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Abstract

Ž .This paper presents an extension of the generalized multipole technique GMT for 2D anisotropic scatterers. New
expansions similar to the Bessel multipole expansion are derived for arbitrary anisotropic media. Numerical simulations
prove the accuracy and the rapid convergence of these expansions. As the results obtained are extremely accurate, this
technique is most helpful for the evaluation of reference solutions and for the understanding of the physical interaction of
light with arbitrary anisotropic media. q 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

Ž .The generalized multipole technique GMT is a power-
w xful method for 2D and 3D scattering calculations 1–5 . It

has been used for the study of numerous physical prob-
w xlems, such as for example antennas 6 , near field mi-

w x w x w xcroscopy 7 , waveguides 8 , scattering by particles 9 ,
w xand absorption by human bodies 10,11 .

Over the last few years this technique was extended to
w xhandle different situations, as periodic scatterers 12 , static

w x w xproblems 13 or the scattering of a Gaussian beam 14 . In
this Letter, 2D anisotropic expansions are derived for
GMT. As they include arbitrary anisotropy, magneto-optic
scatterers can also be considered.

The theory of GMT is summarized in Section 2. The
expansions for anisotropic media are derived in Section 3.
Numerical simulations including comparisons with cou-

Ž .pled-dipole approximation CDA results are presented in
Section 4. Finally the results are summarized in Section 5.

2. The generalized multipole technique

Let us consider a scattering system embedded into an
infinite homogeneous system DD and illuminated by an0

0Ž . � 0Ž . 0Ž .4incident field c r s E r ;H r . The scatterer is
decomposed into a series of homogeneous domains DD .i

DDiŽ . � DDiŽ . DDiŽ .4For each domain the total field c r s E r ;H r
is represented by an expansion formed by a set of N DDi

DDiŽ .functions c r :n

N DDi

DD DD DDi i ic r s a c r , 1Ž . Ž . Ž .Ý n n
ns1

where a DDi are unknown parameters and each functionn
DDiŽ .c r fulfills Maxwell equations in the correspondingn

domain. For the embedding medium DD each function0
DD0Ž .c r has also to fulfill the radiation conditions at infin-n

0Ž .ity; furthermore, the incident field c r is also taken into
account in DD :0

N DD0

DD 0 DD DD0 0 0c r sc r q a c r . 2Ž . Ž . Ž . Ž .Ý n n
ns1

The unknown parameters a DDi are evaluated using then

boundary conditions. More precisely, the boundaries be-
tween the different domains DD are discretized and thei

parameters a DDi are chosen such that the sum, over then

discretization points, of the mismatch on the boundary
conditions is minimized. This results in a linear system of
equations to be solved with a least square algorithm. The
system of equations has N unknowns and CD equations,
where N is the total number of parameters, D the number
of discretization points and C the number of field compo-

Žnents considered in the error definition 6 in a general 3D
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.problem . To obtain secure results the system of equations
has to be strongly over-determined.

The choice for the origin and order of the expansions is
the main difficulty of GMT. Indeed the expansions must
be able to represent the field inside the corresponding
domain, otherwise the solution cannot converge. The con-
vergence can be tested by observing the residual error on
the boundary conditions. If this error is not small enough
another simulation has to be performed with a better
expansion set.

For a more detailed descriptions of GMT the interested
w x w xreader is referred to Refs. 12 and 15 .

3. Anisotropic 2D expansions

The most commonly used expansions for GMT are the
w xmultipoles 2 . While different kinds of multipole expan-

sions exist, we restrict our study to the multipole expan-
sion with Bessel function as radial dependence. This ex-

Ž .pansion is called Bessel multipole expansion BME and is
generally well suited for any simply connected closed
domain.

To derive the anisotropic 2D BME, the isotropic Bessel
multipole is first represented by a plane wave expansion.
This representation is then generalized for the anisotropic
case, forming the expansion functions of the anisotropic
2D BME. Considering a special case of this representation,
a second expansion is then derived to reduce the numerical
requirements.

