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The excitation of a surface plasmon polariton (SPP) wave on a metal-air interface by a diffraction
grating under monochromatic normal illumination is investigated numerically. The influence of the
different experimental parameters (grating thickness, period, and duty cycle) is discussed in detail
for a semi-infinite metal and a thin film. Both engraved (grooves) and deposited (protrusions)
gratings are considered. The most efficient coupling to the SPP is obtained for a groove grating
which duty cycle is about 0.5. Furthermore a small grating depth of some tens of nanometers is
sufficient to excite a SPP mode with a coupling efficiency higher than 16% in each direction.
Implications for practical SPP experiments are discussed. © 2006 American Institute of Physics.

[DOLI: 10.1063/1.2401025]

I. INTRODUCTION

Surface plasmon polaritons (SPPs) are electromagnetic
modes confined to the close vicinity of a metal-dielectric
interface, which originate from oscillations of the electronic
charge density.l These modes propagate parallel to the inter-
face, on a length that depends on the geometry of the system
and ranges from some tens to several hundreds of microme-
ters. This phenomenon has a wide variety of applications,
including the miniaturization of electronic and light process-
ing devices” and the creation of optical biochip3_5 to study
complex macromolecules.

For all these applications, the efficient coupling of a
macroscopic external field to the SPP is a key issue, which
still remains quite challenging to realize practically. Indeed,
the parallel component of the SPP wave vector is longer than
that of a propagating incoming field, which therefore cannot
excite the SPP. A commonly used technique to overcome this
problem is based on the creation of an evanescent wave by
total internal reflection of an incident field on an interface
with a more refractive dielectric medium, thereby allowing
to fulfill the excitation condition.® This is usually realized in
the Kreshmann configuration, where a thin metallic film de-
posited on a glass substrate is illuminated from the glass in
total internal reflection. By conservation of the parallel com-
ponent of the incoming light wave vector, the SPP can be
successfully excited on the opposite metal-air interface.’

An alternative technique is the utilization of a localized
object, such as the tip of a scanning near-field optical micro-
scope or a defect deposited on the metallic surface, which
diffracts the incoming field into many components both
propagating and evanescent: some of these components then
fulfill the excitation condition of the SPP.>® Moreover, a
grating which period is close to the SPP wavelength allows
to increase the portion of wave vectors matching that of the

YE]ectronic mail: gaetan.leveque @epfl.ch
b)http://Www.namophotonis.ch/

0021-8979/2006/100(12)/124301/6/$23.00

100, 124301-1

SPP. However, any practical realization of such a coupling
structure is finite, which raises the question of the efficiency
of a small grating, composed only of a few periods. Actually,
it has been shown by Ditlbacher et al. that it was possible to
use only one metallic stripe deposited on a gold slab to excite
the SPP.'*!!

In this article, we present a numerical study of the SPP
excitation using finite gratings with a small number of peri-
ods. The corresponding parameter space is very large and
cannot be easily explored experimentally. The purpose of
this paper is to compute the optimal grating geometry for the
best energy transfer to the SPP from an external Gaussian
monochromatic field at normal incidence to the surface
mode. For that incidence, two SPPs are equally excited, one
in the forward direction and one in the backward direction.
Specifically, we study the influence of the periodicity, the
height, and the width of the grating on the coupling effi-
ciency. The calculations are performed with the dyadic
Green’s tensor method, based on the resolution of Lippmann-
Schwinger equation for the electric field."* " It is well suited
for the study of localized objects embedded in a dielectric or
metallic multilayered medium, both for two-dimensional
(2D) and three-dimensional (3D) geometries. Throughout the
paper we consider SPP propagating on gold and use the data
of Palik for its permittivity.15

The article is organized as follows: in Sec. II we first
investigate the properties of SPP propagating on a flat metal-
vacuum interface and then the influence of an infinite grating
on that interface. This section provides therefore reference
solutions based on infinite systems. In Sec. III, we study how
these results are modified when a finite grating with only five
periods is considered. The parameters of this grating are op-
timized to enhance the excitation of the SPP. Two systems
are studied: the first is a semi-infinite metallic space and the
second is a symmetric metallic slab. Finally, concluding re-
marks are given in Sec. IV.

