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Abstract: The surface polariton properties of TM or TE plane wave
scattered by a coated cylinder are investigated in this paper. The coated
cylinder (whose outer radius is much smaller than the wavelength) is
assumed to be electrically small and low dissipative. Analytical formulas of
the plasmonic resonances are derived and found to agree well with those
obtained from exact expressions in the classical scattering theory. The
behaviors of the scattering coefficients at resonances are also discussed and
compared for different cases. While a single cylinder has the resonance at
the relative permittivity of εr = −1 (or relative permeability of μr = −1) for
the TE (or TM) polarization, the resonances of the coated cylinders change
with different n values (where n denotes the series term or mode of the
field), and also the inner and outer radii. It is shown that the scattered field
in the near zone can be enhanced significantly compared to the incident
wave. For the TE incident case, we take a silver coated nano-cylinder as an
example to illuminate the near-field optical effect. Also, we have studied
the peak values of the nth order scattered field for different n values and
electrical parameter k0b (where k0 is the wavenumber of the free space and
b denotes the outer radius of the cylinder) around the cylinder. The derived
new formulas for total cross sections are given and they may provide us
with some potential photonic applications such as surface cleaning and
etching.
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1. Introduction

In the past several years, negative index materials or metamaterials, which were proposed us-
ing split-ring resonator (SRR) structures and found to exhibit negative refractive index (NRI)
characteristics [1], attracted considerable attentions [2]. Properties exhibited by metamaterials
have also been discussed thoroughly from design to potential applications [3–10]. Recently, the
invisible cloaking in microwave frequency [11–13] was reported and its physical realization is
now moved from microwave frequencies to visible optical frequencies. Along this line, prop-
erties of light scattering by metamaterial objects are apparently very important and essential in
the further investigations and characterizations.

Scattering of light by metamaterial cylinders is also of recent interests and has been widely
discussed [14]. The surface polaritons can be seen from the resulted cross sections versus ω/ω p.
Surface polaritons on left-handed material cylinders were discussed thoroughly in [15] and [16].
It is found that the electrostatic and magnetostatic resonances occur respectively at ε r =−1 (for
the TE wave incidence) or μr =−1 (for the TM wave incidence). Mushref provided the closed-
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form solution to electromagnetic scattering of a plane wave by an eccentric cylinder coated with
metamaterials [17]. The transient response of a coated cylinder to a plane-wave excitation was
reported by Vollmer and Rothwell [18]. It is shown that the plasmonic cylinders can be exited
only by TE plane wave [19]. The plasmon resonance is found to occur near ℜe(ε r)=−1 (where
εr = ε ′ + iε ′′ denotes the relative permittivity of the cylinder) for two dimensional electrically
small cylinders [19].

Arslanagic et al. studied an electrically small metamaterial-coated cylinder excited by an ar-
bitrarily located line source [20]. The backscattering properties of dielectric-coated cylindrical
structures were discussed in [21]. Johnson and Christy measured the optical constants of no-
ble metals (copper, silver, and gold) in the spectral range 0.5-6.5 eV with an oblique-incidence
thin-film technique [22]. The transmission properties of light in two dimensional structures
were investigated in [23]. Surface plasmon polaritons of different orders on metal cylinders
with dielectric core were studied in [24].

In this paper, we will further look into the problems of a coated cylinder scattered by TM and
TE plane waves. The focus of this paper is to investigate analytically the plasmonic resonance
characteristics and peculiarities of light scattering by a coated-cylinder of electrically small
radius, where the metamaterial is considered as either the core or the coating material in the
scattering system.

2. Theoretical foundation

Fig. 1. Geometry for scattering of a plane wave by a coated cylinder.

The geometry of the problem is shown in Fig. 1. The incident wave is a TM plane wave
whose electric field is polarized in the z-direction (along the axis of the cylinder) and can be
expressed as in [21] by

E inc
z = Ei

1 = E0

∞

∑
n=−∞

inJn(k1ρ)einθ . (1)

Therefore, the scattered field in the outer region consisting of the out-going waves must be
of the form

Esc
1 = E0

∞

∑
n=−∞

inAnH(1)
n (k1ρ)einθ ; (2a)
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while the electric field in the coating region consisting of the out-going and in-coming waves is
given by

E2 = E0

∞

∑
n=−∞

in
[
BnH(2)

n (k2ρ)+CnH
(1)
n (k2ρ)

]
einθ ; (2b)

and the transmitted field in the core consisting of the standing wave can be written as

