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Abstract

The accepted model for light emission and propagation in organic LEDs (OLED) which consists of several optically
thin functional layers deposited on a thick substrate is a classical dipole located in the emitting layer. The propagation
of the emitted light is commonly described by a Fourier expansion of the dipole field into plane waves which represent
the various radiating and bound modes of the layered structure in k-space. To calculate the electric and magnetic fields
inside and outside the LED an integration over the individual plane waves has to be performed. This entails numerical
difficulties which can be overcome elegantly with the so-called Green’s tensor approach for stratified media recently
developed by the second author. In our contribution we demonstrate the applicability of this method to the computation
of electromagnetic field distributions in organic LED structures. Visualizations of typical field distributions arising from
individual dipoles are presented and discussed thus allowing a more intuitive understanding of effects relating to dipole
location and orientation and material absorption. Furthermore it is shown that scattering of bound modes by particle like
inhomogeneities of the layer structure can be effectively modelled with the Green’s tensor approach. Visualizations are
presented and discussed with regard to increased light extraction.

Keywords: numerical modelling, organic light emitting diodes, light emission, light extraction, dipole radiation,
stratified media, layered media, Green’s tensor

1. Introduction

  Improved light extraction is a key factor for increasing the efficiency of solid state light sources available on the
market today. Their lumen efficiency already surpasses incandescent sources by a factor of 2 and with further
improvements light emitting diodes could become a real competitor for fluorescent lamps in the near future. But even in
state of the art devices the major part of the internally generated photons remains trapped in the device: extraction
efficiencies vary between 10 to 50%, depending on the device structure and the emitted wavelength. For an overview on
light extraction techniques from inorganic light emitting diodes we recommend chapter 5 in  1 . Organic light emitting
diodes are described in 2, 3. For a review of light extraction from organic LEDs see 4, 5, 6, 7.
  The basic reason for light being trapped in the device is the high refractive index of the light emitting , cladding and
substrate layers 6, 7 : for inorganic LEDs this index can reach values well above 3 whereas for organic LEDs it can go up
to 2. Light emitted into these layers is then caught by total internal reflection at the interfaces between the high and low
index media and can only escape to the outside world through narrow angular cones perpendicular to the chip surfaces.
Simple considerations show that this is the case for only a fraction of about 1/n2 of the generated photons, where n is the
index of refraction of the emitting medium. In the framework of this simple geometrical optics model, light extraction
can be modelled quite accurately by raytracing techniques assuming isotropic emission, particularly for inorganic LEDs
and light trapping by thin film solar cells 8.
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  For more advanced designs like Resonant Cavity LEDs, 9 where the emitting layer is surrounded by several optically
thin layers, this simple model is no longer valid as interference effects have to be taken into account. All the more this
applies to organic LEDs which consist basically of a light emitting layer with a thickness of a few hundred nanometers
sandwiched between two metal electrodes of comparable dimensions  2, one of which is transparent, the whole stack
being deposited on a thick glass substrate. The full Maxwell equations have to be solved for a stratified medium made
up by the various layers for a dipole radiator located in the emitting layer in order to describe light emission and
propagation in such devices correctly. This classical problem of mathematical physics 17  was already tackled in the
beginning of the last century by Hermann Weyl and Arnold Sommerfeld, who gave solutions in terms of analytically
defined integrals with highly oscillating integrands which numerical evaluation proves to be difficult. In a more
mathematical language the problem amounts to solving the Helmholtz wave equation in a layered medium with
arbitrary permittivities (including absorbing and anisotropic media) for each layer, the right hand side being given by a
delta function describing the pointlike dipole source. As a matter of fact this is a standard problem in mathematical
physics, which solution is given as explained in the following sections by the Green’s tensor if we take the vectorial
nature of the fields into account. Providing another instance of  “the unreasonable effectiveness of mathematics in the
natural sciences” 11 the Green’s tensor and the plane wave expansion associated with it contains all the physics of the
problem like the existence of guided modes and plasmon-polariton modes arising from the metal electrodes 13, 14.
Knowledge of the Green’s tensor also allows to compute the spontaneous emission rate of the dipole in the framework
of quantum electrodynamics. Compared to other established methods of solving the Maxwell equations for the emission
problem in layered media like the Finite DifferenceTime Domain or modal methods, the Green’s tensor makes the
physical problem more transparent and tractable. Furthermore the method is not restricted to lossless and isotropic but
can also deal with absorbing and anisotropic media.16 . A further advantage of the Green’s tensor approach is the
possibilty to model light scattering by particle-like inclusions in the layers, including photonic band gap structures to
enhance light outcoupling 15, 18. But one has to keep in mind that light extracted from the thin layers into the thick glass
substrate can still be caught by total internal reflection at the glass/air interface. This can be mitigated by
microstructuring this surface 10.
  In this contribution we would like to attract the attention of the reader to a numerically very efficient and reliable way
of calculating the Green’s tensor 19 and demonstrate how it can be used to model light emission and propagation in
organic light emitting diodes. In this way we want to help to fulfil  “The promise of solid state lighting for General
Illumination” as advocated in the OIDA/DOE report 12 where quantitative modelling for optimization of light emitting
diodes is strongly recommended to progress towards higher lumen efficiencies of solid state light sources.
  The paper is organized as follows: in section 2 we introduce the Green’s tensor and outline an efficient numerical
scheme for its computation developed a few years ago by the second author and co-workers. We then discuss how it can
be used to model scattering structures included in the layers and how the computational load of these calculations can
be greatly reduced by exploiting the rotational and translational symmetries of the problem.
Section 3 starts with some general considerations of light emission and propagation in organic LEDs. Visualizations of
the Poynting vector fields describing energy flow in  typical OLEDs are presented. We then give some examples of
scattering calculations performed for single and small arrays of cylinders or spheres of subwavelength dimensions and
present some intriguing pictures of the energy flows arising from the scattering.
  The conclusion points out directions for further work also in comparison to other approaches to describe light
outcoupling by biperiodic grating structures, our aim being to establish a comprehensive quantitative model for light
extraction from OLEDs.