© 2006 American Institute of Physics
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FIG. 1. (a) Dispersion curve of the SPP mode propagating at a free metal-air
interface. The diagonal solid lines correspond to the light lines w=|k|c. (b)
Dispersion curve of the SPP mode at a periodically modulated interface with
period L. The modes are characterized by their frequency and their longitu-
dinal wave vector ¢, inside the first Brillouin zone.

Il. SPP MODES OF AN INFINITE GRATING ON A
METAL-VACUUM INTERFACE

In this section we study the excitation of SPP on free and
corrugated interfaces in the case of an infinite grating.

A. SPP propagating on a free metal-vacuum interface

Let us first consider the characteristics of a SPP traveling
on a free metal-vacuum interface. The dispersion relation of
this SPP mode reads as'

1) e(w)
Gspp =" \/ w1’ (1)

where ggpp is the SPP wave vector, w the angular frequency,
and c the speed of light in vacuum. Equation (1) is shown in
Fig. 1(a) for a Drude-like metal susceptibility e(w).'®

The plasmon mode cannot be excited by a propagating
wave since its wave vector is always larger than the maximal
value allowed for waves propagating in the vacuum, Fig.
1(a). For instance, at A=633 nm the SPP wavelength in this
system is 596 nm and its propagation length is 12.1 wm. The
propagation length is defined as the distance over which the
amplitude of the SPP decreased by a factor of e as it propa-
gates. The amplitude of the SPP also decreases exponentially
away from the interface inside both media. At A=633 nm,
this decay length is 280 nm on the vacuum side and 32 nm in
the metal.
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FIG. 2. (a) Geometrical parameters of a grating of gold grooves engraved in
a semi-infinite gold space. The height of the modulated part is &, the width
of the grooves is a, and the period is L. (b) For a grating of protrusions, a
represents the width of the metallic part.

B. Modes of the corrugated interface

Let us now consider the effect of an infinite periodic
corrugation of the interface. We suppose that the corrugation
is along the x direction and invariant in the y direction, the
interface being overlaid with the (Oxy) plane as illustrated in
Fig. 2. The plane (0xz) is both the incidence and polarization
plane of the incident electric field. Figure 2(a) shows the
section of a rectangular groove grating, while Fig. 2(b)
shows a protrusion grating. Both structures are fully charac-
terized by three parameters (see Fig. 2): the period L, the
height % of the modulated part, and the width a of the defects
[for (a) grooves and (b) protrusions in Fig. 2]. It is also
convenient to define the duty cycle of the grating dc=a/L.

When such a grating is created onto a flat interface, the
SPP dispersion relation of the free metal-vacuum is modified
as follows."” In a first step, the curve is repeated periodically
in the reciprocal space each mK=m2m/L, where m is an
integer and K the unit Bloch vector of the grating as indi-
cated in Fig. 1(b). The new SPP modes are then described by
a wave vector inside the first Brillouin zone [-7/L,7/L]. At
the crossing points of two curves, two diffracted waves in-
teract, which lifts a degeneracy and forms a gap. A change of
the grating shape will modify the gap width and location. As
a consequence, the periodicity of the coupling grating for an
incident plane wave at normal incidence (¢,=0) does not
correspond to the plasmon wavelength of the free interface.
If we consider the dispersion curves in Fig. 1(b), where the
bold dashed line represents the wavelength of the excitation
light, we observe that SPP can now be excited by a plane
wave at normal incidence, since this dashed line intersects
the dispersion curve at ¢,=0.

In the case of an infinite grating, we compute the disper-
sion relation using the rigorous coupled wave analysis
(RCWA)."*?° Figure 3 shows the normalized intensity of the
electric field specularly reflected by an infinite grating of
grooves engraved in a semi-infinite gold space in vacuum
[Fig. 2(a)]. The reflection coefficient decreases when the
plasmon mode is excited since most of the energy then goes
into the SPP. The period is L=600 nm and the width a
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FIG. 3. Specular reflection coefficient of a plane wave incident on a grating
engraved inside a semi-infinite gold space (low values in black). The peri-
odicity is 600 nm and the width is 300 nm in the three cases. The depth of
the grooves is: (a) 10 nm, (b) 30 nm, and (c) 50 nm.

