ones are magnetic (ε = −2.01, µ = 1). Both particles placed on the 
scattering plane (left column) or on a normal plane (right column) are considered. The particle 
radius is R = 0.01λ and D = 0.5λ. 
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In Fig. 2, we show the scattering patterns corresponding to the different geometries 
indicated in Fig. 1. Some interesting features can be observed. In particular, the scattered 
intensity presents minima at some scattering directions for specific geometries cases. Let us 
focus our attention to the cases d) and f) in Fig. 2. These configurations present a sharp 
minimum in the backward direction and the shape of the scattering pattern is very similar to 

that for an isolated particle with ε = µ = −2.01 [20]. This is illustrated in Fig. 3: these two 
configurations are composed by four particles (two electric and two magnetic) on a plane 
normal to the incident direction and the magnetic particles are in the corners of the same side 
and the electric ones in the other side (Fig. 1d) or the electric and magnetic particles are 
placed alternatively in the square corners (Fig. 1f). 

 

Fig. 2. Scattering patterns, for both incident polarizations, corresponding to the different arrays 
shown in Fig. 1. 

Hence, the electric and magnetic contributions in those cases are compensated in the 
backward direction, producing a minimum in the field scattered in that direction. Also, as the 
contribution to the light scattering is similar for the two types of particles, the polar plots are 
similar for both polarizations. This result indicates that the array configurations described in 
Fig. 1d) and 1f) scatter like a double negative particle with an electric permittivity equal to 
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that of the electric particles and a magnetic permeability equal to that of the magnetic 
particles. This result is similar to that presented by C. Holloway et al. [18] but with the 
difference that the distributions in Fig. 2 exhibit a similar behaviour to the special and very 

important case where ε = µ = −2.01, with a double resonant behaviour and a scattering 
minimum in the backward direction. 

 

Fig. 3. Comparison of the scattering patterns for an isolated particle (R = 0.01λ) with optical 

constants (ε = µ = −2.01) and for an array of electric (ε = −2.01, µ = 1) and magnetic (ε = 1, µ 
= −2.01) particles (R = 0.01λ) with a spatial distribution indicated in Fig. 1f). Also the 

scattering patterns for an electric (ε = −2.01,µ = 1) and a magnetic (ε = 1, µ = −2.01) dipole 
has been included. The incident wave is polarized with the electric field parallel to the 
scattering plane (P polarization). 

The scattering behaviour for both cases described in Fig. 1d) and 1f) changes when the 
distance between the particles in the array is changed. In Fig. 4, respectively 5, we plot the 
polar distribution of the scattered intensity for the geometrical configurations shown in Fig. 
1d), respectively 1f), for several values for the square diagonal D. 

While the alternate-configuration (Fig. 1f) exhibits a stable minimum of the scattered 
intensity in the backward direction when the distance changes, the other configuration (Fig. 
1d) does not present this minimum for short distances and, for large distances, the angular 
range for the minimum scattering is extremely small. Hence, in the following, we only 
consider the geometrical configuration described in Fig. 1f) which we call “alternate” 
configuration. In Fig. 5, it can be seen that the inter-particle distance produces a slight change 
in the angular range at which the minimum scattering is observed. For the two shortest and 
two largest distances, the minimum backscattering range is around 30° centred on 180°, but 
for a distance equal to the incident wavelength, this range is increased to 60°. 
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Fig. 4. Polar distribution of light scattering by an array similar to that described in Fig. 1d) for 
several distances between the particles. Both polarizations, parallel (P) and perpendicular (S) to 
the scattering plane, are considered. The distances are expressed in wavelength units. 
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Fig. 5. Polar distribution of light scattering by an array similar to that described in Fig. 1f) for 
several distances between the particles. Both polarizations, parallel (P) and perpendicular (S) to 
the scattering plane, are considered. The distances are expressed in wavelength units. 