2. Modelling Light emission and propagation in stratified media

In this section we explain how the Helmholtz wave equation can be solved for a dipole emitter embedded in a layered
medium by the Green’s tensor.  Only the bare outlines can be given, for more details the reader should consult the
references 19, 20, 21, 22, 23, 24:

2.1 The Green’s tensor approach to dipole emission in layered media

  The presentation follows 17, 19 . Consider a radiating dipole with dipole moment p embedded in a medium of constant
permittivity ε at location r’. Its electrical field
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i t( , t) ( )e− ω=E r E r (2.1.1)

is then given by the Helmholtz equation

( ) ( )2
B Bk ( )′∇ × ∇× − ε = δE r E r p r - r . (2.1.2)

Bε  denotes the permittivity of the medium and  
2 2
B Bk = ω ε  and δ the Dirac function. It is well known that the

solution of this equation is

( ) ( )′= ⋅E r G r,r p , (2.1.3)

where  the 3x3  Green’s tensor is specified by

( )
2 2

B B B B
2 2 2 4
B B

ik R 1 3 3ik R k R exp(ik R)
with

4 Rk R k R

� �− − −′ ′= + + = −� � π� �
G r,r I I RR R r r

                                                                                                                                                                                      (2.1.4)

The Green’s tensor contains both a near and a far field component (for an interesting discussion with visualizations see
25).
  Let us now consider a layered medium where the permittivity is a piecewise constant function of z but does not depend
on x and y. We assume that there are only a finite number of layers bounded from above and below by infinite media of
constant permittivity and that the dipole is embedded in one of the layers. To obtain a solution of the Helmholtz
equation , i.e. the Green’s tensor for the layered medium, we observe that the electromagnetic fields from the dipole are
scattered at the layer interfaces. To account for this we consider the plane wave expansion of the form

