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[1] We use the Green’s tensor technique to study the optical processes taking place in
configurations typically used for the replication and characterization of nanostructures. For
the replication process we investigate light-coupling masks for optical contact lithography
and for the characterization process the mode scattered by a defect or a short grating in a
planar waveguide. Both configurations consist of structures embedded in a stratified
background composed of a stack of material layers with different permittivities. We
perform calculations for two-dimensional and three-dimensional structures and compare
their optical behavior. Our results show that the additional material interfaces in three-
dimensional systems can lead to significantly different field distributions and must be
taken into account for a complete understanding of the electromagnetic properties of the
systems. INDEX TERMS: 0689 Electromagnetics: Wave propagation (4275); 0649 Electromagnetics:
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1. Introduction

[2] Currently, feature sizes in integrated structures are
being pushed down toward the 100 nm limit. Such
small structures are not only required by the micro-
electronic industry [Semiconductor Industry Associa-
tion, 2001], but also for integration in optoelectronics
[Hunsperger, 1991]. Because these structures are
smaller than the wavelength of light, it is a challenge
to replicate them in an optical lithography process, as
well as to understand their optical response with a
standard characterization technique. Both processes rely
equally on the interaction of light with subwavelength
structures which are often embedded in a planar strati-
fied medium consisting of several layers with different
permittivities. Structured masks for optical contact
lithography [Cullmann, 1985] and ridges on a multi-
layered waveguide [März, 1994] are only two examples
of such systems with dielectric or metallic elements
distributed in a layered background. Other examples
stem from diffractive optics [Schnabel et al., 1999],
wafer inspection [Sung et al., 1999], or bio-optics

[Kahl and Voges, 2000]. The accurate computation of
light scattering in these structures is consequently very
important for the design and optimization of specific
components.
[3] Recently we presented a general technique for light

propagation and scattering in structures formed by a
stratified background with embedded scatterers [Paulus
et al., 2000; Paulus and Martin, 2001a, 2001b]. The
scatterers can be two-dimensional (2-D), extending infin-
itely in one direction, or three-dimensional (3-D), with
finite extension in all three directions. This approach is
based on the Green’s tensor associated with the stratified
background and provides a rigorous solution of the
vectorial wave equation with the boundary conditions
given at the different material interfaces.
[4] In the present paper we apply our approach to the

study of two exemplary configurations representing the
replication and the characterization processes of nano-
structures: Light-coupling masks (LCMs) for optical
contact lithography and mode scattering by a defect in
a planar waveguide. Our objective is to illustrate, from a
modeling point of view, the similarities between these
two classes of configurations.
[5] LCMs are siloxane polymer masks which have

proven to be an efficient alternative for high-resolution
sub-wavelength lithography [Schmid et al., 1998a,
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1998b]. The structures to be written in the photoresist are
defined as protrusions on the mask. Being in contact with
the photoresist, these protrusions guide and focus the
light into the resist layer (Figure 1a). To increase the
contrast, a thin gold layer is deposited at the noncontact-
ing parts of the mask. Using a 248 nm illumination
wavelength, LCMs allow the definition of structures in
the sub-100 nm range.
[6] As an example from integrated optics we consider

a silicon-on-insulator (SOI) planar waveguide with a
defect formed by a rectangular notch etched from the
top into the waveguide (Figure 1b). When a mode
propagates in the waveguide and scatters on the defect,
light is coupled out of the guiding layer and radiated into

the air and/or toward the substrate [Orobtchouk et al.,
2000].
[7] In section 2 we briefly describe our numerical

approach and in section 3 we show results of simulations
for the two configurations: LCMs are discussed in
section 3.1 and waveguide mode scattering is investi-
gated in section 3.2. In particular, we emphasize the
different effects related to 2-D or 3-D scattering ele-
ments. Finally, we summarize our work in section 4.

2. Model

[8] The two systems under study, LCM and planar
waveguide, are shown in Figure 1. Both structures
consist of a stratified background composed of L layers
with relative permittivity el, l = 1, . . ., L, and embedded
scatterers with relative permittivity e(r). These scatterers
correspond to the light guiding protrusions in the LCM
and to the defects in the waveguide. The scatterers can be
three-dimensional (3-D) with finite extension in all three
directions or two-dimensional (2-D) extending infinitely
in y direction. When such a system is illuminated with an
incident electric field E0(r) propagating in the stratified
background, the total field E(r) is given as a solution of

Figure 1. Cross-sectional view of the structures under
study. (a) The stratified background of an LCM consists
of the substrate, a bottom antireflection coating (BARC),
the photoresist, an air gap, an absorbing metal layer and
the mask backplane. The structure is illuminated from
the top by a plane wave with wave vector k0. (b) The
SOI waveguide consists of a Si and a SiO2 layer on top
of a Si substrate. The structure is illuminated by a mode
with propagation constant b.

