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This paper discusses recent theoretical efforts to develop a general and flexible method for the calculation of
the field distributions around and inside complex optical systems involving both dielectric and metallic mate-
rials. Starting from the usual light-matter coupling Hamiltonian, we derive a self-consistent equation for the
optical field in arbitrary optical systems composed ofN different subdomains. We show that an appropriate
solving procedure based on the real-space discretization of each subdomain raises the present approach to the
rank of an accurate predictive numerical scheme. In order to illustrate its applicability, we use this formalism
to address challenging problems related to nonradiative energy transfers in near-field optics. In particular, we
investigate in detail the detuning of a microresonator probed by a near-field optical probe.
@S1063-651X~96!01911-3#

PACS number~s!: 42.25.2p, 61.16.Ch, 02.30.Tb, 02.60.Nm

I. INTRODUCTION

While the theory of the interaction of optical electromag-
netic waves with macroscopic or microscopic objects is now
well established, our theoretical knowledge on the scattering
of light by mesoscopic systems~i.e., of size comparable to
the wavelength! remains more limited. Since a growing num-
ber of experimental situations involve simultaneously meso-
scopic and nanoscopic systems, incomplete information on
the mesoscopic range negatively affects our understanding of
the optical interaction at the nanoscale. In particular, the rap-
idly developing research on subwavelength surface optics
~scanning near-field optical microscopy, ultrafast optoelec-
tronic devices! calls for accurate theoretical frameworks able
to account for nonradiative electromagnetic phenomena. A
numerical method for solving Maxwell equations is needed
because both geometries and dielectric responses of typical
mesoscopic systems display a high degree of complexity.
However, numerical methods traditionally used in electrody-
namics are not well suited for the study of mesoscopic struc-
tures. Cumbersome procedures appear to be uncertain and
cannot always produce reliable results. The main origin of
these problems can be attributed to the crucial role played by
the evanescent components of the field in the near-field zone
close to mesoscopic scatterers. In complete analogy with the
tunnel effect for electrons, these evanescent components can
lead to optical tunnel effects. In the mesoscopic range, the
accurate treatment of evanescent waves requires one to deal
carefully with the electromagnetic boundary conditions at

each interface and to include appropriate dielectric re-
sponses.

Recently, several variants of electromagnetic scattering
theory based on Green’s functions were applied successfully
to the modelization of near-field optical phenomena@1–3#.
Although Green’s functions may be expanded in Fourier or
multipoles series, most of these variants preferred a discreti-
zation in direct space. Indeed, experimentally relevant near-
field optical phenomena occur in highly spatially localized
regions, which require a prohibitive number of Fourier com-
ponents for an accurate treatment in Fourier space. Let us
note that this Green’s formalism has been used for a long
time in quantum scattering problems. In electrodynamics, it
has also been exploited extensively to solve engineering
problems involving external sources of currents, where the
solution in the source region was not required@4#. The ap-
plication to the study of phenomena where the solution in the
source region~such as in near-field optics! is of primary
importance was hindered by the apparently divergent nature
of the Green’s dyadic in the source region. As discussed by
Yaghjian, this divergence is related to depolarization effects
and can be handled in a perfectly reliable manner for three-,
two-, and one-dimensional systems@5#.

The main difficulty in formulating a predictive theory
aimed at studying scattering and light confinement effects
generated around mesoscopic structures lies in the fact that
any approximation cannot be reasonably applied. Actually, a
faithful description of the field structure far away as well as
in the immediate proximity of the particles needs the inclu-
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sion of both retardation effects and multiple reflections be-
tween each scatterer.

This paper outlines how thefield susceptibility Green’s
function technique deals efficiently with these different
points. More precisely, starting from a light-matter coupling
Hamiltonian, we shall present in Sec. II a brief overview of
the field susceptibility Green’s function technique, which al-
lows one to obtain general solutions of Maxwell’s equations
through a time-dependent vector Lippmann-Schwinger equa-
tion. This real-space approach is of course a fundamental
advantage when dealing with nonperiodic arrangements
composed of different mesoscopic structures of arbitrary
shape and dielectric constant. In addition, we show that the
dimensionality of the physical system under consideration
leads to a specific set of equations able to reduce the discreti-
zation to domains associated with each interacting structure.
From this flexible framework, we will address, in Sec. III,
several challenging issues related to nonradiative energy
transfer resulting from the near-field optical interaction be-
tween microresonators and dielectric probes similar to those
used in near-field optics. In particular, we will investigate in
detail the evolution of the complete optical field pattern as a
function of the geometrical configuration. Finally, these re-
sults will be discussed in relation to recent experimental
works.

