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ABSTRACT: In many respects, speckle interferometry (SI) techniques are being considered as

mature tools in the experimental mechanics circles. These techniques have enlarged considerably

the field of optical metrology, featuring nanometric sensitivities in whole-field measurements of

profile, shape and deformation of mechanical rough surfaces. Nonetheless, when we consider

classical fringe processing techniques, e.g. phase-shifting methods, the deformation range is intrin-

sically limited to the correlation volume of the speckle field. In addition, the phase evaluation from

such patterns is still computationally intensive, especially in the characterisation of dynamic regimes,

for which there is a growing interest in a wide range of research and engineering activities. A

promising approach lies in the pixel history analysis. We propose in this paper to implement the

empirical mode decomposition (EMD) algorithm in a fast way, to put the pixel signal in an appro-

priate shape for accurate phase computation with the Hilbert transform.

KEY WORDS: dynamic speckle interferometry, empirical mode decomposition, Hilbert transform,

phase evaluation.

Introduction

One of the main advantages of whole-field interfer-

ometric techniques – at the same time a major source

of difficulty – is that a huge amount of information is

usually readily available in each frame of a recorded

sequence. Each pixel of the photo-detector array acts

a priori like an independent sensor, as if the object

surface were covered by, say, one million of point

detectors. This is a well-known characteristic not

only of interferometric techniques, but also of all

fringe-based methods, e.g. Moiré, fringe projection

and photo-elasticimetry. Nowadays, there is a grow-

ing interest within the experimental mechanics

community for the characterisation of dynamic

regimes, as opposed to static regimes for which the

phase extraction is conducted between two steady

states. In such dynamic experiment, the phase is

most likely to vary at different rates from one pixel to

the next. Hence, the processing task consists in

handling in parallel that million of non-stationary

signals at a temporal sampling rate given by the

frame frequency of the camera. A vast domain of

time-varying mechanical phenomena, characterised

by large temporal frequency bandwidths, is open to

investigations as a full range of high-speed digital

cameras are available on the market. The only req-

uisite, common to all processing methods, is to fulfil

the Nyquist criterion, namely to manage to have less

than half a period of the oscillating pixel signal in

response to the displacement field induced by the

stress increment between any two consecutive

frames. To really take advantage of the large amount

of data produced easily in this way, efficient signal

processing procedures, whose input is either the 2D

pattern or the 1D temporal pixel signal, are abso-

lutely mandatory.

The focus here is on SI signals, because they exhibit

substantial intensity and phase fluctuations, and thus

represent the worst case to be treated. However, the

method exposed in this paper is not limited to SI

signals analysis only. It is applicable to any non-

stationary fluctuating signal as soon as there are several

oscillations in the whole data set. This method is thus

well adapted to deal with any whole-field technique

signals, and also to any punctual transducer signals.

Actually, there are many techniques to process

fringe patterns in dynamic situations [1]. They are

essentially based on phase-shifting, morphological or

mathematical transforms approaches. Among them,

mention can be made of the object deformation-

induced phase shifting technique [2], the local
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interpolation of the intensity pattern using a poly-

nomial [3], the Fourier transform (FT) method com-

bined with spatial carrier fringes [4] and the spiral

phase quadrature transform method [5] (basically,

a 2D modified Hilbert transform, HT). The FT

technique has been extensively and successfully

employed and implemented through different vari-

ants [6, 7]. All the frame-based techniques need a 2D

unwrapping step, and the task is not trivial with

noisy wrapped phase maps. The temporal processing

of SI signals is not only the mean to get rid of the

intrinsic limit of correlation, but it reduces also

the unwrapping task to 1D, much easier than in 2D.

The methods addressed to the 1D temporal problem

solving include techniques based on the Morlet

wavelet transform [8], the FT [9] and the HT [10].

This paper introduces the empirical mode decom-

position (EMD) [11] method as a new way to pre-

process the temporal pixel signals. This method has

been successfully used in several domains, dealing

with strongly non-stationary signals [11–14], and has

been introduced lately in SI [15, 16]. The main con-

tribution of this work lies in a fast implementation of

EMD providing well-conditioned signals for an

accurate phase extraction by HT.