Figure 2. Different types of incident electric fields are
possible for a given stratified background. In our
simulations, we use (a) for the LCM a normally incident
plane wave and (b) for the waveguide a guided mode.
For clarity the entire structures including the scatterers
are sketched.
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the vectorial wave equation by the electric field integral
equation (EFIE) [Tai, 1994]:

E rð Þ ¼ E0 rð Þ þ
Z
V

dr0G r; r0ð Þ � k20De r0ð ÞE r0ð Þ; ð1Þ

where G(r,r0) is the Green’s tensor associated with the
stratified background, k0

2 = w2e0m0 the vacuum wave
number and De(r) the dielectric contrast:

De rð Þ ¼ e rð Þ � ek; r 2 layer k: ð2Þ

The integration in (1) runs over the scatterers’ section (2-
D) or volume (3-D) V and can be evaluated numerically
for example on a rectangular grid [Martin and Piller,
1998] or with tetrahedral finite elements [Kottmann and
Martin, 2000]. It is important to note that the scatterers
do not have to be embedded inside one background layer
but can extend over several layers (the mask protrusions
in Figure 1a cover both the metal layer and the air gap).
[9] The incident field E0(r) must be a solution of the

vectorial wave equation in the bare stratified back-
ground. Since this solution is not unique, different types
of excitations are possible for a given material system.
Figure 2 shows the incident fields used for the structures
under study: The LCM is illuminated from the top by a
plane wave with circular polarization (Figure 2a), and the
waveguide is fed with a guided mode propagating inside
the structure (Figure 2b). A further choice for E0(r) could
be for example a dipolar source embedded in the system
or a surface plasmon propagating along the surface of a
metallic layer.
[10] Since the integration in (1) runs only over the

scatterers’ volume, the discretization is also limited to the

scatterers, the stratified background being accounted for
by the Green’s tensor. More precisely, we only have to
discretize the light guiding protrusions for the LCM
simulation and the notch defects for the waveguide
simulations. A further advantage is that the boundary
conditions at the edges of the computation window as
well as at the different material interfaces are perfectly
and automatically fulfilled. They are already included in
the Green’s tensor and do not require any special treat-
ment to avoid unphysical reflections as is the case with
many other computational approaches [Bérenger, 1999].
[11] Whereas G(r,r0) for an infinite homogeneous

background can be expressed analytically, this is not
possible when the background is stratified. However, in
that case a numerical solution for G(r,r0) based on
Sommerfeld type integrals can be found. This quadrature
is intricate because it involves several poles and branch
cuts associated with the different electromagnetic modes
that can be excited in the stratified background [Chew,
1995]. We recently developed an efficient computation
technique for the evaluation of the Green’s tensor in a
stratified medium with 2-D or 3-D scatterers and refer
the reader to Paulus et al. [2000] and Paulus and Martin
[2001a, 2001b], where this technique is discussed in
detail.

3. Numerical Results

3.1. Light-Coupling Masks

[12] For our study of LCMs we consider an isolated
line with a width d = 100 nm as feature to be replicated.
This line extends either infinitely in the y direction or is a

Figure 3. Electric field intensity distribution in an LCM structure comprising (a) a 2-D line (100
nm) and (b) a 3-D linelet (100 	 400 nm2) at a wavelength l = 248 nm. Cross-sectional view
through the center of the structure (xz plane, y = 0). The color coding of the intensity is supported
by isointensity lines representing increments of 10%.
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short line with length 4d, a so-called ‘‘linelet.’’ In the
first case, a 2-D model is appropriate, whereas the latter
case requires a fully 3-D treatment. The results presented
here refer to a circularly polarized plane wave illumina-
tion normal to the mask surface, with a vacuum wave-
length l = 248 nm (the intensity of the incident field is
normalized to unity). The relative permittivities are e =
2.25 for the polymer mask background, e = 2.5 for the
photoresist, e = �0.9 + i4.3 for gold, and e = �9 + i11
for the silicon substrate [Optical Society of America,
1995]. The total height of the protrusion is 80 nm and the
thickness of the gold absorber is 20 nm. To reduce the
otherwise disturbing interference pattern due to reflec-
tions from the Si substrate, a 60 nm-thick bottom anti-
reflection coating (BARC, e = 1.98 + i1.23) is deposited
on top of the substrate [Macleod, 1986]. The effect of the
BARC for the incident plane wave illumination can be
observed in Figure 2a, where the stationary wave in the
resist layer is completely suppressed.
[13] The determinant parameter to characterize a given