Alignment tolerances are probably the main challenge that will arise in a future 
experimental implementation of this system. In order to analyze this issue, we have 
considered in-plane rotations of the array around an axis parallel to the incident direction 
which crosses the system through the centre of the square. In Fig. 6 we plot, using semi-
logarithmic axes, the scattered intensity for such different systems with different rotations of 
the array (see inset). The incident light is polarized with the electric field perpendicular to the 
scattering plane (S polarization) and the diagonal of the square is D = 0.25λ. As the electric 
and magnetic contributions are compensated in these configurations, S and P polarizations 
produce similar results. It can be seen that the minimum backscattering still appears for any 
rotation of the system. This means that the observation of the minimum in the back-scattered 
light is independent of the position of the array in the normal plane. Only small differences are 
observed for scattering angles around 90° and 270°. These differences are due to the different 
environment that the electric field sees at those angles. For example, when the rotation angle 
is 0°, the electric field doesn’t see any particle in scattering plane at 90° or 270°, but under a 
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45° rotation, the incident electric field sees an electric particle at these angles (see inset in Fig. 
6). 

 

Fig. 6. Scattered intensity for different rotations of the original array around an axis parallel to 
the incident direction. The incident wave has S polarization. The rotation of the system is 
described in the inset. 

3. Extensions of the alternate-array 

The particle configuration described in the previous section can be used as cell to generate a 
larger composed from electric and magnetic particles that follow the arrangement described in 
Fig. 1f). As an example, we analyse an array with 16 electric and magnetic particles placed 
alternatively, as shown in Fig. 7. As before, the system is illuminated with a linearly polarized 
plane wave and both polarizations (perpendicular and parallel to the scattering plane) are 
considered. Also, as in the previous case, we use the diagonal of the square as a geometrical 
parameter to characterize the configuration. 

The light scattering patterns for the geometry in Fig. 7 and for different distances between 
the particles is shown in Fig. 8. We observe that the sharp minimum in the backward scattered 
light is still present for every particle distance. Also, as before, the angular range at which the 
minimum of the scattered intensity in the backward direction can be observed slightly depends 
on the particle distances. For distances equal to λ/2 and λ the minimum is observed in a range 
of 120° around 180°, while this range decreases to 60° for the other geometries. The larger 
number of particles produces a stronger diffraction interaction between the particles and leads 
to a larger number of lobes in the scattering patterns than when we considered 4 particles 
(compare Figs. 5 and 8). 
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Fig. 7. Schematic of an array with 16 electric (dark) and magnetic (yellow) nanoparticles (R = 
0.01λ) following the alternate configuration. 

 

Fig. 8. Scattering patterns, for both polarizations, corresponding to the 16-particle array 
configuration shown in Fig. 7. The distances between particles D are in wavelength units 

#124989 - $15.00 USD Received 3 Mar 2010; revised 29 Mar 2010; accepted 1 Apr 2010; published 28 Apr 2010
(C) 2010 OSA 10 May 2010 / Vol. 18,  No. 10 / OPTICS EXPRESS  10011



In Fig. 9, we show in a semi-logarithmic plot the intensity scattered by the array of 16 
particles with D = 0.25λ, as a function of the scattering angle and for several rotations of the 
system around an axis parallel to the incident direction. As was the case for the smaller array, 
any rotation of the configuration does not produce a remarkable change in the backward 
direction, and the minimum in that direction still appears clearly. This insensitivity to the 
structure alignment is a very important and helpful characteristic for the experimental design 
and future applications of this kind of systems. For the large array, the scattered intensity is 
less sensitive to any rotation of the system than the 4-particles array; a difference can only be 
observed for scattering angles in the range [90° <θ <160°]. 

 

Fig. 9. Scattered intensity for an alternate array of 16 particles (D = 0.25λ) a function of the 
scattering angle and for different rotations of the system around an axis parallel to the incident 
direction. The incident wave is considered with S polarization. 

The larger an array, the higher the risk to position a particle inaccurately. The physical 
behaviour exploited in this work is based on the fact that the electric and magnetic 
contributions to light backscattering by different particles are compensated. One placement 
error in the array, e.g. changing one electric particle with a magnetic one or vice versa, 
displacing one of the particles, or even removing one or more particles from the array, lead to 
the fact that this compensation disappear. As an example, in Fig. 10, the scattered intensity is 
plotted as a function of the scattering angle for an ideal array of 16 particles and for some 
possible experimental errors: a) on the particle’s properties, b) on the position of the particles 
and even c) when one or more particles are removed from the array. 