( ) i j
ij ij x y z x y2 2

z B

k ki 1
G exp(ik (x x ) ik (y y ) ik z z )dk dk

k8 k

� �
′ ′ ′ ′= δ − − + − + −	 


π � �
��r,r

                                                                                                                                                                                      (2.1.5)

The indices i and j can take the values x,y and z and

2 2 2
z B x yk sign(z z ) k k k′= − − − . (2.1.6)

For i=j=z there is an additional term

( )2
B

1

k
′− δ r - r . (2.1.7)

We can now match these plane waves in each layer l with corresponding up and down going plane waves of the form

ij z x y zA (k )exp(ik (x x ) ik (y y ) ik (z z ))± ′ ′ ′− + − ± − (2.1.8)

with
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2 2 2 2 2
z l x y l lk k k k k= − − = ω ε (2.1.9)

to solve the source free Helmholtz equations. By the standard matching procedure for the electric and magnetic fields at
the layer boundaries the matrix coefficients Aij  can be obtained for each layer as rational algebraic functions of kz

using a standard recursive procedure. In this way a plane wave representation Gl of the Green’s function of the layered
medium is obtained in each layer l including the emitting layer.
The real space Green’s function is then given by integration of the plane waves. In cylindrical coordinates (ρ, ϕ, z) the
integration can be reduced to the evaluation of the so called Sommerfeld integrals whose integrands are given by
products of rational algebraic functions and highly oscillating Bessel functions. The efficient numerical evaluation of
these Sommerfeld integrals requires sophisticated numerical techniques 19, 26, 27 which description is beyond the scope of
this paper. With these numerical integration techniques fast and reliable evaluation routines for the Green’s tensor can
be constructed. On a modern PC with a processor speed of 1.6Ghz one evaluation of the Green’s tensor takes about
50msec. 19.
  The power W radiated by the dipole source p into the layered structure can also be readily evaluated from the Green’s
tensor 14: from electromagnetic theory it is given by

( ) ( )dip dip dipW 0.5 Im 0.5 Im ,∗ ∗= ω ⋅ = ω ⋅ ⋅p E r p G r r p (2.1.10)

If the Green’s tensor is decomposed in a “direct” and “reflected” contribution G = GD + GR arising from the scattering
at the layer boundaries we obtain

( ) ( )D dip dip R dip dipW 0.5 Im , 0.5 Im ,∗ ∗= ω ⋅ ⋅ + ω ⋅ ⋅p G r r p p G r r p (2.1.11)

This shows that the power radiated by the dipole (which gives its quantum mechanical decay rate)  is strongly
influenced by its layered environment.

2.2 Modelling of scattering structures for light outcoupling

  One possibility to enhance light outcoupling from organic LEDs is the incorporation of scattering structures into the
layers, to tap the guided and plasmonic modes 6, 15, 18, 22, 33, 32. To be effective the permittivity of these structures should
differ from the permittivity of the layer they are embedded in. One can think of small spheres or cylinders arranged in a
periodic fashion to produce photonic bandgap effects preventing the propagation of guided modes. Or of simple
particles for scattering the energy caught in the plasmonic modes. In this section we want to show how the Green’s
tensor for the stratified medium describing the organic light emitting diode gives a very effective means to perform such
calculations 21, 23, 24.

  Consider small particle like inclusions in the layered medium like shown in fig. 4 and let ( ) l∆ε = εr  if r is located

in layer l and  ( ) p l∆ε = ε − εr   if r is located in particle p and layer l.