The paper is organised as follows: in the next sec-

tion, the HT-based phase extraction of a real-valued

signal will be explained in some details. We will

review the requirements to extract a physically

meaningful phase. The basic principles of the EMD

are exposed in a third section, and its usefulness to

put a given non-stationary signal in an appropriate

shape for phase extraction will be shown. In a

fourth part, a fast implementation is explained and

vindicated. Experimental results are presented and

discussed in the last section.

Phase Extraction from a Real-Valued
Signal: The Analytic Method

Speckle interferometry signals obey the well-known

two-beam interference formula:

iðx; y; tÞ ¼ i0ðx; y; tÞ þ imðx; y; tÞ cosðwðx; y; tÞÞ; (1)

where i0 is the mean intensity, im the fringe modu-

lation and w the phase. These three quantities are

random variables, and temporal SI signals in dynamic

regimes are thus likely to be strongly non-stationary.

As an example, a genuine temporal SI signal is

depicted in Figure 1.

The analytic method is probably the most com-

monly used technique of phase extraction. The

analytic signal z(t) is built from the zero mean real

valued signal u(t), using the HT:

uðtÞ ¼ bðtÞ cosðuðtÞÞ
zðtÞ ¼ uðtÞ � i�HT½uðtÞ�
zðtÞ ¼ bðtÞ expðiuðtÞÞ

8<
: (2)

As a reminder, the HT of a function u(t) is defined

by the following convolution product [17]:

HT½uðtÞ� ¼ 1

p

Z1

�1

uðxÞ
t � x

dx ¼ �1

pt
� uðtÞ (3)

It is well known that it is much more efficient to

compute the convolution product in the Fourier

space, thanks to the fast Fourier transform (FFT)

algorithm. We thus define the HT in the reciprocal

space:

FTfHT½uðtÞ�g¼ FT � 1

pt

� �
FTfuðtÞg¼ iUðmÞ; m>0

�iUðmÞ; m<0

�
;

(4)

where m is the frequency and U(m) is the FT of u(t).

Going further into details with the HT is out of the

scope of this paper, but it is worth mentioning two

basic results for the following:

HT½cosðtÞ� ¼ � sinðtÞ (5)

HT½a� ¼ 0; 8a 2 ��1;1½ (6)

The phase u(t) is then extracted in the range [)p, p]

with the arctan function, from the complex valued

signal:

uasðtÞ ¼ arctan
�HT½uðtÞ�

uðtÞ

� �
(7)

There are actually some restrictive conditions in

a meaningful use of the HT to get the correspond-

ing analytic signal, or in other words, to extract a

phase representative of the physical phenomena:

(i) amplitude and phase modulations spectra have to

be well separated; (ii) the mean has to be locally zero;

and (iii) the signal has to be narrow band.
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Figure 1: A typical temporal pixel signal experimentally

obtained in speckle interferometry (grey levels in ordinate and

time measured in frame number in abscissa)

2 � 2008 The Authors. Journal compilation � 2008 Blackwell Publishing Ltd j Strain (2008) doi: 10.1111/j.1475-1305.2008.00451.x

Phase Extraction in Dynamic Speckle Interferometry : S. Equis and P. Jacquot



Amplitude and phase spectra well separated

The spectra of the amplitude b(t) and of the phase u(t)

(Equation 2) have to be well separated (amplitude

modulation restricted to low frequencies range, and

phase modulation to high frequencies range), other-

wise, the computed phase would depend on both,

losing physical sense. Bedrosian [18] proposed a

product theorem for the HT for band-limited func-

tions. Writing this theorem with the signal u(t)

defined in Equation (2) and with Equation (5) leads to:

HT½uðtÞ� ¼ HT½bðtÞ cosðuðtÞÞ� ¼ bðtÞHT½cosðuðtÞÞ�
¼ �bðtÞ sinðuðtÞÞ ð8Þ

The phase is then easily extracted with Equation (7).