II. QUANTUM DERIVATION FOR SCATTERED OPTICAL
FIELD IN COMPLEX SYSTEMS

A. Time-dependent Lippmann-Schwinger equation

Let us consider a three-dimensional system of arbitrary
shape and composition perturbed by an external optical field
E0(r ,t). The light-matter coupling Hamiltonian is given by
@6#

H~ t !52E dr @E0~r ,t !1E~r ,t !#•P~r ,t !, ~1!

whereE(r ,t) andP(r ,t) are, respectively, the field and po-
larization operators for the considered material system. In the
interaction representation, these operators read

E~r ,t !5exp@ iH 0t/\#E~r !exp@2 iH 0t/\# ~2!

and

P~r ,t !5exp@ iH 0t/\#P~r !exp@2 iH 0t/\#, ~3!

whereH0 is the Hamiltonian for the unperturbed system.
Assuming that the wave functions of the different elements
of the system are decorrelated, we are authorized to apply the
time-dependent Hartree approximation, which supposes that
each part of the system moves under the combined effect of
the external force and the average displacements of the other
parts of the system@7,8#. The linear responses corresponding
to E(r ,t) and P(r ,t) are obtained from the perturbation
theory

E~r ,t !5^E0~r ,t !1E~r ,t !&

5E0~r ,t !1E
2`

t

dt8E dr 8S~r ,r 8,t2t8!•^P~r 8,t8!&

~4!

and

P~r ,t !5^P~r ,t !&

5E
2`

t

dt8E dr 8x~r ,r 8,t2t8!•^E0~r 8,t8!1E~r 8,t8!&.

~5!

In these coupled equations, the two dyadic tensors
S(r ,r 8,t2t8) and x(r ,r 8,t2t8) represent, respectively, the
field susceptibility of the reference medium and the nonlocal
linear susceptibility of the considered three-dimensional
~3D! system.

Introducing Eq.~5! into Eq. ~4! gives the time-dependent
Lippmann-Schwinger equation

E~r ,t !5E0~r ,t !1E
2`

t

dt8E
2`

t8
dt9E dr 8

3E dr 9S~r ,r 8,t2t8!•x~r 8,r 9,t82t9!•E~r 9,t9!.

~6!

Equation~6! can deal with any general time-resolved light-
matter problem. In order to be able to solve Eq.~6! we trans-
form it into v space by applying a Fourier transform on the
time component. This leads to

E~r ,v!5E0~r ,v!1E dr 8

3E dr 9S~r ,r 8,v!•x~r 8,r 9,v!•E~r 9,v!.

~7!

B. Separation of the system intoN subdomains

We now consider that our 3D system can be divided into
N distinct subdomains~see Fig. 1! having no interaction with
each other in the absence of the external fieldE0(r ,t). Each
subdomain Dn is characterized by a susceptibility

FIG. 1. Division of the considered 3D system intoN distinct
subdomains.
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xn(r ,r 8,v) that vanishes whenr and r 8 are not in the do-
mainDn . The total susceptibility of the entire system is then

x~r ,r 8,v!5 (
n51

N

xn~r ,r 8,v!. ~8!

The Lippmann-Schwinger equation~7! can then be written
as

E~r ,v!5E0~r ,v!1 (
n51

N E dr 8E
Dn

dr 9S~r ,r 8,v!

3xn~r 8,r 9,v!E~r 9,v!. ~9!