E3 = E0

∞

∑
n=−∞

inDnJn(k3ρ)einθ (2c)

where Jn(•) stands for the cylindrical Bessel function of the first kind and the order n, H (1)
n (•)

and H(2)
n (•) represent the cylindrical Hankel functions of the first and second kinds and the or-

der n, respectively, θ denotes the angle shown in Fig. 1, g identifies the observation point, k 1, k2

and k3 are the wavenumbers in free space, the coating region and the core region, respectively,
and εi and μi (i = 1, 2, and 3) denote the relative permittivities and permeabilities of the three
regions. We let p = k0a and q = k0b which denote the electrical dimension of the inner and
outer radii. When the boundary conditions at ρ = a and ρ = b (where a and b denote the inner
and outer radii of the coated cylinder, respectively) are applied, we can obtain the following
equations

H(1)
n (k1b)An −H(2)

n (k2b)Bn −H(1)
n (k2b)Cn = −Jn(k1b), (3a)

H(2)
n (k2a)Bn +H(1)

n (k2a)Cn − Jn(k3a)Dn = 0, (3b)
k1

μ1
H

′(1)
n (k1b)An− k2

μ2
H

′(2)
n (k2b)Bn − k2

μ2
H

′(1)
n (k2b)Cn = − k1

μ1
J′n(k1b), (3c)

k2

μ2
H

′(2)
n (k2a)Bn +

k2

μ2
H

′(1)
n (k2a)Cn − k3

μ3
J′n(k3a)Dn = 0, (3d)

where the prime denotes the derivative with respect to the argument. Now we are able to obtain
the scattering coefficient An of special interest in this paper and the other coefficients Bn, Cn,
and Dn of no interest in this paper. The coefficient An is given below:

An =

μ2

μ1
J′n(k1b)

[
H(2)

n (k2b)Pn +H(1)
n (k2b)

]
− k2

k1
Jn(k1b)

[
H

′(2)
n (k2b)Pn +H

′(1)
n (k2b)

]

k2

k1
H(1)

n (k1b)
[
H

′(2)
n (k2b)Pn +H

′(1)
n (k2b)

]
− μ2

μ1
H

′(1)
n (k1b)

[
H(2)

n (k2b)Pn +H(1)
n (k2b)

] (4)

where

Pn =

μ3

μ2
Jn(k3a)H

′(1)
n (k2a)− k3

k2
J′n(k3a)H(1)

n (k2a)

k3

k2
J′n(k3a)H(2)

n (k2a)− μ3

μ2
Jn(k3a)H

′(2)
n (k2a)

. (5)

As the other coefficients are not of our interest in this paper, thus they will not be provided
herein. The coefficient provided here is explicitly expressed and it is exact in accuracy. The
total scattering cross section is defined as the ratio of the total power scattered to the incident
power per unit length and is given by

σtotal =
4
k1

∞

∑
n=−∞

|An|2 . (6)

From the total cross section expression, the surface modes can be thus obtained using the nu-
merically exact solution to the above expression, but the solution is implicit in expression. To
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gain more physical insight into the modes and also the relationships among the parameters, we
will subsequently try to obtain them explicitly.

From the subsequent approximate but explicit formulations, it is clearly seen that the multiple
resonances can be obtained in the following cases.

• The surface modes will occur for a given summation index n or a fixed single mode in
Eqn. (6); and the maximum intensity of scattered field at resonances decreases continu-
ously versus the outer radius b.

• The surface modes will occur for different summation indices n = 1, 2, 3, · · · or their
various multiple modes; and the resonance for each of the modes can be the same in
magnitude and can reach unity although the bandwidth of such a resonance decreases
drastically with the order n of the modes.

• In addition to the multiple modes, the multiple resonances are a function of the physical
parameters a and b of the coated cylinder. While the maximum magnitude at its resonance
is fixed at unity, the bandwidth varies with a and b.