In SI, the spectra separation condition is actually

intrinsically fulfilled. As can be shown from Figure 1,

the modulation depth variations [the term im in

Equation (1)] are much slower than the oscillation

periods of the phase term. Modulation depth varia-

tions are ruled by the statistical spatial properties of

the speckle fields and decorrelation effects, while the

phase variations depend on the sensitivity of the

interferometer. Although they form the subject of

rather involved mathematical descriptions, the fluc-

tuations of the modulation have been thoroughly

studied [19], leading to a set of quite simple opera-

tional rules the principal parameters of the optical

system – the aperture of the recording system, the

pixel size, the sensitivity of the interferometer, the

frame frequency and the rate of phase change –

should obey. It is just reminded here that an inap-

propriate choice of this set of parameters would lead

to a complete failure of the experiment, irrespective

of whether processing method could be adopted. On

the contrary, with adequately selected system

parameters, pixel signals take ipso facto the form of a

random, slowly varying modulation depth, envelop-

ing the rapid oscillations of the cosine term. Figure 1

is an archetype of these signals. In speckle interfer-

ometry (SI), succeeding in the measurements, fulfill-

ing the correlation conditions and finding the right

system parameters are thus three different and

equivalent expressions of the same basic phenomena.

Null local mean

The analytical method fails in the case of real-valued

signals with non-zero mean. Indeed the HT of such a

signal is given by:

HT½b cosðuðtÞÞ þ a� ¼ �b sinðuðtÞÞ (9)

The extracted phase is then (see Figure 2 repre-

senting z(t) in the complex plane):

uasðtÞ ¼ arctan
b sinðuðtÞÞ

b cosðuðtÞÞ þ a

� �
6¼ uðtÞ (10)

For the dashed curve, the phase moves fast near the

origin, with a p jump in the limit case where the

modulation depth equals the mean, leading to a

singularity. As soon as the modulation depth is lower

than the mean (dotted line), the phase computed

with the HT, uas(t), is distributed in a narrow range,

namely [uas min,uas max], and is indeed very different

from the meaningful quantity of interest u(t).

The phase error, when the local mean is not zero

but nonetheless smaller than the local modulation

depth, can be easily estimated. Let us first rewrite

Equation (11) to simplify the notations:

uasðtÞ ¼ arctan
sinðuðtÞÞ

cosðuðtÞÞ þ c

� �
; (11)

where c, positive and smaller than 1, represents the

ratio mean over modulation. The error between the

actual phase u(t), and the unwrapped extracted one

uas(t), is null at kp (k integer), and is thus bounded

elsewhere. A Taylor expansion of Equation (11) lim-

ited to the first-order readily shows that the error

upper bound is equal to c itself. Thus, if we can

guarantee a mean envelope, i.e. the mean of the

upper and lower envelopes of the signals, much

smaller than the modulation depth in the whole data

set, the phase error is bounded and does not propa-

gate. In other words, it means that there will be no

missed fringe in a real experiment, which is of

primary importance.

Narrow-band signal condition

The HT is perfectly defined for wide-band signals. As

soon as its FT exists, there is no difficulty to compute

its HT with Equation (4). The problem lies actually

in the physical sense to give to the evaluated phase.

To illustrate this difficulty, let us consider the two

tones signal u(t) with fixed amplitude and constant

frequencies:

Figure 2: Representation of the analytic signal in the complex

plane
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uðtÞ ¼ A1 cosðm1tÞ þ A2 cosðm2tÞ; (12)

where m2 ¼ m1 + Dm. The two tones case has already

been extensively studied, even in the non-stationary

situation [20–22]. If A1 ¼ A2, the phase uas computed

with Equation (7) is found to be the average of u1 ¼ m1t

and u2 ¼ m2t. For the unequal strength of the two

tones, the phase can even extend beyond the range

[u1,u2]. What is true for signals containing two fre-

quencies separated by Dm is especially true for signals

with a continuous distribution of width Dm. In fact, this

issue is the well-known time–frequency localisation

problem. We cannot correctly characterise with one

single quantity, the instantaneous phase uas, a signal

with a broad frequency content at one time.