The second space integral in Eq.~9! is limited to the subdo-
mainDn since the susceptibilityxn(r ,r 8,v) vanishes when
r 8 does not belong toDn . The contribution of each subdo-
main to the entire system is of two types. First, ifr belongs
to the considered subdomain, we obtain the self-interaction
of Dn . Second, ifr belongs to another subdomain, the con-
tribution represents a coupling effect between these two do-
mains. Considering successively each subdomain, we pro-
gressively modify the wave function of the entire system and
finally obtain the total wave function corresponding to the
entire system.

When the reference medium is vacuum, its field suscepti-
bility S0(r ,r 8,v) is given by the well-known expression@9#

S0~r ,r 8,v!5E dkF12
1

k0
2 kk Gexp@ ik•R#

k0
22k2

, ~10!

wherek0 is the incident wave vector of the perturbating field
and R5(r2r 8). In direct space, this field susceptibility
reads@9#

S0~r ,r 8,v!5F12
1

k0
2 ““8Gexp@ ik•R#

uRu
. ~11!

It is clear from the preceding expression that the field sus-
ceptibility presents a pole whenR reaches zero, i.e., when
the source point and the target point are the same. This sin-
gularity is removed by taking into account a depolarization
term @5#. This will be shown in the Appendixes.

If we suppose that all the effects are purely local, the
susceptibility xn(r ,r 8,v) for each subdomain reduces to
xn(r ,v). We can then write a simplified form of the
Lippmann-Schwinger equation~9!

E~r ,v!5E0~r ,v!

1 (
n51

N E
Dn

dr 8S0~r ,r 8,v!xn~r 8,v!E~r 8,v!.

~12!

An adapted and independent discretization for each subdo-
mainDn makes the resolution of this equation possible with
high accuracy@10,11#.

In the application presented in Sec. III, the system under
study holds a translational invariance. Equation~12! is par-
ticularized to such a two-dimensional configuration in Ap-

pendix A. We will use this form of the field susceptibility in
Sec. III to study a complex 2D system.

III. AB INITIO STUDY OF A MICRORESONATOR

A. The context of near-field optics

One of the main advantages of the formalism presented in
the preceding section lies in the fact that it can handle com-
plex inhomogeneous systems formed by distinct objects. An-
other important feature is its ability to investigate physical
effects occurring at the close vicinity of these objects. Such
effects, involving a high density of evanescent waves, play a
dominant role in the new challenges brought up by near-field
optics. Indeed, at the near-field level, most of the energy
transfers between different objects are nonradiative transfers.
These evanescent waves, first used as a tool to reach high
resolution in optical microscopy@12–14#, are now studied
for themselves in extremely fundamental optical experi-
ments.

Recently, several groups@15,16# reported the possibility
of mapping the optical field structure inside a Fabry-Pe´rot
cavity by collecting with a pointed optical fiber the evanes-
cent wave above the cavity. These experiments were studied
in a theoretical work@17#. In the same context, whispering
gallery modes occurring in high-Q microspheres were also
recently investigated using evanescent waves and nonradia-
tive energy transfers between the sphere surface and a prob-
ing tip @18#.

The microcavity presented in the next subsection is simi-
lar to a setup already used experimentally@15#, but with a
considerably reduced size. We will study the tuning of this
small resonator and the effect of the geometry on itsQ fac-
tor. We will also consider the nonradiative transfer process
taking place between this microcavity and a probing tip
placed in its near vicinity. This problem presents the theo-
retical difficulties for which our approach is particularly well
suited: first, the geometries of the involved objects are non-
trivial and the material composition highly inhomogeneous;
second, all the phenomena of interest are accessible by
studying the behavior of evanescent waves and different
nonradiative transfer processes.

B. The 2D system under study

The microresonator that we will investigate is a typical
multidomain system as presented before. The resonator itself
is composed by three distinct domains: a microprism, a mir-
ror, and a semitransparent mirror~Fig. 2!. A fourth element
will be added in Sec. III C: a small probing tip above the
prism surface. Two problems will be addressed in the fol-
lowing sections: the tuning of the resonator by moving the
mirrors and the effect of a small probe in the near vicinity of
the prism surface. The concept of subdomains is extremely
interesting for investigating this complex system. In particu-
lar, it is evident that the freedom to move each subdomain
independently is essential. Indeed, if we were constrained by
a unique discretization grid for the entire system, the relative
positioning of the different elements would be conditioned
by this grid and we would not be able to easily study the two
above-mentioned problems.