When the argument |z| � 1, we can use, for n > 0, the following approximations of the
Bessel and Hankel functions

Jn(z) ≈ (0.5z)n

Γ(n+1)
, (7a)

H(1)
n (z) ≈ (0.5z)n

Γ(n+1)
− i

Γ(n)
π

(
2
z

)n

, (7b)

H(2)
n (z) ≈ (0.5z)n

Γ(n+1)
+ i

Γ(n)
π

(
2
z

)n

, (7c)

where Γ denotes the Gamma function. For n < 0, the approximations are similar to those of n >
0, and will not be discussed here. Substituting the approximate formulas into A n and omitting
the higher order terms, we have

An �−
iπ

(
k1b
2

)2n [(a
b

)2n
(μ1 + μ2)(μ2 − μ3)+ (μ1− μ2)(μ2 + μ3)

]

Γ(n)Γ(n+1)
[(a

b

)2n
(μ1 − μ2)(μ2 − μ3)+ (μ1 + μ2)(μ2 + μ3)

] . (8)

By enforcing the denominator, when n �= 0, to be zero, we can obtain the resonances. As a
result, we come up with the following equation in free space:

(a
b

)2n
(μ1 − μ2)(μ2 − μ3)+ (μ1 + μ2)(μ2 + μ3) = 0. (9)

When Eqn. (9) is satisfied, we can find the surface modes of metamaterial-coated cylin-
ders. It is apparent that for metamaterial-core cylinders, there exists only one mode; but for
metamaterial-coated cylinders, two modes can be found to exist simultaneously. In addition, we
would indicate from Eqn. (9) that the resonance depends on not only the surrounding medium,
but also the physical diameters (in the present case, the ratio of radius a to radius b). It should
also be noted that for n = 0, A0 will have no resonances. And for n < 0, An = A−n which means
that A−n has the same resonances as An.

The surface modes can be obtained directly using the exact expression in Eqn. (6) for the
coefficients of multiple orders, and it can be also obtained from the above asymptotic formula
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in Eqn. (9). Through a few numerical examples, we found that the above solutions obtained
using the approximate approach are fairly accurate as compared to the exact solutions; so a
detailed comparison will not be shown here.

When the incident wave is TE plane wave, the corresponding items need to be modified. The
electric field should be replaced by magnetic field and some changes in the boundary conditions
should be made. In this case, we can obtain, after solving the equations and simplifying the
scattering coefficient, the equation from the denominator of the scattering coefficient:

(a
b

)2n
(ε1 − ε2)(ε2 − ε3)+ (ε1 + ε2)(ε2 + ε3) = 0. (10)

By comparing Eqn. (9) with Eqn. (10), it can be easily seen that the two solutions are reciprocal
and they can be obtained one from the other simply by replacing μ by ε or its vice versa.
Subsequently, we will discuss the characteristics of the two (TM and TE) modes.

3. Coated cylinders scattered by TM plane wave

From Eqn. (9), we can find two resonances of coated cylinders with metamaterial coating. To
mathematically describe them, we write the roots in the form of

μ2 =
G±H

F
(11)

where

G = −
[

μ1 +
(a

b

)2n
μ1 + μ3 +

(a
b

)2n
μ3

]
, (12a)

H =

√[
μ1 +

(a
b

)2n
μ1+μ3+

(a
b

)2n
μ3

]2

−4μ1μ3

[(a
b

)2n−1

]2

,

(12b)

F = 2

[
1−

(a
b

)2n
]
. (12c)

When the metamaterial core cylinder is coated with positive index material, thus μ 3 < 0 and
μ2 > 0. Then solving the characteristic equation Eqn. (9), we can obtain

μ3 = −μ2

μ1 +
(a

b

)2n
μ1 + μ2−

(a
b

)2n
μ2

μ1 −
(a

b

)2n
μ1 + μ2 +

(a
b

)2n
μ2

(13)

which represents the surface modes of the cylinder. It is apparent that the surface modes of a
light scattered by a coated cylinder are much more complicated than that (i.e., only one surface
mode when εr = −1 or μr = −1) of a single cylinder [15].

It should be pointed that in the subsequent derivations of the resonances, we have used the
exact solution for all the cases. However, we also provide the small-argument approximation to
gain more physical modes or insights and to obtain the approximate locations of the resonances.
When the damping is moderately large, the small argument solution is found to be still accurate
enough, as compared to the exact solution. When the damping is small or zero (lossless), then
the exact solution must be used to derive the resonances [19].
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Fig. 2. Variation of the scattering coefficient An with various parameters.
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Fig. 3. The density plot of −ℜe(A1) versus μ2 and μ3.