Considering the z-direction as the translation symmetryˆ
of the 2D problem, the electric field of the 2D transverse

Ž . w xmagnetic TM Bessel multipole of order m is 16 :

TM < < imfE r skJ k r e z , 3Ž . Ž . Ž .ˆm m

Ž .where f is the argument of the position vector rs x, y ,
k the wave number of the corresponding domain and z theˆ
unit vector pointing in the z-direction. The TM-BME ofˆ

TMŽ . Ž .order M, E r , is the series of the function 3 with
msyM, . . . , M:

M
TM TME r s a E r , 4Ž . Ž . Ž .Ý m m

ms yM

where a are the expansion parameters.m

Using the integral representation of the Bessel function
w x Ž .17 , the Bessel multipole 3 becomes

iym
2pTM TM imuE r s e r e du , 5Ž . Ž . Ž .Hm u2p 0

TMŽ .where e r represents the electric field of a TM planeu

wave propagating in the u-direction:

eTM r sk e ikŽ xcosŽu .qysinŽu .. z . 6Ž . Ž .ˆu

Ž .Eq. 5 is the plane wave expansion of the Bessel
multipole for isotropic media. For the anisotropic case, the

Ž .isotropic plane waves in Eq. 5 are replaced by plane
waves propagating in the corresponding anisotropic
medium. Such a plane wave is given for example by Chew
w x TM18 . In an anisotropic medium, the wave number k is au

solution of an eigenvalue problem and the direction of the
TM Želectric field z the corresponding eigenvector actuallyu

Ž TE TE.a complementary solution k ,z exists for the trans-u u

Ž . .verse electric TE polarization . The TM plane wave is
then:

eTM r skTM e ikTM
u Ž xcosŽu .qysinŽu .. zTM . 7Ž . Ž .u u u

Ž TM TM.As an example, the solution k ,z for an anisotropicu u

medium with diagonal m and e tensors is

v
TMk s , 8Ž .u y1 y1 2 y1 y1 2m e sin u qm e cos uŽ . Ž .( x x z z y y z z

and

zTMsz . 9Ž .ˆu

As we see, it is unfortunately not possible to evaluate
Ž .analytically the integral in Eq. 5 for the anisotropic plane

Ž Ž ..wave Eq. 7 . Therefore a numerical approximation for
the anisotropic Bessel multipole has to be made, replacing

Ž .the integral in Eq. 5 with a sum,

ym Py1i 2p p
TM TM imuE r s e r e , with us ,Ž . Ž .Ým uP Pps0

10Ž .

where P is the number of plane waves used for the
approximation.

Ž Ž ..The computation of BME Eq. 4 requires a series of
TMŽ . Ž .E r for msyM, . . . , M. As Eq. 10 represents am

discrete Fourier transform, the evaluation of the series
TMŽ .E r for msyM, . . . , M can be strongly speeded upm

Ž .by using the fast Fourier transform FFT . Choosing P
Ž .large enough, Eq. 10 gives an accurate representation of

the anisotropic Bessel multipole in the considered domain
and can therefore directly be used to build up the

Ž Ž ..anisotropic BME Eq. 4 . This anisotropic BME is tested
in Section 4 with Ps16M.

Actually, a large P value is not mandatory. Indeed, as
Ž .each anisotropic plane wave 6 fulfills the Maxwell equa-

tions, so does the approximation of the Bessel multipole
Ž .10 . Therefore it can be used directly as GMT expansion
without any loss of accuracy, even if P is small. Yet, a

Ž .lower limit for P exists. Indeed, introducing Eq. 10 into
Ž .Eq. 4 gives

Py1 2p p
TM TME r s b e r , with us , 11Ž . Ž . Ž .Ý p u Pps0
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where b represents the weight of the pth plane wave:p

M ymi 2p p
b s a exp im ,Ýp m ž /P Pms yM

with ps0, . . . , Py1 . 12Ž .
Ž .If P-2 Mq1, Eq. 12 represents an underdetermined

system of equations. This means that different values for
the parameters a can be chosen to represent the samem

weights b and therefore the same field. Such underdeter-p

mined expansion is not suitable for GMT. Therefore the
number of plane waves must at least be equal to the

Ž .number of expansion functions i.e. PG2 Mq1 .
Considering the case where Ps2 Mq1, we remark

Ž .that Eq. 12 is a fully determined system of equations.
The parameters a being determined by the parameters bm p