The description of our resonator is given in Fig. 2. A
dielectric prism is inserted between two mirrors, one being
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thin enough to let a small amount of incident light go
through. The incident beam, with ans-polarized electric field
and a wavelength in vacuuml5632 nm, hits the prism hy-
potenuse at an angle larger than the critical angle, so that it
produces total internal reflection in the prism. Multiple re-
flections on the mirrors and the three prism faces occur in-
side the cavity. If the configuration is favorable, we can ob-
tain a high-Q microresonator.

A good configuration was obtained with the following
parameters. The prism has a dielectric constant ofe53. This
value was chosen to enhance the total internal reflection and
compensate the losses due to the small size of our system.
Indeed, the prism hypotenuse is no more than 2.7mm and
most of the incident light could pass around the prism to
continue straight forward~Mie effect!. To reduce this prob-
lem, we use a Gaussian shaped incident beam, with a full
width at half maximum similar to the prism size. This corre-
sponds to 1.8mm. Using a narrower beam would confine the
light still more inside the cavity, avoiding almost totally the
lateral escape of energy. However, we choose this width to
enlighten a reasonable surface portion and be able to com-
pare our results with experimental observations. Moreover,
the beam width cannot be smaller than the wavelength. The
mirrors are both made of silver@e5(217.2,0.5)#, which
gives good reflectors with limited absorption. The semitrans-
parent mirror is 50 nm thick, so that about 4% of the incident
light can pass through it. The mirror is a little bit thicker: 60
nm. Like this we ensure that the largest part of the light
entering the resonator is trapped inside. To get the amplifi-
cation coefficienta, we compute the field at a definite point
just below the surface. This is the place where the multiple
interferences produce the maximal intensity inside the mi-
croresonator, as it will be presented in Fig. 5. This maximal
intensity, normalized with the incident field intensityuE0u2,
provides the amplification coefficienta reached inside the
cavity. This coefficienta has a signification similar to the
Q factor of the cavity@19#.

In our computation, we discretized the material domains
with identical squares of 30-nm sides. Such a discretization

mesh verifies the convergence condition of our scalar algo-
rithm: we must have around ten steps in each spatial direc-
tion per effective wavelength@10#.

C. Tuning the resonator

As mentioned previously, the tuning of the resonator de-
pends on the relative positions of the prism and the two
mirrors. We choose to fix the position of the prism and the
thick mirror as in Fig. 2 and we move the semitransparent
mirror at a distanceL from the prism. For each position of
the semitransparent mirror, we take the intensity of the elec-
tric field 15 nm below the prism surface, at a point where we
know that the interference pattern presents a maximum for
the current configuration.

The tuning curve obtained with this process is given in
Fig. 3. Three successive resonances are presented. The first
one is very sharp, with an amplification coefficient higher
than 30. The intensity of the following resonances decreases
when the semitransparent mirror moves away from the
prism. As a matter of fact, for a longer cavity, higher-order
modes can be excited, and the larger the gap between the
semitransparent mirror and the prism, the more light can es-
cape laterally.

We will now devote our attention to the first resonance
peak and consider three working points around this peak.
The first pointA will be the resonance point, when the semi-
transparent mirror is located at a distance of 170 nm from the
prism. When moving slightly the semitransparent mirror
away from the prism, the amplification coefficient falls down
drastically. On this slope, we will consider two more work-
ing points. The pointB corresponds to an amplification co-
efficienta equal to half the maximum amplification, whereas
the point C corresponds toa52. For these three working
points, we compute the surface standing wave 15 nm above
the prism surface~Fig. 4!. The periodicity of this surface
wave remains the same for the three working points. Note
that the periodicity of the standing wave just above the prism
does not correspond to the periodicity of the resonant peaks
in Fig. 3. This difference emphasizes the complexity of the
system. Once more, effects related to the limited prism size
appear on Fig. 4. Indeed, when approaching the corners of

FIG. 2. Coupling of a microresonator with a small probe. The
resonator is a dielectric prism inserted between two silver mirrors.
A Gaussians-polarized wave is incident on the prism in total inter-
nal reflection.