3.1. Coated cylinders with metamaterial cores

The −ℜe(A1) values versus μ3 are now obtained (firstly, we consider the lossless cases) and
plotted in Fig. 2(a) and Fig. 2(b) for different values of q = k 0b and μ2. It is seen in Fig. 2(a) that
with increase of the inner radius a or the electrical size p = k0a, the μ3 values at resonances
become smaller. It is clearly seen that all values of −ℜe(A1) at resonances can reach their
peaks of 1, which is the same as light scattering by a single plasmonic cylinder. We can also
see in Fig. 2(b) that when q is increased to 0.2 and p = 0.05, the values of μ 3 at resonances
will decrease accordingly with the increase of μ2. The absolute values of μ3 at resonances
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Fig. 4. The energy distributions of the coated cylinder near resonances.

are very close to μ2. When the damping term is taken into consideration, −ℜe(A 1) values are
again plotted for different size parameters of p and q in Figs. 2(c)-(e). It is observed that even
with some very small dissipation, the scattering coefficients at resonances can be significantly
reduced in value. One can also see the changes in the bandwidth and peak values of −ℜe(A 1)
affected by μ ′′

3 . For different μ ′′
3 values, the positions of the resonances do not vary.

For solutions of the higher orders, we take n = 2 as an example; and −ℜe(A 2) values are
shown in Fig. 2(f). Without dissipation, the −ℜe(A2) can also reach its maximum of 1. A very
small value of μ ′′

3 can lead, however, significant reduction of −ℜe(A2) and the other higher-
order coefficients. This also explains why the higher orders are not interested in reality. The
dissipation has a greater effect on the higher modes than the lower ones.

The density plots of −ℜe(A1) versus μ2 and μ3 are shown in Fig. 3(a) and Fig. 3(b) for
different values of q = 0.1 and q = 0.2 (where q = k 0b denotes the electrical dimension of the
outer radius), when p is chosen to be p = 0.05. The resonance traces for both cases are clearly
observed from the contours of −ℜe(A1). From these figures, the relationships between μ2 and
μ3 at resonances are clearly depicted. The scale that we used in Fig. 3 is linear, and so are the
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subsequent figures.
The near-field energy intensity distributions near resonances are also obtained and plotted in

Fig. 4. The intensity is defined as I = E ·E� where E� stands for the conjugate of E. For all
figures shown in Fig. 4, we let μ2 = ε2 = 2 and ε3 = −2. The relative permittivities of μ3 are
given in the figures. We assume p to be fixed at 0.05 and let q vary from 0.06, via 0.1 to 0.2.
We can see that the energy in the coating region reaches the highest. We can also see that in
all the three cases, the scattered near-field energies can be enhanced which is because of the
increment of the scattering coefficients.

With larger values of q, however, the scattered fields become smaller relatively. This phe-
nomenon will be further discussed later. In Fig. 4(d), the resonance of a coated cylinder is
shown. The near-field energy can be still enhanced although it becomes much smaller in value
than that shown in Fig. 4(a). The energy distribution of a higher-order surface mode (n = 2) is
shown in Fig. 4(e). One can see that the near-field energy intensity is increased by many times.
If we take a very small damping term (i.e., the imaginary part of the relative permeability due
to the dissipation, μ ′′

3 = 0.01) into consideration, however, the energy distribution becomes, as
shown in Fig. 4(f), very common.

3.2. Coated cylinders with metamaterial coatings
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Fig. 5. −ℜe(A1) versus μ2 for different parameters.

For convenience, we label the smaller μ2 to correspond to the first resonance and the bigger
one to the second resonance. In Fig. 5, −ℜe(A1) versus μ2 is shown for different values of p
and μ3. It is clearly seen in Fig. 5(a) that for each p, there exist two resonances, one happens
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Fig. 6. The density plot of −ℜe(A1) versus μ2 and μ3 for the first resonance at q = 0.1 and
p = 0.05.
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Fig. 7. The density plot of −ℜe(A1) versus μ2 and μ3 for the first resonance at q = 0.2 and
p = 0.05.

when μ2 < −1 and the other occurs when μ2 > −1. Both resonances can reach as high as 1 at
their peaks. As p becomes smaller, the two resonances become closer to each other and nearer
to −1. We can see from Fig. 5(b) that for a bigger μ 3, both of the two resonances will increase
in level. Also −ℜe(A1) will reach its peak value of 1. This confirms our previous conclusion
made below (6). The effects of μ ′′

2 on the properties of −ℜe(A1) are shown in Fig. 5(c) to
Fig. 5(f). As shown in Fig. 5(f), −ℜe(A1) due to the lossless material can still reach 1 but its
bandwidth is narrow, which was not discussed elsewhere.