exposure is the electric field intensity I = E � E* in the
photoresist. Figure 3 shows cross-sectional views of the
intensity distributions for the 2-D line and the 3-D
linelet. Let us first mention that in both cases, in spite
of the BARC, a weak stationary wave can be observed in
the resist layer: The BARC is only optimal for a plane
wave with a specific angle of incidence. The field guided
through the protrusion into the photoresist, however, is
not anymore a simple plane wave so that a weak
interference pattern cannot be avoided.
[14] The overall intensity distributions for the 2-D and

3-D structures are quite similar. A closer look to the
isointensity lines shows however that the intensity
transmitted through the protrusion is larger for the 3-D
linelet than for the 2-D line. For a more quantitative
comparison we report in Figure 4a line cuts of the
intensity in x direction at different depths in the photo-
resist, z = �10 nm, z = �100 nm, and z = �200 nm.
Directly below the mask, at z = �10 nm, the two profiles
are qualitatively similar with the maximal intensity being
larger for the 2-D line. At z = �100 nm the profiles are
nearly identical, but now the maximal intensity is slightly
larger for the 3-D linelet. This situation changes at z =
�200 nm, where the 3-D linelet shows a larger intensity
and a broader field distribution. Note that for the 2-D line
the relative intensity at the corners of the targeted
structure is I 
 0.55 at all three depths, providing steep
edges of the developed photoresist. For the 3-D linelet
the targeted structure is defined by the I 
 0.55 iso-
intensity line at z = �10 nm and z = �100 nm, but by I 

0.7 at z = �200 nm, leading to a broadening of the
replicated structure in the photoresist depth. This confirms
our observation from Figure 3: The mask protrusion’s
finite length in y direction increases the transmission as the
additional material interfaces at the protrusion’s endings

augment the light throughput into the resist layer. Let us
mention that this behavior is independent of the incident
field polarization and can also be observed when E0(r) is
linearly polarized in x or in y direction (not shown).
[15] The influence of the linelet’s finite length is of

course much more pronounced in y direction, where, in
contrast to the translation invariant 2-D structure, the
transmitted light is confined by the additional material
interfaces. Figure 4b shows line cuts through the inten-
sity distributions in y direction at the same depths used
previously. The profiles generated by the 2-D line are
simply constant with the intensity values given in Figure

Figure 4. Intensity distributions at different depths in the
photoresist, z =�10 nm, z = �100 nm, and z =�200 nm,
for the 2-D line (thin) and the 3-D linelet (thick). Line
cuts computed (a) along the x direction at y = 0 and (b)
along the y direction at x = 0. The bar represents in
Figure 4a the original line width and in Figure 4b the
length of the original 3-D linelet.
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4a at x = 0. For the 3-D linelet, however, we observe
important intensity variations. Close to the mask at z =
�10 nm, in the near field of the aperture, the intensity
distribution is determined by a resonance in the linelet
with two maxima. Less pronounced, this resonance is
still visible at z = �100 nm. At z = �200 nm the two
maxima merge into one single maximum. In practice,
however, the photoresist is developed down to a certain
intensity threshold and the intensity distribution above
this threshold becomes irrelevant.
[16] For y 
 ±220 nm all three line cuts cross with a

relative intensity I 
 0.3. At this point, steep edges
provide a reliable replication of the linelet, but one must
realize that the reproduced structure is 
10% longer than
the original linelet.
[17] Note that the line cuts in Figure 4a are computed

in the y = 0 plane. From Figure 4b we learn that this
plane corresponds to the minimum with respect to the y
direction for z = �10 nm and z = �100 nm, but to the
maximum for z = �200 nm. Further, the 3-D value at x =
y = 0 is smaller than the corresponding 2-D value for z =

�10 nm, but larger for z = �100 nm and z = �200 nm, in
agreement with the results obtained from Figure 4a.