The results in Fig. 10 indicate that a simple error in the array pretty much destroys the 
minimum in the backward scattering. The fact that the scattering for both polarizations is 
equal also disappears when an error is included in the array (results are only shown for one 
polarization in Fig. 10 for space reasons). 
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Fig. 10. Comparison of the scattered intensity for a 16-particle array with and without placing 
errors. Different kinds of errors are considered a) changing an electric particle for a magnetic 
one, b) displacing one of the particles of the array and c) eliminating one or more particles of 
the array. P- polarization is used. The distance between the particles is D = 0.25λ. 

Another very interesting extension of the system consists in considering more than one 
layer [30]. This kind of array can be produced by stacking several layers with similar or 
different configurations. In this work, we consider two cases: two arrays of 16 particles one 
above the other with a spacing d, and either both with a configuration equal to that shown in 
Fig. 7 or with complementary configurations (at the same position of a magnetic particle in 
the bottom layer, there is an electric one in the top array and vice versa). A typical result is 
shown in Fig. 11 where we report the scattering intensity, in semi-logarithmic scale, as a 
function of the scattering angle for the two-equal-arrays case and for S polarization. As can be 
seen the absence of backscattering is still observed in this case. Even when the two layers are 
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different, the electric and magnetic contributions are compensated and the scattering pattern is 
very similar to that shown in Fig. 11. The minimum of the scattered intensity in the backward 
direction is independent on the inter-particle (D) and inter-layer (d) distances. The influence 
of the distance is observed for other scattering angles because more interferential lobes appear 
when the distance increases. This geometry is also independent to the polarization, and a P 
polarization illumination produces the same results. 

 

Fig. 11. Scattered intensity as a function of the scattering angle for a system composed of two 
arrays like in Fig. 7, on top of each other. The incident field is S polarized and different 
distances between the particles (D) and layers (d), expressed in wavelength units, are 
considered. 

In a previous work [10] we have analyzed the size effects on the directional scattering 
behavior for nanoparticles with electric and magnetic optical properties fulfilling Kerker’ 
conditions. In that work, we concluded that the minima in the scattered intensity in the 
backward or forward direction depend on the particle size. As the radius R increases, the 
minimum is less pronounced and the pairs (ε,µ) at which it appears change slightly. Since the 
proposed array behaves as one of those particles, we can suppose that the influence of the size 
on the scattering patterns of the array will be similar and, as particles of the array become 
larger, the minimum in the scattered intensity at backward direction becomes less abrupt. 

5. Conclusions 

Over the last years, the interest in special scattering properties and in new metamaterials has 
increased exponentially, opening new and interesting applications in several fields, including 
medicine, technological industry or communications. Recently, plasmonic magnetic particles 
have been developed experimentally [22] but in spite of important efforts in the design and 
manufacturing of metamaterials, it is not yet possible to obtain nanoparticles with both 
electric and magnetic properties negative and resonant. 

In this work, we overcome this limitation by proposing a geometrical configuration 

consisting of an array of electric (ε = −2.01, µ = 1) and magnetic (ε = 1, µ = −2.01) 
nanoparticles. Such an array presents similar scattering properties to those of an isolated 

particle of the same radius with double negative optical constants (ε = µ = −2.01). The light 
scattered by a particle with these optical constants exhibits extremely interesting features: a 
double dipolar resonance, one electric plus one magnetic, and a minimum in the backscattered 

#124989 - $15.00 USD Received 3 Mar 2010; revised 29 Mar 2010; accepted 1 Apr 2010; published 28 Apr 2010
(C) 2010 OSA 10 May 2010 / Vol. 18,  No. 10 / OPTICS EXPRESS  10014



intensity. We have demonstrated that for a specific geometrical configuration called 
“alternate” configuration, a minimum backscattering can be observed for an array of particles 
including a few or a large number of particles. This minimum backscattering is independent of 
the inter-particle distance and of any rotation of the array in the plane, which should make its 
fabrication very robust. In addition, the lack of scattered intensity in the backward direction 
persists, even when more than one layer is considered. 

Since double-negative materials are still difficult to fabricate nowadays, we believe that 
the structures investigated in this publication can propose a feasible alternative in order to 
generate materials with a double-negative behavior to develop new and interesting devices, 
techniques or treatments based on their unusual scattering properties. 
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