=300 nm for the three plots in Fig. 3 (dc=0.5); three differ-
ent depths are investigated. The solid line in Fig. 3 corre-
sponds to the periodically repeated dispersion curve of the
free surface, Eq. (1). For a shallow modulation depth (A
=10 nm), the dispersion curve is only slightly modified with
respect to the black line, see Fig. 3(a). The situation is rather
different for the larger depths of 30 and 50 nm, Figs. 3(b)
and 3(c). More precisely, a normal incident field with energy
2.0 eV (A=620 nm) is able to excite the plasmon mode of
the modulated metal-vacuum interface when the modulation
depth is smaller than 10 nm, but the coupling efficiency de-
creases a lot for larger values of 4. In that case it is necessary
to adapt the period and the width of the stripes in order to
optimize the coupling at a fixed wavelength. For the geom-
etries of Figs. 3(b) and 3(c), the period must be shorter than
the plasmon wavelength. That result is in complete agree-
ment with the calculations presented in Ref. 17. Finally we
can notice in Fig. 3(c) that the width of the gap at the origin
is very small, even for a depth of 50 nm. This arises from the
fact that this gap is formed by the interaction of two first
order diffracted waves and it is a second order lift of
degeneracy.17

Figure 4 shows the reflection coefficient for a plane
wave at normal incidence on a 50 nm depth groove grating
of varying period L and width a. The dark vertical area cor-
responds to the excitation of the plasmon mode. We can see
that the resonance condition does not depend much on the
width a, but is very sensitive to the value of the period L. As
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FIG. 4. Specular reflection coefficient of a plane wave incident on a groove
grating engraved inside a semi-infinite gold space [high values (maximum
of 1.0) in white, low values (minimum of 0.0) in black], with respect to the
period L and the width a of the groove.

a matter of fact, the area where the specular reflection coef-
ficient is minimum in Fig. 4 is elongated in the a direction
and very narrow in the L direction. Actually, the optimal
excitation is obtained for =290 nm and L= 520 nm, which
is smaller than the free space SPP wavelength. Additionally,
we can see that the value of the specularly reflected intensity
decreases for L>\, which is a consequence of the fact that
the first diffraction order becomes radiative, opening a new
loss channel.

lll. EFFECT OF FINITE SIZE

In the following we consider finite gratings. Hence an-
other parameter is the number of periods in the structure. It
will be set to 5 in order to limit the number of degrees of
freedom. Furthermore, the corresponding grating size is
similar to that of the illumination spot in a realistic experi-
ment. Because of the finite size, it becomes necessary to
distinguish between two kinds of structures, as illustrated in
Fig. 2. When gold is deposited on the interface, we will use
the expression protrusions, Fig. 2(b). When matter is re-
moved from the metal, we will as previously call it a groove
grating, Fig. 2(a).

Two plasmonic systems are studied in this section. The
first one is a semi-infinite metallic space, the second a sym-
metric metallic slab. The wavelength is fixed at A=633 nm
and the grating illuminated with a monochromatic Gaussian
beam at normal incidence, with a waist wy=6\ correspond-
ing to the length of the structure. The incident electric field is
parallel to the x axis.

A. Semi-infinite gold space

In order to evaluate the SPP excitation efficiency, we
compute the intensity of the field just above the metallic
surface (zp=0%) at x,=50 wm away from the center of the
grating (Fig. 2). This field intensity corresponds to that of the
SPP traveling on the metal. Figure 5 shows the evolution of
the intensity in (x,,z,) for three different grating depths £, as
a function of L and a. We can see that the intensity is maxi-
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FIG. 5. Electric field intensity in (xo=50 wm, z,=0%), normalized to the intensity of the incident field, as a function of the periodicity L and the width of the
defect a, for different heights /& of the modulated part: (a) #=40 nm, (b) ~=50 nm, and (c) h=60 nm.

mum for =50 nm. The corresponding period and width val-
ues are L=550 nm and =280 nm, which correspond to a
duty cycle of almost dc=0.5. The evolution of the maximal
intensity and duty cycle are plotted in Fig. 6 as a function of
the grating depth, for the groove grating. The difference be-
tween infinite and finite gratings can be attributed to the
larger spectral width of the finite structure and to impedance
mismatch at the transition between the modulated and the flat
interfaces at the edges of the finite gratings.