3.2. Scattering in Planar Waveguides

[18] Let us now consider the SOI waveguide shown in
Figure 1b with a 2-D or 3-D rectangular notch etched
from the top into the upper Si layer. The notch extends
500 nm in x direction and, in the 3-D case, also 500 nm
in y direction. The relative permittivities at the consid-
ered wavelength l = 1300 nm are e = 12.3 for the Si and
e = 2.1 for the SiO2 [Optical Society of America, 1995].
[19] Figure 5 shows electric field intensity distributions

I = E � E* when the waveguide is illuminated with a TE0

mode (electric field polarized in y direction) propagating
in +x direction (the mode is normalized so that the
maximum electric field intensity is unity). In the cross-
sectional view (Figure 5, top row) the field distributions
for the 2-D and the 3-D geometries are quite similar, the 2-
D notch leading to more light coupled out of the wave-
guide. In the top view (Figure 5, bottom row) the differ-

Figure 5. Electric field intensity distribution for the SOI waveguide structure with (a) a 2-D (500
nm 	 300 nm2) and (b) a 3-D (500 	 500 	 300 nm3) notch. A TE0 mode at a wavelength l =
1300 nm propagating in +x direction is used as illumination. The top row shows cross-sectional
views through the center of the structure (xz plane, y = 0), the bottom row shows top views in the
upper Si layer (xy plane, z = �150 nm).
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ences between 2-D and 3-D become much more obvious.
The interaction of the incoming field and the field
scattered by the 2-D notch leads in backward direction
to a stationary wave parallel to the y axis, the translation
axis of the system (Figure 5a, bottom row). In forward
direction the transmitted mode propagates further with
decreased intensity. A much more complex interference
pattern is created by the 3-D notch (Figure 5b, bottom
row). In backward direction the stationary wave now
forms a system of fringes and in forward direction we
recognize the diffraction pattern of the rectangular notch.
We already discussed this behavior for the replication of
3-D features with LCMs in Figure 4: Whereas a 2-D
structure leads to a homogeneous field distribution in y

direction, the field of the 3-D structure has significant
variations in this direction.
[20] Let us now study the effect of the defects on the

signal measured far away from the structure. Figure 6a
shows the angular distribution of the radiated far field
intensity for the 2-D and the 3-D notch. The radiation
pattern are qualitatively very similar, but, as we already
observed in Figure 5, the perturbation of the mode is
much stronger with a 2-D notch interrupting the mode
completely. The radiation lobes both in the air and the
substrate are rather broad, with maxima at f = 78� and
f = 290� corresponding to a radiation in forward
direction. More energy is coupled into the substrate than
into the air. This characteristic radiation pattern changes,
when additional defects are deposited on the waveguide.
Figure 6b reports the far field intensity for 10 and 20 2-D
scattering elements, forming two short gratings with a
periodicity d = 400 nm and a 0.5 filling factor. The lobes
become more narrow with an increasing number of
elements, creating two well defined beams of outcoupled
light at f = 93� into the air and at f = 268� toward the
substrate. The gratings radiate into small angular ranges
approximately normal to the waveguide surface. At the
same time, the maximum outcoupled intensity increases
with the number of elements. It is remarkable that the
radiation is now strongest into the air with the maximum
intensity being approximately five times larger than that
toward the substrate. This behavior is significantly differ-
ent from that of a single notch, where the scattering into
the substrate was dominant (compare Figures 6a and 6b).

4. Summary

[21] Configurations used for the replication and those
used for the characterization of nanostructures are often
similarly formed by elements embedded in a stratified
background. In both systems, the scattering and prop-
agation of light determines the total electric field distri-
butions; hence it determines the experimentally measured
quantities. In this paper we applied the Green’s tensor
technique to investigate two representative configura-
tions: light-coupling masks for optical contact lithogra-
phy and mode scattering in a planar SOI waveguide. The
Green’s tensor technique is very well suited for this type
of structures because the optical processes in the strati-
fied background are accurately described by the Green’s
tensor. This technique can handle both 2-D and 3-D
systems, which allowed us to compare their correspond-
ing scattering properties. Although 2-D calculations are
generally less computing intensive, our results indicate
that a 2-D model is only valid when the electromagnetic
field is so well localized that edge effects become
negligible. For many practical configurations these edge
effects must be taken into account for a complete and
correct description of the optical processes.

Figure 6. Angular distribution of the scattered far field
intensity for the SOI waveguide with (a) one single 2-D
(left scale) or 3-D (right scale) notch and (b) a short
grating consisting of N = 10 or N = 20 2-D lines. The
inset in (b) shows the definition of the angle f. The TE0

mode is used as illumination.
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