Ž .and vice-versa. This means that the expansion in Eq. 11
with the unknown parameters b , is totally equivalent top

the approximation of the Bessel multipole expansion with
Ž .Ps2 Mq1. We call this new expansion 11 plane wave

Ž .expansion PWE . The anisotropic plane waves are directly
used in the PWE. This is advantageous from a numerical
point of view as no summation or FFT is required. Numer-

Ž . Ž .Fig. 1. TE Bessel multipole of order 1 for a isotropic, b
anisotropic media. For the anisotropic medium e is four timesx x

e and all the non-diagonal elements vanish.y y

ical simulations in Section 4 demonstrate the good accu-
racy with the PWE.

The magnetic field of the expansions is also required
by the GMT. This field is simply obtained by using the
magnetic field of the corresponding anisotropic plane waves
w x18 .

Only the TM case has been explicitly derived in this
section. The TE expansion is obtained in a similar way by
considering the magnetic field instead of the electric field.

As illustration, the electric field of the TE Bessel
Ž .multipole of order ms1 is represented in Fig. 1 a for an

Ž .isotropic medium and in Fig. 1 b for an anisotropic
medium. While the isotropic case shows circular symmetry
Ž Ž ..Fig. 1 a , the anisotropic one has an elliptical structure

Žcorresponding to the ellipticity of the optical tensor Fig.
Ž ..1 b .

4. Simulations

To assess the accuracy of the anisotropic BME and
PWE, we compare numerical results with a reference
solution obtained with the coupled-dipole approximation
Ž .CDA , a numerical method also known as discrete-dipole

Ž . w xapproximation DDA 19–21 . The physical problem is an
anisotropic dielectric cylinder in vacuum, illuminated by a
TM plane wave. The radius of the cylinder is equal to the
wavelength of the embedding medium and the dielectric
tensor of the cylinder shows strong non-diagonal elements:

2 yi 0
es . 13Ž .i 2 0

0 0 1

wSuch a material is similar to magneto-optic materials 22–
x24 . Strong non-diagonal elements have been expressly

chosen to emphasize the anisotropic behavior while moder-
ate diagonal elements ensure a very accurate reference
solution by CDA.

Let us define the relative error

< < ref < < 2E r yE rŽ . Ž .
C r s , 14Ž . Ž .2ref< < < <E rŽ .

Ž .between the electric field E r obtained by GMT and the
refŽ .electric field E r of the reference solution. In order to

measure the overall accuracy of the computation we also
² : Ž .define the global error C as average value of C r over

the entire scatterer.
² :The global error C is reported in Fig. 2 as a function

of the number of parameters N DDc for the expansion repre-
Žsenting the field inside the cylinder, both for BME Ms

Ž DDc . . Ž DDc .N y1 r2 and PWE PsN . We first remark that,
in both cases, the error is large for N DDc smaller than 15.
This is caused by an expansion order too low to represent
the field inside the cylinder. The results are inaccurate but
this inaccuracy is pointed out by the GMT, the mismatch
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² :Fig. 2. Global error C between the electric field computed with
Ž .GMT and with CDA reference solution , as a function of the

number of parameters for the GMT expansion representing the
Ž .field inside the scatterer. Both plane wave expansion PWE and

Ž .Bessel multipole expansion BME are investigated. The scatterer
Ž Ž ..is an anisotropic dielectric cylinder e is given in Eq. 13 of

Ž .radius equal to the wavelength in the embedding media vacuum
and is illuminated by a TE plane wave.

Ž .on the boundary conditions being large Section 2 . For
DDc ² :N larger than 15 the error C decreases and converges

rapidly. In this decreasing part, the horizontal distance
between both curves is approximatively equal to 2. This
means that only 2 additional parameters are required by
PWE to get the same accuracy as BME. For N DDc larger

² : Ž .than 20, a saturation of C is visible Fig. 2 . This is
caused by the finite precision of the reference solution.

ŽAlthough a very fine discretization was used for CDA 80
.cells per wavelength in vacuum the accuracy of GMT

solutions becomes rapidly higher than the reference solu-
DDc ² :tion. For N )20, the value of C represents then the

accuracy of the reference solution and the accuracy of
Ž .GMT simulations both for BME and PWE are assumed

to continue their convergence, as we have observed in the
isotropic case using the MIE reference solution.