Figure 7 compares the results obtained with symmetrical
defects, i.e., an array of grooves, as in Fig. 5, and an array of
protrusions. The results are perfectly identical in the case of
an infinite grating excited by a plane wave when the trans-
formation L— L,a— L—a is applied to the groove data. This
is not anymore the case for a finite grating because of the
relative position of the protrusions/grooves with respect to
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FIG. 6. (a) SPP intensity in (x,z,) for optimal period and width parameters,
as a function of the height /. (b) Duty cycle for optimal coupling parameters
as a function of 4. Both curves correspond to a groove grating.

the flat metal interface. Moreover, this symmetry occurs only
in the case of the semi-infinite gold space and disappears
with a finite thickness metallic film: in that last case, the
average thickness is increased by a grating of protrusions and
decreased by a grating of grooves.

In Fig. 7, panels (a) and (b) [(c) and (d)] show the results
obtained with 2=50 nm (A=80 nm). Figures 7(a) and 7(c)
correspond to a grating of grooves, and the quantity L—a is
reported on the vertical axis, which represents the width of
the metallic part. Figures 7(b) and 7(d) correspond to a grat-
ing of protrusions plotted with respect to L and a, the width
of the metallic part. In the case of an infinite grating, these
two configurations should be identical.

We can first note by comparing Figs. 7(a) and 7(b) that
this correspondence is rather well verified for #=50 nm, the
amplitudes and the positions of the maxima being quite simi-
lar. On the other hand the agreement is good only qualita-
tively for 7=80 nm [Figs. 7(c) and 7(d)]. Note that two
maxima appear on these figures. The one with the largest
period is located around L=633 nm, which corresponds to
the illumination wavelength: just above this critical value,
the first diffraction order which is fully evanescent for L
<\ becomes radiative and diffracts parallel to the interface.
Additional simulations have shown that the amplitude of this
first diffraction order is very weak compared to the plasmon
amplitude up to 2=50 nm in the case of protrusions and h
=70 nm in the case of grooves. The fact that the first order
seems to appear for lower values of L than the wavelength is
probably due to the finite size of the grating, which increases
the number of wave vectors produced by the scattering of the
incident field on the structure (in other words, the grating
transmittivity is a broader band than it would be for an infi-
nite grating).

B. Symmetric gold film

Let us now consider the symmetric gold film, where the
metallic layer is embedded between two dielectric half-
spaces. A SPP propagating in such a system does no longer
obey the dispersion relation of Eq. (1). When the thickness of
the film is similar to the penetration depth of the field in the
metal, the SPP can feel the other surface and excite the cor-
responding wave. This coupling between the two interfaces
produces two new modes. If the surrounding dielectric ma-
terial is the same on each side, one mode is characterized by
a symmetric parallel component of the electric field E, with
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respect to the middle of the slab, while the other is
antisyrllmf:tric.21_24 This last one is the so-called long-range
SPP, which propagates on the longest distance. For example,
for a symmetric 70 nm thick gold slab at A=633 nm in air,
the wavelength of the E -antisymmetric mode is 609 nm, and
its propagation length is 31.2 um. For comparison, the
E -symmetric mode has a wavelength of 580 nm and a range
of 5.8 um.