FIG. 3. Tuning curve of our microresonator as a function of the
distanceL between the semitransparent mirror and the prism.
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the prism, the field intensity falls down.
It is interesting to note how this surface wave is related to

the interferences occurring inside the prism. For this we give
in Fig. 5 a map of the near-field amplitudeuE(x,y)u inside
and around the resonator. On this map, the semitransparent
mirror is located at the first resonant position. This near-field
pattern corresponds to the working pointA. The slight asym-
metry of the interference pattern resulting from the multiple
reflections is due to the asymmetry of the resonator. High-
intensity spots are regularly spaced between the two mirrors.
The maximal intensity, as given on the scale, shows an am-
plification factor of more than 30 and is located just under
the prism surface, at the point considered previously for the
computation of the amplification coefficienta. One clearly
sees in Fig. 5 that the surface standing wave is an extension
to the outside of the interference pattern in the prism, just
below the surface. Above the surface, the intensity decays
exponentially. This decay can also be computed for our three
working points.

In order to investigate this decay, we compute for the
three considered working points the field intensity above the
brightest spot, as a function of the distance to the surface

~Fig. 6!. A semilogarithmic representation of these curves
presents two distinct parts for they dependence of the inten-
sity. From the surface~located aty50) up to 200 nm, the
dependence is, as expected, purely exponential. Above 200
nm, the curve is modified because, once more, of a size
effect. Indeed, part of the incident light passing around the
system is added to the evanescent wave and more intensity
than predicted by a pure total internal reflection process is
observed at these larger distances. This size effect is more
important for the nonresonant positions of the semitranspar-
ent mirror since more light passes around the resonator when
it is detuned.

D. Approaching a tip

The fourth element of our multidomain system, a thin
glass ‘‘pencil’’ tip (e52.25), is now placed at the vicinity of
the microresonator. This kind of tip is similar to the chemi-
cally etched probes used in near-field optical microscopy
@20#. Intentionally, we chose a reduced size probe so that it
does not perturb the system too much and we did not cover
its faces with a metallic coating. Our aim here is to demon-
strate that even such a little perturbation added to our reso-
nant system can strongly modify the characteristics of the
system.

The interaction of a tip with a surface enlightened in total
internal reflection was already studied by other methods
@21,22#. The effect of the tip presence was expressed as a
transfer function between the signal existing without a tip
and the signal collected by the tip. Here we want to show
how the perturbation induced by the tip modifies the near-
field pattern and, in particular, the resonant properties of our
microcavity. In this way, we can visualize the coupling oc-
curring between a tip and a surface, even if this tip is ex-
tremely sharp and often supposed as being passive.

Positioning the tip above the central bright spot of the
surface~i.e., the spot corresponding to the highest intensity
inside the microresonator!, we progressively decrease the tip-
surface distance. The influence of the probe increases as the
distance to the microresonator decreases. The dependence of
the microresonator amplification factora on the tip-surface

FIG. 4. Standing wave 15 nm above the prism surface for the
three working points of the tuning curve. The solid curve is forA
~resonance!, the dashed curve forB ~half-resonance!, and the dash-
dotted curve forC ~amplificationa52).

FIG. 5. Distribution of the near-field amplitude inside and
around the microresonator when it is tuned.

FIG. 6. Intensity decay above the resonator as a function of the
distancey from the resonator surface for the three working points
A ~solid curve!, B ~dashed curve!, andC ~dash-dotted curve!.
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distance is given in Fig. 7. The amplification coefficient is
obtained here also by computing the maximum electric-field
intensity in the prism. As we see in Fig. 7, the presence of
the external tip is already felt inside the resonator at a rela-
tively large tip-surface separation distance, leading to a de-
crease of the amplification factora. The smaller the separa-
tion distance, the more important this decrease ofa. At a
separation distance equal to half the wavelength, we observe
an inflection of the curve in Fig. 7. This inflection is related
to an additional microcavity effect between the tip and the
prism surface. This effect is maximum when the separation
is on the order of half the wavelength. At very short separa-
tion distances, the presence of the tip breaks down the reso-
nance of the system because the coupling with the entire tip
becomes stronger.