In fact, the quantity of interest carried by SI signals

is unique at one time as soon as the set-up is

mechanically, optically and electronically isolated

from external disturbances. Hence, the narrow-band

signal condition is fulfilled for the signals we are

interested in.

We spent some space to review the requirements

that the signal must fulfil to allow a meaningful

phase extraction. We focused on the analytical

method but the requirements are actually general and

apply to any phase extraction or tracking method.

We will show now how the EMD method is a perfect

candidate to put the signal in the ad hoc shape for

subsequent phase evaluation.

Empirical Mode Decomposition: Basic
Principles

Standard algorithm

Huang et al. [11] proposed in the EMD, which

decomposes any non-stationary real-valued signal

into its intrinsic oscillation modes, namely the

intrinsic modes functions (IMF). The IMFs, that could

be non-stationary as well, have to satisfy two condi-

tions: (i) in the whole data set, the number of extrema

and the number of zeros differ from each other at

most by one; and (ii) the mean envelope is zero.

The first condition is equivalent to the narrow-

band condition. The second one is a good approxi-

mation of the zero local mean condition, and less

constraining as it does not need a definition of a local

timescale. Indeed, to compute a local mean, we need

to define a range containing a sufficient integer

number of local periods. For non-stationary signals,

the width of this range (local timescale) has to be

adjusted all along the time axis. It is directly per-

formed by the EMD algorithm through the extrema

finding and the subsequent envelopes computation.

The spectra separation condition for amplitude and

phase is fulfilled by the nature of the experiment

itself, as previously discussed. Thus, by construction,

the IMFs have a well-behaved HT, and more generally

they allow good phase extraction.

Basically, the signal is split into a detail part (local

higher frequency) and a residue part (local lower fre-

quency):

sðtÞ ¼ dðtÞ þmðtÞ; (13)

d and m being, respectively, the local high- and low-

frequency parts. To this aim, the mean has to be

estimated through the following procedure.

(1) Identify all extrema of s(t).

(2) Interpolate between maxima (minima) to get an

upper (lower) envelope envmax(t) [envmin(t)] with a

certain kernel.

(3) Compute the mean:

mðtÞ ¼ ½envmaxðtÞ þ envminðtÞ�=2 (14)

(4) Extract the detail part:

dðtÞ ¼ sðtÞ þmðtÞ; (15)

Then, the so-obtained component d(t) is the first IMF

and the same procedure can be applied to the residue

m(t), to extract a second IMF and so on. Actually, the

decomposition is not that straightforward and needs

an iterative process, namely the sifting process. Let us

consider a basic signal composed by a cosine at fre-

quency j and another arbitrary function a(t) which

represents the varying bias:

sðtÞ ¼ aðtÞ þ cosðjtÞ (16)

The extrema of the raw signal defined in Equation

(17) are located at:

t0
ex ¼

1

j
arcsin

1

j
a0ðtÞ

� �
þ kp 6¼ kp (17)

where k is an integer and b¢(t) designates the first

derivative of b(t). At iteration i, the extrema locations

will change:

ti
ex ¼

1

j
arcsin

eiðtÞ
j

� �
þ kp 6¼ t0

ex; (18)

where ei(t) is the residual mean envelope at iteration i

and should tend to 0 as the number of sifting itera-

tions grows. There is obviously no guarantee that the

mean envelope remains the same at any iteration if

the extrema locations are different. We have repre-

sented in Figure 3, the trend of the ratio upper bound

of the mean envelope over modulation depth with

respect to the sifting process iteration number, for
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the following sum of sine waves:

sðtÞ ¼ sin
2pt

24

� �
þ 10 sin

2pt

1024

� �
(19)

In this basic example, several iterations are needed to

finally get the extrema located at kp, as it must be for

the first sine term which corresponds here to the first

IMF. Depending on the sifting process ending crite-

rion, we can readily observe the necessity to proceed

with the sifting loop to make the mean envelope

below a certain chosen threshold. Thus, this iterative

procedure has two purposes: eliminate ridding waves

and make the IMF as symmetric as possible (to fulfil

the two conditions previously mentioned). The pre-

vious procedure 1–4 is injected into an iterative loop,

giving the standard EMD algorithm [12].