To prove that the reference solution is the real cause of
² :the saturation of C , we effectuated the same conver-

gence study as in Fig. 2 with different discretizations for
the CDA reference solution. Using a 2 times finer, respec-
tively rougher discretization we obtained exactly the same
curves as in Fig. 2 except that the saturation of the
convergence was 2 times lower, respectively higher. Fur-

Ž . DDcthermore, in Fig. 3 a we observe for N s33 that the
Ž .relative error C r is concentrated on the object boundary.

Such an error distribution is typical for CDA, as has been
w xshown recently 25 . On the other hand, a GMT calculation

Ž DDc .with fewer parameters e.g. N s17 , which corresponds
to a less accurate representation of the field, does not
produce an error concentrated on the object boundary but

Ž Ž ..spread over the entire cylinder Fig. 3 b .
The convergence has been studied for different materi-

als and types of anisotropy. In each case, the number of

parameters required either by PWE or BME to obtain a
given accuracy is very similar.

The electric field at the time ts0 computed by PWE
DDc Ž . Ž .with N s33 is represented in Figs. 4 b and 4 c and is

Ž Ž ..compared to an isotropic example with es2 Fig. 4 a .
The incident field is a plane wave of unity amplitude

Ž . Ž .propagating in the x-direction for Figs. 4 a and 4 b andˆ
Ž .yx direction for Fig. 4 c . As the dielectric tensor isˆ

similar to that of magneto-optic media, interesting behav-
iors are observed in this figure. First we notice that the
symmetry of the field is spoiled by the non-symmetry of

Ž Ž . Ž ..the dielectric tensor Figs. 4 b and 4 c . Second, observ-
Ž .ing the right-hand side of Fig. 4 b , respectively the left-

Ž .hand side of Fig. 4 c we notice that the field focus does
not lie on the x-axis as it was the case for the isotropicˆ

Ž Ž ..scatterer Fig. 4 a , but is shifted lower, respectively
higher. This effect evidences a lack of symmetry represent-
ing a gyrotropic effect produced by the non-symmetric
tensor. Third, observing in the left part of the cylinder the

Ž Ž ..behavior of the field first for the isotropic case Fig. 4 a ,
we remark that the field simply oscillates, staying in the

Ž .Fig. 3. Relative error C r between GMT and CDA computations
of the physical problem described in Fig. 2. The field inside the

Ž . Ž .anisotropic scatterer is represented by PWE with: a 33; b 17
parameters.
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Ž . Ž . Ž .Fig. 4. Comparison of the electric field for a isotropic, b , c anisotropic scattering problems. The incident field is a plane wave of unity
Ž . Ž . Ž .amplitude propagating in the x-direction a , b and yx-direction c . The anisotropic problem is described in Fig. 2 and the isotropic oneˆ ˆ

Ž .is identical except for the dielectric constant es2. The field inside the scatterer is computed using PWE 33 parameters .

same direction and passing through a vanishing value,
between two opposite maxima. A totally different behavior

Ž Ž ..is visible for the anisotropic case Fig. 4 b , where the
field rotates between the two maxima and never vanishes.
Like this, if one observes the time behavior of the field at a
fixed position, it simply oscillates for the isotropic case
Ž Ž ..Fig. 4 a while it rotates anticlockwise for the anisotropic

Ž Ž .. Ž . Ž .one Fig. 4 b . The displacement field D r se E r is

also rotating but clockwise because the dielectric tensor in
w xour example is antisymmetric 26 .

5. Conclusion

New 2D expansions for anisotropic media have been
derived for GMT. Based on a representation of the Bessel
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multipole by a finite number of plane waves, these expan-
sions are well suited for any kind of anisotropy as long as
the domain is closed. Efficient numerical implementations
have been proposed. These expansions have been tested
and have shown very fast convergence.

Because of the very good convergence of GMT, it is
very well suited for the calculation of reference solutions.
Like this, the new expansions presented in this paper
should be helpful for the understanding of the physical
interaction of light with arbitrary anisotropic media.
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