Depicted in Fig. 6 and Fig. 7 are the distributions of −ℜe(A1) versus μ2 and μ3. It is seen
that there also exist some resonant points with different combinations of μ 2 and μ3.

The energy intensity distributions in the near-field region near the first and second resonances
are shown in Fig. 8 and Fig. 9, respectively, where we assume ε2 = −2, ε3 = 2 and μ3 = 1. The
inner electrical radius p is fixed as 0.05 while q changes from 0.06 to 0.1. Two resonances
can be seen from the energy distribution. Although we have considered only the first order
mode here, the higher-order modes exhibit similar characteristics as those shown for the case
of the metamaterial core. Details of the resonances and their corresponding energy intensity
distributions will not be discussed herein.
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Fig. 8. The energy distributions of the coated cylinder near the first resonance.
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Fig. 9. The energy distributions of the coated cylinder near the second resonance.
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Fig. 10. The energy intensity I′ distributions of a coated cylinder near resonance illuminated
by TE plane wave.

4. Coated cylinders scattered by TE plane wave

For TE mode, the intensity is defined as I ′ = H ·H� where H� stands for the conjugate of
H. In Fig. 10, the energy intensity surrounding a coated cylinder is plotted, where p = 0.05,
q = 0.06, ε2 = μ2 = 2, ε3 = −1.26 and μ3 = −2. It is seen that the same energy intensity
distribution as that shown in Fig. 4(a) is obtained. It is apparent that the magnetic field around
the coated cylinder can be also enhanced. When the other parameters change, we can find the
trends similar to those of the TM incident wave.

It is apparent that the plasmonic materials can also satisfy the resonance conditions because
the negative relative permittivities they can produce. In Fig. 11, we plot the energy intensity
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Fig. 11. Energy intensity of coated cylinder with or without damping term illuminated by
TE plane wave.
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Fig. 12. Energy intensity of a silver coated nanocylinder.

of a coated cylinder with p = 0.05, q = 0.06, ε2 = 2, μ2 = 1, ε3 = −1.26 and μ3 = 1. As
anticipated, the near-field energy intensity increases significantly. When the damping term is
considered (ε3 = −1.26 + 0.1i), we can see that the energy intensity drops very rapidly, as
depicted in Fig. 11(b).

In Ref. 17, the optical constants of noble metals (copper, silver, and gold) are measured
in the spectral range 0.5-6.5eV using an oblique incidence thin-film technique. Herein, we
take the relative permittivity of silver to be ε3 = −27.4785+ i0.31452 which was given in
Ref. 17 at 1.64eV to see the optical properties of a silver coated nanocylinder, while the relative
permittivity of coating layer is ε2 = 38.3. The wavelength of the incident wave is λ = 758 nm.
The outer and inner radii are 24.128 and 12.064 nm, respectively. The energy distribution is
shown in Fig. 12, from which it is apparent that the near-field energy intensity can be very
high for plasmonic coated nanoparticles. This is vital for some applications in surface cleaning,
optical near-field etching and some others.

5. Peak values of the near-field energy intensity

How large can the scattered field be? From the previous analysis, we can see that the maximum
of the scattering coefficients is |ℜe(An)| = 1. The scattered field of the resonant mode is given
as

Esc
1 = −E0inH(1)

n (k1ρ)einθ . (14)
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It is clear that Eqn. (14) can be used to produce the maximum values of energy intensity. As-
sume E0 = 1 and the intensity of the nth order of the scattered field can be expressed as

Isn = 2|H(1)
n (k1ρ)|2. (15)

It is apparent that as n increases, we will have increased bigger values of I sn. Also for a
smaller k1ρ , we can also get a bigger Isn. The maximum value of Isn occurs when ρ = b. We
can see that as ρ becomes bigger, the Isn values decrease rapidly. Analytically, the total cross
section at resonances is approximately given by

σtotal =
8
k1

. (16)

For the resonances which are excited by TE wave and produced by the permittivities, the analy-
sis and characteristics are very similar, so details will not be discussed here.

6. Conclusion

We have discussed, in detail, the resonance properties of a coated cylinder illuminated by TM
and TE plane waves. The resonances are discussed for different parameters and cases assumed,
where the near-field energy distributions have been specifically considered and shown. The peak
values of the scattered energy distributions are clearly observed and mathematically described.
The related formulas of cross sections in closed form at different surface modes are derived,
although the later numerical calculations are only focused on the first order mode at n = 1.
The results obtained here to enhance the scattered energy in near-field region are important and
useful for the optical sensors and imaging.
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