Let 
dip ( )E r   denote the field produced by the dipole. The total field ( )E r  can then be obtained from the integral

equation

( ) ( ) ( ) ( ) ( )dip 2
0

scatter
volume

dr , k′ ′ ′ ′= + ∆ε�E r E r G r r r E r , (2.2.1)

where G is the Green’s tensor of the stratified background introduced in the previous section. This integral equation
looks deceptively simple. Unfortunately it is not at all obvious how to treat the singularity of the Greens function in the
integrand for r=r’. The usual procedure is to apply  some averaging of the Green’s tensor in a small volume around the
singularity to keep the integral meaningful.22

Proc. of SPIE Vol. 5214     251



  Remarkably the integration extends only across the volume of the scatterers which facilitates the solution
considerably. Other methods need to discretize the whole domain under consideration and introduce artificial boundary
conditions to limit its extension. A further advantage is that the total field is already determined by the values it takes on
the scattering volumes and therefore one needs to solve the integral equation only inside the scattering volume. In the
exterior the electrical field can be obtained by direct integration.
   To solve the integral equation numerically one subdivides the scattering volumes into elementary scattering volumes

Vi centered around locations ri  which linear dimensions should be in the order of 10λ ∆ε , where λ is the free

space wavelength of the dipole. The discretization then gives a linear system of equations of the form

( ) ( ) ( )dip 2
i i j 0 j j j i i ii

sites j i
, k V

≠
= + ∆ε + ∆ε�E E G r r r E S r E . (2.2.2)

The matrix SI describes the averaging performed on the singular volume and is given by a multiple of the identity
matrix 23. Depending on the size and number of the particles employed, this gives a dense linear system of the form
Ax=y with thousands of variables. Such systems can be solved efficiently by iterative methods 28 which require the
efficient evaluation of the matrix vector product Ax. For a system with 104 scattering sites for instance we would have
to evaluate the Green’s tensor 108 times which at the rate of ten evaluations per second would take several thousand
hours and require many GB of storage. Fortunately there is a simple way to overcome this obstacle, as described in the
next section.

2.3 Reducing the number of Green’s tensor evaluations for a given problem

  In the following we explain how to reduce in a very considerable way the number of evaluations of the Green’s tensor
for a given problem with or without scattering:  Assume for instance we want to calculate Poynting vector field
describing the energy flow arising from a single dipole. Then one first has to calculate the electric and magnetic field in
the points of interest and then form their vector cross product. If we want to compute the field distribution on a dense

grid of points i i i(x ,y ,z) i 1,...,n= =r  in a horizontal plane given by z=const caused by a dipole source

located at s s s s(x , y , z )=r , we have to evaluate the Green’s tensor i i 1,...,n=sG(r ,r ) .

If n is in the order of millions (grids with 1000 by 1000 points) this would require a long computation time even if one
evaluation only took a fraction of a second on a fast personal computer. Fortunately this computational load can be
decreased by orders of magnitude by exploiting the translational symmetry in the x-y plane and the rotational symmetry
around the z-axis of the layered medium which are inherited by theGreen’s tensor:

i s i i i s s s i s i s i s( , ) (x ,y ,z ,x ,y ,z ) (0,0,z ,x x , y y ,z )= = − −G r r G G (2.3.1)

by translational symmetry. Defining the horizontal distance between ri and rs by

2 2
i i s i sR (x x ) (y y )= − + − (2.3.2)

and exploiting the rotational symmetry around the z-axis, we obtain

i s i i s( , ) (0,0,z ,R ,0,z )θ −θ=G r r D G D (2.3.3)

where
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cos sin 0

sin cos 0

0 0 1
θ

θ − θ� �
� �= θ θ
� �
� �� �

D          with        i s i sx x y y
cos and sin

R R

− −θ = θ =

Hence by precomputing the Green’s tensor i s(0,0,z ,R,0,z )G  as a function of R in closely spaced intervals (say

1nm) in the range i imin R ...max R and storing the values in core memory ( only G11, G22, G33, G31  and G13  being

not zero), one can easily obtain i s( , )G r r  from (2.3.2) and (2.3.3) by linearly interpolating between two neighbouring

distance values. If we consider for instance a regular grid with 1000 by 1000 20nm grid cells we have  to perform about
30000 Green’s tensor evaluations instead of one million!
  Clearly this approach also applies to the case when all field points are located on one horizontal plane and all dipole
sources on another horizontal plane. If we subdivide the scattering structures such that the elementary scattering
volumes are all arranged in distinct horizontal planes, the matrix elements appearing in the integral equation can all be
precomputed for each combination of planes. The advantage of this is twofold: firstly not all the matrix elements have
to be stored (thus allowing systems with many elementary scattering volumes) and secondly the matrix vector products
needed to solve (2.2.2) iteratively can be calculated  easily on the fly if the volumes are arranged plane by plane. This
enables the application of iterative linear solvers also for complicated systems.