Three different positions of the probe above the prism
surface will now be considered, each of them corresponding
to a different regime of the preceding approach curve. For
each position, we will present the tuning curve of the
coupled tip-microresonator system. For the closest position,
we will also present the near-field pattern occurring inside
this system when it is resonant. The tuning curves are here
also obtained by moving the semitransparent mirror away
from the prism and considering, for each position, the
electric-field intensity at a definite point inside the mi-
croresonator where we know that the highest intensity is
reached.

E. Detuning the cavity

We limit our calculations of the tuning curve to the first
resonance peak. On Fig. 8, four tuning curves are presented,
showing the progressive destruction of the resonance when
the tip is approached. The reference curve, drawn in continu-
ous line, corresponds to the first peak of Fig. 3, i.e., the
tuning curve when the tip is located infinitely far away from
the microresonator. The dashed curve, corresponding to a tip
located 360 nm above the surface, is still very similar to the
reference curve. The maximal amplification is slightly re-
duced, but the amplification factora remains high. When the
tip is approached at 150 nm from the surface~dash-dotted

curve!, we can no longer qualify our system as a ‘‘good
resonator’’: the amplification factora is strongly reduced by
the coupling between the tip and the microresonator. The
dotted curve, obtained for a tip-surface distance of 60 nm,
presents an even worse resonance. However, it is interesting
to note that some weak exaltation remains, even when the tip
is placed in the very near-field zone.

A second effect due to the tip is a slight shift of the
resonant position to a smaller semitransparent mirror-prism
distance. This shift is accentuated when the tip approaches
the surface. It is the sign that a new resonator, resulting from
the tip-microcavity coupling, is progressively created. This
new cavity presents a resonance at a different relative posi-
tion of its components. The shift of the resonance is partly
hidden by the simultaneous intensity loss and broadening of
the peak. It would be more appreciable if the amplification
factor a of the new cavity was comparable to the one ob-
tained without a tip.

Because we chose a small probe, the near-field pattern
obtained inside the coupled tip-microresonator system~Fig.
9! is comparable to the one given in Fig. 5, when no tip was
present. However, as proved by the scale, the maximum am-
plitude is reduced by a factor 2.5, which is about a factor 6 in
intensity. We also see that a small amount of light is trans-
ferred to the tip. This transfer is not so important because the
tip is very thin and remains far from the surface~60 nm!.
Therefore the penetration of light inside the tip is not easy. A
third noticeable effect is the relative increase of the reflection
on the semitransparent mirror. This effect is simply due to
the reduced field intensity in the prism, so that the standing
wave occurring from the reflection at the semitransparent
mirror appears to have a higher amplitude in Fig. 9, as it has
in Fig. 5.

We repeated this calculation using tips that ended with
smaller and smaller angles. To obtain a coupled cavity with
comparable quality factor, we had to consider an aperture
angle of 15°. When the tip is so sharp, the detuning is almost
only marked by a shift of the resonance, the height and width
of the resonance peak remaining important. A new cavity of

FIG. 7. Decrease of the maximal intensity inside the microreso-
nator when a small external dielectric probe is approached to the
prism surface.

FIG. 8. Tuning curves obtained for the coupled tip-microcavity
system. Three tip heights are considered: 360 nm~dashed curve!,
150 nm~dash-dotted curve!, and 60 nm~dotted curve!. The tuning
curve obtained for the microcavity alone is given for comparison
~solid curve!.
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good quality is created by coupling this sharp tip with the
prism. Let us remark that, even with this sharp tip, the qual-
ity of the resonator is still slightly reduced. The first reso-
nance peak obtained for this coupled cavity, when the sharp
tip if 60 nm away from the surface, is compared with the
resonance peak of the microcavity alone in Fig. 10.