Figure 8 shows the normalized electric field intensity at
the same location (xy,zy) as a function of the parameters L
and a for a five period grating deposited on a 70 nm thick
gold layer surrounded on both sides by vacuum. Figures
8(a)-8(f) show the results for a protrusion (groove) grating.
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FIG. 8. SPP normalized intensity in (x,,z) for a grating on a 70 nm thick
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FIG. 7. SPP intensity in (x,,y,) nor-
malized to the intensity of the incident
field, as a function of the period L and
the width a of the defect. Two differ-

600 650 700 ent grating heights are considered: [(a)
L (nm) and (b)] =50 nm and [(c) and (d)] &
%< 1073 =80 nm. Two types of gratings are in-
h vestigated: [(a) and (c)] groove grating
and [(b) and (d)] protrusion grating.
For comparison purpose, data for the
L5 groove grating are shown as a function
of L—a [(a) and (c)].
1
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The height of the defects is increased from ~2=40 nm to &
=060 nm. In the case of protrusions, the best coupling effi-
ciency is obtained for A=50 nm, L=580 nm, and a
=270 nm which gives a duty cycle slightly smaller than dc
=0.5. Additionally, as in Fig. 7(c), a second maximum ap-
pears when £ is larger than 60 nm, which corresponds to the
fact that the first diffraction order, which is then radiative,
becomes sufficiently intense to dominate the SPP intensity. A
comparison between the first row and the second row of Fig.
8 allows us to verify that the protrusion/groove symmetry
does not occur for a finite thickness slab. Indeed, the best
duty cycles are about dc=0.6 for # <60 nm and dc=0.4 for a
larger thickness. This effect is emphasized in Fig. 9. The
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gold layer in air. [(a)—(c)] protrusion grating and [(d)—(f)] groove grating. Three

different grating amplitudes are investigated: [(a) and (b)] #=40 nm, [(b) and (e)] #=50 nm, [(c) and (f)] 2=60 nm.
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FIG. 9. (a) SPP intensity in (xy,y,) for optimal grating period and width, as
a function of the height A. (b) Duty cycle for best coupling parameters (L
and h) as a function of h. Both curves correspond to a groove grating on a
gold slab.

optimal parameters for the groove configuration are h
=50 nm, L=600 nm, and a=360 nm. In this case the SPP
intensity is larger than the optimized value for protrusion
gratings. Hence a grating of grooves represents a more effi-
cient way to excite a SPP than a protrusion grating.

In the two configurations discussed in this section, the
semi-infinite gold space and the symmetric gold slab, the
parameters allowing the best coupling efficiency correspond
to a duty cycle between 0.5 and 0.6 and a modulation height
of h=50 nm.

It is possible to evaluate the power transferred to the SPP
by computing the norm of the difference between the inci-
dent Poynting vector and the transmitted one. We obtain a
coupling efficiency of 45%, that is, 22% in each direction in
the case of the semi-infinite gold space and 33% (16% in
each direction) for the symmetric gold slab. These values are
comparable to those obtained experimentally by Ditbacher et
al. for a gold slab on a silica substrate."!

IV. CONCLUSION

We have presented a numerical investigation of the ex-
citation of a SPP using finite gratings engraved in or depos-
ited on a metal surface. Both a semi-infinite gold space and a
symmetric gold slab surrounded by air have been investi-
gated. The geometrical parameters of these finite gratings
have been optimized to enhance the excitation of the surface
plasmon. For both geometries, the optimal duty cycle is ap-
proximately dc=0.5, the optimal modulation height
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=50 nm, and the best grating periodicity is smaller than the
SPP wavelength on the corresponding flat interface. Further-
more, we have shown that there are only very little differ-
ences between an array of protrusions and an array of
grooves in the case of a semi-infinite gold space, which cor-
responds to a rigorous property of an infinite grating illumi-
nated by a plane wave. However, this symmetry is broken for
a finite thickness slab due to the fact that the average thick-
ness of the slab is larger for an array of protrusions than for
an array of grooves: the most efficient coupling structure is a
groove grating and the optimal duty cycles are about dc
=0.6 if #<<60 nm and about dc=0.4 if 2>60 nm.

As a conclusion, a grating of grooves is more efficient
than a grating of protrusions. The period of this grating must
be smaller than that of the SPP mode on the free interface.
Additionally, there is no need for a large modulation depth of
the grating, some tens of nanometers are sufficient, and the
optimal duty cycle is generally around 0.5. For these optimal
parameters, the coupling efficiency to the SPP can reach
16%—-22% in each direction, even with a grating as short as
five periods.
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