(5) If d(t) is an IMF go to 6 (sifting process ending

criterion), else go to 1 and proceed with d(t) instead of

s(t). As a reminder, d(t) is an IMF if it fulfils the two

conditions mentioned at the beginning of this section.

(6) Iterate on the residue m(t) ¼ s(t) ) d(t) until the

final residue has less than four extrema (at least two

extrema are needed for each envelope) or fulfils the

EMD ending criterion. We get, at the end, the fol-

lowing final decomposition at the rank K:

sðtÞ ¼
XK

k¼1

dkðtÞ þmKðtÞ (20)

where the dk are the IMFs and mK is the final residue.

For piecewise polynomial signals, the EMD is much

sparser than any decomposition on predetermined

basis [12]. But, the EMD has the most interesting

features when dealing with non-stationary signals. As

shown in the example depicted in Figure 4, the par-

abolic chirp with a varying modulation depth and

also a fluctuating bias is well caught by the first IMF.

We used here the fast implementation further

described in a coming section.

Issues in the EMD implementation

One of the main assets of the EMD is its sparseness:

the decomposition necessitates indeed much less

components to characterise an arbitrary signal than

classical Fourier-based or even wavelet-based analy-

sis, especially for non-stationary signals. But one of

the main drawbacks lies in the non-uniqueness of the

final decomposition. It is indeed strongly dependent

on the different algorithm parameters and choices,

such as the sifting ending criterion, the boundaries

ending technique (signal continuation) and the

interpolation method [13].

Indeed, applying the sifting process too many

times will over-smooth the mode, resulting in the

loss of information and physical meaning. This

information will be caught by one or several succes-

sive IMF(s), leading to leakage between modes

(information contained in a given frequency band

is spread over several modes) and even to over-

decomposition. So, a trade-off has to be found,

thanks to a judicious sifting stopping criterion.

The boundary ending is also a sensitive part of the

mean estimation. An interpolation kernel is chosen to

link the extrema with smooth curves. In practice, we

used the cubic spline kernel as recommended in Ref.

[11]. Some extrapolation is needed near the edges to

process the whole data set. To control the envelopes

near the boundaries, additional points are thus man-

datory at the beginning and end of the data set. In our

case, we simply choose to keep at those locations the

value of, respectively, the first and last extrema.

In practice, the extrema finding and the interpola-

tion steps on discrete-time signals are quite sensitive,

and EMD thus requires a certain amount of over-

sampling [25].
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Figure 3: Evolution of the ratio upper bound of the mean

envelope over modulation depth with the number of iterations

of the sifting process for signal defined in Equation (19)
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Figure 4: Fluctuating amplitude chirp with varying bias (top)

and its first IMF (grey levels in ordinate and time measured in

frame number in abscissa)
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Bad choices for the aforementioned issues could lead

to severe errors in the entire decomposition, like over-

decomposition but also mode mixing (for instance,

higher frequencies oscillations are not caught locally

by a given mode but by a successive one that should

contain lower frequency oscillations). It is thus man-

datory to adapt the algorithm to the type of signals to

analyse. Even if the algorithm will lead to IMFs

allowing accurate phase extraction from the mathe-

matical point of view, it has to be carefully controlled

to give physical meaning to this evaluated phase.

The orthogonality of the decomposition

At this point, we shall discuss the orthogonality and

the completeness of the EMD. Completeness is

actually straightforward from the decomposition

itself. Orthogonality is a little bit trickier. Let us first

rewrite the decomposition in Equation (20) [11]:

xðtÞ ¼
XKþ1

k¼1

CkðtÞ (21)

where we consider the last residue as a component.