F. Relation with recent experimental works

The scheme of our microresonator was borrowed from an
experiment realized two years ago by different teams work-
ing in the near-field microscopy world@16,15#. These people
showed how the photon scanning tunneling microscope
~PSTM! could be used to look inside a Fabry-Pe´rot cavity.
This combination of near-field microscopy and interferom-
etry also opens the outlook on a better resolution for the
PSTM. It is possible to build an experimental setup consist-
ing of a prism and two mirrors, as in Fig. 5, and presenting a
quite narrow resonance for a precise relative position of the
three elements. If we put these elements in a position very

close to the resonant one, the system will be very unstable.
Approaching a tip, as we showed before, will induce a cou-
pling between the resonator and the tip and the creation of a
new cavity. The high intensity of the surface evanescent
wave will suddenly fall down because the resonant position
is shifted. The whole system will be immersed in a dark
field. In such conditions, the contribution of a sample depos-
ited on a surface would be emphazised and one could hope to
improve the resolution of the PSTM@24#.

IV. CONCLUSION

In this paper we presented a theoretical method particu-
larly suited to study the interaction of light with any material
system having mesoscopic dimensions. The method, based
on a propagator technique, was applied to a general problem
involving several dielectric domains mutually independent in
the absence of any excitation. When applying an electromag-
netic field on this material system, we distinguished the in-
teractions established between different domains and the in-
teractions occurring between the constitutive elements of a
given domain.

In thisab initiomethod, the only approximation lies in the
discretization of each material domain. The reference me-
dium was not discretized, so it was possible to move the
different objects composing the system in a continuous way.
This property was of importance in the application that we
presented. We determined in this application the resonance
of a mesoscopic Fabry-Pe´rot cavity. We considered also the
perturbation induced in this resonance by the presence of a
dielectric probe also having mesoscopic dimensions. These
simulations were possible because we were able to impose
on the involved objects extremely precise relative moves.

This theoretical work finds similarities in recent experi-
ments using the new optical near-field techniques. The reso-
nant modes of small cavities, the interferential behavior of
waves in resonators are now accessible phenomena. We in-
tend to go on with these modelizations and collaborate with
experimentalists in order to get a better understanding of
these fascinating near-field phenomena.
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APPENDIX A: FIELD SUSCEPTIBILITY
FOR A 2D SYSTEM

If the considered system has a translational invariance in
the z direction, its susceptibility does not depend any more
on z and can be written for each subdomain as

xn~r ,v!5xn~r,v!, ~A1!

wherer5(x,y). Therefore, it is possible to limit the entire
calculation to the (x,y) plane. Nonetheless, the perturbating
optical field remains general: its incidence direction is not

FIG. 9. Map of the electric-field amplitudes inside the coupled
tip-microresonator system when the tip is 60 nm above the prism
surface.

FIG. 10. Tuning curve obtained for a microcavity coupled with
a very sharp tip~opening angle of 15°) located 60 nm above the
prism surface. This tuning curve is compared with the one obtained
for the microcavity alone~dashed curve!.
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submitted to the space symmetry and any incident propaga-
tion vectork0 can be considered.

Let us use this symmetry to derive from the general 3D
field susceptibility given in Eq.~10! a field susceptibility
adapted to 2D problems. Starting from Lippmann-Schwinger
equation~12!, we apply a Fourier transform along the sym-
metry directionz. For each Fourier componentkz we obtain
the Lippmann-Schwinger equation

E~r,kz ,v!

5E0~r,kz ,v!

1 (
n51

N E dr8S0~r,r8,kz ,v!•xn~r8,v!•E~r8,v!.

~A2!

The two-dimensional field susceptibilityS0(r,r8,kz ,v) in
Eq. ~A2! is deduced from Eq.~10! by an inverse Fourier
transform

S0~r,r8,kz ,v!5E d~z2z8!S0~r ,r 8,v!e2 ikz~z2z8!,

~A3!

which gives

S0~r,r8,kz ,v!52
v2

c2 E dkiF12
1

k0
2 kk G eiki•Ri

Q22ki
2 .

~A4!

The vectorsRi andki are, respectively, the projection ofR
and k on the (x,y) plane andQ25k0

22kz
2 . The 2v2/c2

factor is the constant connecting the field susceptibility to the
Green’s dyadic. Equation~A4! can be solved using polar
coordinates. Indeed, if we assume

ki5~kicosu,kisinu!, ~A5!