3. Model calculations and examples

  In this section we apply the Green’s tensor to the emission and propagation of light in organic LEDs. The first part
treats LEDs without scattering particles and offers visualizations of the power flow in a typical OLED. The following
part gives some examples of the effect of scattering on light outcoupling.

3.1 Modelling Light Propagation in unperturbed media

  The plane wave spectrum of the dipole with moment p describes how the power radiated by the dipole is shared by the
radiating, leaky and guided modes. The power going into a particular plane wave ( kx , ky ) can be obtained from the
formula (cf.  (2.1.11))

( ) ( ) ( )x y D x y R x y
ˆ ˆW k ,k 0.5 Im k ,k 0.5 Im k ,k∗ ∗= ω ⋅ ⋅ + ω ⋅ ⋅p G p p G p . (3.1.1)

DĜ denote the plane wave spectrum of the direct part and RĜ of the reflected part given in (2.1.5) and (2.1.8)  By

averaging the dipole positions and performing the respective integrals numerically, one can evaluate the power carried
by the various modes and the angular spectrum of the dipole radiation escaping from the device. For examples we refer
to the publications 29, 30 . To obtain the field distributions in the device 31  one needs to evaluate the full Green’s tensor.
Here we take an example from 4 : We consider an OLED on a glass substrate (n=1.55), covered by the following layers
(from bottom to top): ito (d=160nm, n=1.85+0.04I ), emissive organic layer (d=72nm, n=2.0 ) and an optically thick
metal cathode (n=0.18+i2.35). The emitting dipole is situated 40nm below the metal cathode and radiates at a
wavelength of 550nm. Figures 1-3 show the directions and magnitude of the Poynting vector fields in the x-z plane on a
logarithmic scale for the the x dipole (lying horizontally in the plane),  the y dipole (pointing out of the plane) and z
dipole (pointing upwards). One clearly recognizes the plasmonic modes at the interface of the organic layer and the
metal cathode and the waveguiding in the organic and ito layer. The values of the power flowing through the upper and
lower interfaces of the organic layer and into the glass have been calculated for the different dipole orientations: for the
vertical dipole orientation about two times more energy goes into the metal cathode than for the horizontal one and
about three times more “horizontal” than “vertical” light reaches the glass substrate.
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                          Fig. 1: Poynting vector field in the (x,z) plane through the dipole.
                          the arrows give the direction and the shading the magnitude on logarithmic
                          scale. The dipole is oriented in the x direction

                          Fig. 2: Poynting vector field in the (x,z) plane through the dipole.
                         The arrows give the direction and the shading the magnitude on logarithmic
                          scale. The dipole is oriented in the y direction

                           Fig. 3: Poynting vector field in the (x,z) plane through the dipole.
                           the arrows give the direction and the shading the magnitude on logarithmic
                           scale. The dipole is oriented in the z direction
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            Fig. 4:  configuration used for scattering calculations

3.2 Scattering by single particles and arrays

  In this section we apply the formalism described in section 2.2 and 2.3 to the scattering of the electromagnetic field  of
a dipole emitter by small cylindrical or spherical inclusions in an organic LED. We have chosen the structure described
in15 and depicted in Fig.4. The cylinders are assumed to have the refractive index of the glass substrate and are
surrounded by the SiNx layer with n=1.9. They have a radius of 200nm and a height of 400nm. For the spheres we
assume the same data, a radius of 200nm and the z location of the centre at 700nm. We have investigated the scattering
by small quadratic arrays of cylinders and spheres with one mesh measuring 600 by 600nm. To obtain the subdivision
of the scatterers into small volumes, they were surrounded by a tight fitting rectangular box. The enclosing box was
then subdivided into 25 by 25 by 25 small boxes of equal size and shape. The scatterer volume was then represented by
the boxes which center belonged to it.