Taking the square of Equation (21) yields:

x2ðtÞ ¼
XKþ1

k¼1

C2
kðtÞ þ 2

XKþ1

i

XKþ1

j

CiðtÞCjðtÞ (22)

If the basis vectors form an orthogonal set, the

second term of the right member is null. So, we can

assess the decomposition orthogonality by comput-

ing the following (K + 1) · (K + 1) matrices:

OMði; jÞ ¼
PT

t¼0ðCiðtÞCjðtÞÞPT
t¼0 x2ðtÞ

and OMnði; jÞ

¼ 2
PT

t¼0ðCiðtÞCjðtÞÞPT
t¼0ðCiðtÞ2 þ CjðtÞ2Þ

; ð23Þ

where T is the length of the data set. These matrices

of orthogonality are symmetric, and even diagonal

if the decomposition is orthogonal. On one hand,

the matrix OM allows a quick identification of

the number of modes of significant energy, and on

the other hand, OMn is handy to see qualitatively the

leakage between modes.

A Fast and Accurate Implementation
of EMD Applied to SI

For a pixel with enough modulation, the noise

remains very low as long as the illumination is well

adapted to the sensor dynamic, avoiding threshold-

ing and saturating effects. The relevant information

is then carried by the high-frequency part of the

signal, i.e. the cosine term in Equation (1), because as

already discussed, the fringe modulation, im in

Equation (1), is always varying much slower than the

phase modulation. This information is thus con-

tained in the first IMF, and it becomes useless to

proceed further in the modes extraction. We have

seen that the sifting process is mandatory to guar-

antee that the extracted signal is actually an IMF.

However, we also briefly showed previously that the

phase error is bounded as long as the modulation is

greater than the residual local mean value (more

precisely the value of the mean envelope). We can

then reasonably remove the sifting process to finally

extract the first IMF (or pseudo-IMF for the sake of

rigorousness) through a single iteration of the EMD

algorithm. This strong but meaningful approxima-

tion leads to the following algorithm:

1 identify all extrema of the pixel signal si,j(t), where

the couple (i,j) designates a pixel.

2 interpolate between extrema to get the upper

[envmax(t)] and lower [envmin(t)] envelopes

(with the cubic spline kernel).

3 compute the mean:

mi;jðtÞ ¼ ½envmaxðtÞ þ envminðtÞ�=2; (24)

4 extract the pseudo-IMF:

di;jðtÞ ¼ si;jðtÞ �mi;jðtÞ (25)

Thanks to this implementation, we do not have to

care about some of implementation issues, such as

over-decomposition, leakage, etc. However, it is

worth precising that this approximation does make

sense as long as some safeguards are put in the

algorithm for the extrema finding, interpolation and

boundaries ending steps. Phase extraction step is

then proceeded on di,j(t) for each pixel through the

use of the HT as detailed previously.

At this point, it is worth mentioning the method

developed by Vikhagen [23] and improved by

Carlsson and Wei [24] for deformation measurement

in dynamic SI experiments. The phase evaluation

method [23] consists in scanning the pixel history

signal within a local oscillation to detect a maximum

value and a minimum value: (i0 + im) and (i0 ) im)

with the notations of Equation (1). There is only one

unknown left, the phase w that is finally easily

computed modulo 2p at each instant using again

Equation (1). A temporal phase shift is added to

remove the sign ambiguity of the arcos function. The

improvement of the method [24] consists in a better

evaluation of the initial speckle phase, i.e. before

deformation, and in a least-squares estimation of the
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phase during the deformation allowing at the same

time the resolution of the sign ambiguity. Even if

Carlsson’s method relies on different arguments, it

shares with ours the step of extrema finding and

mean computation. Yet, the EMD method is likely to

be much faster. Indeed, the EMD does not need a

lengthy step of signal scanning with a sliding win-

dow and the analytic method, although quite sensi-

tive to noise, is also very fast, thanks to the FFT

algorithm.

Experimental Results

To assess the method, we built a classic in-plane SI

experiment to measure the deformation of a piece of

rubber under compression. The set-up and its geom-

etry are depicted in Figure 5.