Ri5~Ricosd,Risind! ~A6!

and develop the imaginary exponential in~A4! into a Bessel
functions series

exp@ ik iRicos~u2d!#5J0~kiRi!

12(
m51

`

i mJm~kiRi!cos@m~u2d!#,

~A6!

the angular part of the integral~A4! is directly solvable and
the integral over theki space can be obtained by the residue
theorem. Finally, we obtain the form of the field susceptibil-
ity for a 2D system

S0~r,r8,kz ,v!5
i

4

v2

c2S S0
11 S0

12 S0
13

S0
21 S0

22 S0
23

S0
31 S0

32 S0
33
D . ~A7!

with

S0
115F12

k0i
2

2k0
2GH0

~1!~k0iRi!1
k0i
2

2k0
2cos~2d!H2

~1!~k0iRi!,

S0
125

k0i
2

2k0
2sin~2d!H2

~1!~k0iRi!5S0
21,

S0
1352

ik0ik0z
k0
2 cos~d!H1

~1!~k0iRi!5S0
31,

S0
225F12

k0i
2

2k0
2GH0

~1!~k0iRi!2
k0i
2

2k0
2cos~2d!H2

~1!~k0iRi!,

S0
2352

ik0ik0z
k0
2 sin~d!H1

~1!~k0iRi!5S0
32,

S0
335F12

k0z
2

k0
2 GH0

~1!~k0iRi!.

The particular shape of this tensor whenRi is zero is given in
Appendix B.

APPENDIX B: SINGULARITY OF THE FIELD
SUSCEPTIBILITY

When the source point, atr 8, coincides with the target
point, atr , the expression of the field susceptibility, given in
Eq. ~A4!, presents a singularity. We will show in this appen-
dix how this singularity can be removed.

If we consider that the material system is a single cell
centered inri , the Lippmann-Schwinger equation~A2! can
be written as

@12S0~ri ,ri ,v!x~ri ,v!wi #E~ri ,v!5E0~ri ,v!,
~B1!

wherewi is the weight associated with the unit cell. In this
two-dimensional case, this weight is the surface of the cell.
Since the discretization cell has a finite dimension, it under-
goes a depolarization effect. We have to include this effect
when evaluating the field. The following equation, relating
field and polarization, has to be verified:

E~ri ,v!5E0~ri ,v!2L2D

P~ri ,v!

e0
. ~B2!

The corrective terms to remove from the propagator dy-
adic have been tabulated for different kinds of discretization
@5#. This tensor is, for a material system being invariant fol-
lowing the z axis and discretized by infinitely long square
rods @23#,

L2D5S 1
2 0 0

0 1
2 0

0 0 0
D . ~B3!

The total field susceptibilityS08 can be written, when adding
this depolarization contribution to the dyadicS0 presented in
Eq. ~A8!, as
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S08~r,r8,kz ,v!5S0~r,r8,kz ,v!2L2Dd~r2r8!. ~B4!

The first part of the left memberS0 seems to remain singular
whenr5r8. This would be true if the considered source and
target were pointlike. However, due to the discretization,
each source point is extended over a discretization mesh. In
order to evaluate the field susceptibility for the self-term, we
have to integrate Eq.~A8! on that unit cell. In our two-
dimensional case, the integration zone is a square. We ap-
proximate it by a circle of radiusa. When we integrate every
component of the field susceptibility dyadic, we obtain zero,
except for diagonal terms. The integration of these compo-
nents gives

Sint5
i

4

v2

c2 F12
a

2k0
2GFak0iH1

~1!~ak0i!1
2i

p G2p

k0i
, ~B5!

wherea is k0i
2 for S0

11 andS0
22, and 2k0z

2 for S0
33, and where

H1
1 is the Hankel function of first order and first kind. To

conserve the dimensions during the discretized procedure,
we have to normalize this term, as well as the depolarization
tensor, by the cell weightwi . The dyadic replacingS0 when
the source and target coincide takes the final form

S0~r,r,kz ,v!5
1

wi S Sint2
1
2 0 0

0 Sint2
1
2 0

0 0 Sint

D . ~B6!

When the dimension of the discretization cell tends to zero,
the integrated partSint falls to zero, but the depolarization
term remains.
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