Fig. 5:  Scattering of the radiation of a x dipole by a cylinder depicted in black in the lower picture. For comparison the
            upper picture shows the unscattered radiation. Location of the dipole at x=0, y=0 and z=-180. The arrows give
            the direction and the false colours the logarithm of the magnitude of the Poynting vector. Glass is at the bottom!
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              Fig.6: scattering of x dipole from single                                 Fig.7: scattering of x dipole from single
             cylinder in xy-plane at z=2000.                                               sphere in xy-plane at z=2000

                        Fig. 8: scattering of y dipole from single                    Fig.9: scattering of y dipole from single
                         cylinder in xy-plane at z=2000                                  sphere in xy-plane at z=2000 .

                Fig. 10: scattering of z dipole from single                        Fig. 11: scattering of z dipole from single
                cylinder in xy-plane at z=2000nm                                     sphere in xy-plane at z=2000nm
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                Fig 12: scattering of x-dipole by a 3 by 3 array                  Fig. 13: scattering of a x dipole by a 5 by 5 array
              of cylinders in xy-plane at z=2000nm                                  of cylinders in xy-plane at z=2000nm

          Fig. 14: scattering of y dipole by a 3 by 3 array                             Fig. 15: scattering of y dipole by a 5 by 5 array
         of cylinders in xy-plane at z=2000nm                                            of cylinders in xy-plane at z=2000nm

            Fig. 16: scattering of z dipole by a 3 by 3 array                         Fig. 17: scattering of z dipole by a 5 by 5 array
           of cylinders in xy-plane at z=2000nm                                        of cylinders in xy-plane at z=2000nm
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According to the results presented in15 these structures should be effective scatterers. In the following we assume that
the “centre” of the scattering structures is located at x=5000nm and the emitting dipole at x=0nm and y=180nm. In this
way we ensure that most of the light seen by the scattering structures only consists of leaky or bound modes. In our
computational experiments we have calculated the energy flow through a horizontal plane situated in the glass substrate
above the cylinders at z=2000nm. The normal of the Poynting vector was normalized with regard to the normal of the
Poynting vector arising from the same configuration without scattering. This local “outcoupling” factor is displayed in
the figures as a function of x and y either on a linear or logarithmic scale as appropriate.
  In a first series of experiments we have computed the scattering by a single cylinder or sphere for the various dipole
orientations (x, y, z) (Figs. 5 –11). It is noticeable that the pattern of the scattered light and the integrated outcoupling
factor strongly depends on the shape of the scatterer (cylinder or sphere) and the dipole orientation.
In a second series of experiments we have considered scattering by 3 by 3 and 5 by 5 arrays of spheres and cylinders.
Some representative results are shown in Figs.12-17.  We find the occurrence of  lines with very high and low
outcoupling factors most remarkable. This should be compared with the results obtained for periodic infinite arrays in
33, 32 .

Conclusion

  We have demonstrated that with an efficient numerical implementation of the Green’s tensor and some pedestrian
tricks to reduce the number of Green’s tensor evaluations for a given problem, light propagation and scattering by
arrays or clusters of particles in organic LEDs can be effectively modelled. Pertinent examples were presented using the
electrical Green’s tensor. To model  very large arrays or clusters of particles special methods of numerical linear algebra
28 to solve the integral equations could be investigated.
  To assess the outcoupling efficiency of a scattering structure for a given device one clearly would have to average the
incoherent contributions of the dipoles with regard to position, orientation and wavelength. This is certainly not possible
in a brute force way with the present approach and more sophisticated schemes using a periodic approximation are
called for33. Nevertheless we believe that our “atomistic” description can help to gain some understanding of the basic
scattering mechanisms for improved light outcoupling.
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