The object is illuminated by two divergent laser

beams of equal intensity, each of them making an

angle h with the normal to the object surface. The

in-plane deformation is achieved through the use of a

PZT actuator, fed with a voltage slope from 0 to 500 V

resulting in a smooth displacement of 40 lm of its

outer face. For data acquisition, we use a 10-bit CCD

camera 1024 · 1024 equipped with an objective of

f/1,4 as maximum aperture. The camera frame rate is

48 fps. A total of 512 frames are saved on a computer

which drives also the PZT actuator. In Figure 5, S1 and

S2 designate the two unit vectors of the illumination

directions, while So is the unit vector of the obser-

vation direction and coincides with the object surface

normal. The overall phase change between the two

arms when a displacement L occurs is given by:

Du ¼ 2p
k
ð~S1 �~S2Þ~L ¼ SxLx; (26)

where Sx and Lx are, respectively, the sensitivity

of the interferometer and the projection of the

displacement vector on the x-axis. Due to its sym-

metry, the sensitivity is actually simply related to

the physical parameters of the set-up by the fol-

lowing relation:

Sx ¼
4p
k

sin h (27)

In our experiment, the sensitivity Sx is equal to

9.8 rad lm)1. For off-axis points, due to the diver-

gence of the illumination beams, the interferometer

has slight sensitivity to Ly and Lz. Those sensitivi-

ties are more than one order of magnitude lower

than Sx, and will thus be neglected. The divergent

illumination leads also to variations of the sensi-

tivity Sx within the field that appear to be negligi-

ble (less than 0.2%). The mechanical stop can easily

be removed in our experiment to produce a pure

rigid body motion, what is convenient to conduct a

calibration step.

We present in Figure 6 an example of correlation

fringes corresponding to the compression. Decorre-

lation effects are intrinsic to SI and it appears very

clearly in this fringe pattern that for displacement

even included in the correlation volume, the fringe

visibility is very low as soon as the density becomes

large (near the mechanical stop in our experiment),

preventing any kind of 2D frame-based processing

technique. The pixel history based analysis is per-

fectly able to overcome this limitation.
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Figure 5: In-plane speckle interferometry experiment

Figure 6: Correlation fringes corresponding to an intermediate

state of the 40-lm in-plane compression of a piece of rubber
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In Figure 7, three-pixel signals processed with our

EMD implementation are shown. Those signals come

from regions with different displacement velocities:

pixel A has the highest number of displacement

fringes (60 fringes that is to say a displacement of

38.5 lm), B comes from a lower activity area (47.5

fringes that is to say 30.5 lm of displacement), while

C comes from the mechanical stop neighbourhood

(22 fringes that is to say 14 lm of displacement). The

extracted phase for each pixel A, B and C is depicted

in Figure 8.

In Figure 9, the extracted phase of the final state of

deformation is depicted and its profile along the

x-axis in the middle of the object as well. The posi-

tion of the pixels A, B and C of Figure 7 are also

recalled. No temporal carrier has been introduced to

conduct this experiment [8], and that is why the

noise is quite high around the stop. Pixels signals

experience in this area very few fringes of displace-

ment leading to inaccurate phase computation. The

method will remain exactly the same if a temporal

carrier is added so as to remove the deformation sign

ambiguity, and at the same time, to reduce the noise

in low activity areas. An additional operation would

have to be conducted afterwards to remove the car-

rier and recover the actual deformation phase, either

by calibration or by direct measurement on regions

without any activity. There is also some noise due to

pixels with low modulation, and we will present in a

future work a technique, based on interpolation and
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non-uniform sampling of the 2D phase maps, to

discard those pixels from which no meaningful

information can be extracted.

Conclusion and Outlooks

This paper introduced the EMD as a new, efficient

and flexible processing tool to handle SI and more

generally any whole-field technique signals in

dynamic regimes. We have shown that this method

perfectly matches with the requirements of a mean-

ingful use of the analytic method and more generally

of a physically meaningful phase extraction irre-

spective of the adopted method. The fast imple-

mentation without any iterative process has also

been vindicated, suggesting possible online imple-

mentation for dealing with longer experiments,

thereby opening the way for phase extraction and

phase tracking methods. Those promising results

might allow a more widespread use of SI in the

characterisation of dynamic behaviours of mechani-

cal structures.
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