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Abstract 
Diurnal oscillations of gene expression dictated by the 
circadian clock enable living organisms to coordinate 
their physiological processes with daily environmental 
changes. Although such rhythms have been extensively 
studied at the level of transcription and mRNA 
accumulation, comparably little is known at the proteins 
level, though recent proteomics studies indicated that 
total protein rhythms generally appeared damped 
compared to their cognate mRNAs. In order to further 
dissect how diurnal rhythms affect key functions such as  
transcription or chromatin remodeling, we quantified the 
temporal nuclear accumulation of proteins and 
phosphoproteins from mouse liver by SILAC-based MS. 
Our analysis identified ~5000 nuclear proteins, including 
all core-clock and clock-related proteins, over 500 of 
which are found to be rhythmic under a stringent 
statistical threshold (FDR <5%). These rhythmic nuclear 
proteins are mainly controlled at the post-transcriptional 
level and are often parts of complexes showing robust 
diurnal nuclear accumulation. These rhythmic complexes 
are notably involved in transcriptional regulation, rRNA 
synthesis, ribosome assembly, as well as DNA damage 
repair. From the parallel analysis of the nuclear 
phospho-proteome, we could infer the temporal activity 
o f k i n a s e s c o n t r i b u t i n g t o t h e s e r h y t h m i c 
phosphorylations. A large fraction of the kinase activities 
were implicated in cell signaling and cell cycle 
regulation. In addition, 80 transcription factors and about 
100 transcriptional coregulators showed clear diurnal 
oscillations in the nucleus, enlarging the extent of 
transcriptional and epigenetic regulations by the 
circadian clock and/or systemic cues. Finally, a number 
of proteins with functions in the cytoplasm are detected 
in the nucleus at a common and sharp time near the 
night-day transition. This phenomenon is probably linked 
to the rhythmic endoreplication occurring in hepatic cells 
and associated to leakage of the nuclear membrane. 
Taken together, these findings provide unprecedented 
insights into the regulatory landscape of the diurnal liver 
nucleus. 
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1)  5-10% of total proteins show diurnal accumulations. 
2)  ~50% of these rhythmic proteins do not have corresponding 

rhythmic mRNAs and are highly enriched in secretory proteins. 
Question: How about the rhythmicity of proteins in different 
subcompartments such as nucleus ?  
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Fig. 1 ~ 5000 nuclear proteins were 
quantified by SILAC-based MS including 

core-clock and clock-related proteins 
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Fig. 3 Subunits of nuclear protein 
complexes showed highly similar and 

diurnal accumulations  

Fig. 5 Transcription factors and 
coregulators (FDR<5%) involved in the 

circadian transcription 
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A) Distribution of samples numbers quantified for detected nuclear proteins. 
B) Coverage of nuclear proteins and percentages of rhythmic ones 

(FDR<5%) for different functional categories. 
C) Phases and peak-trough amplitudes of core-clock and clock-related 

proteins with examples in D). 
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A) Phase distribution for the rhythmic nuclear proteins (FDR<0.05) 
grouped by their annotated localizations (UNIPROT) 
B) Heat maps of the rhythmic proteins and their corresponding mRNAs. 
Data is standardized by rows and gray blocks indicate missing data.  
C) Western blot of individual rhythmic proteins performed on nuclear 
extract. The graphs represents the quantification of the blots and the 
corresponding  mass spec data.  
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Fig. 2  Rhythmic nuclear proteins are 
mainly post-transcriptionally regulated  

Take-home messages 

Fig. 6 Rhythmic endoreplication 
probably causes leakage of cytoplasmic 
proteins by weakening nuclear envelope   
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A) FACS analyses of nuclei isolated from mouse liver around the 
clock and separated into ploidy populations by (n = 4 light dark 
cycles) 
B) Localization of FASN at ZT0 (confocal fluorescence) and 
immunofluorescence of Lamin A/C in purified liver nuclei.   
C) Western blot of individual protein involved in cell cycle regulation 
and DNA replication.  

A) Peak phases of rhythmic nuclear protein complexes and 
individual examples are found in B).  

1. SILAC nuclear proteomics in mouse liver 
-  High resolution (~5000 proteins),  
-  ~12% highly rhythmic (FDR<5%). 
-  Almost all core clock and clock 

related genes identified and 
quantified.  

2. Within these rhythmic proteins 
-  81 transcription factors and more than  

100 coregulators : most of them are 
new. 

-  Many nuclear protein complexes also 
display diurnal expression. 

3. Annotated cytoplasmic proteins are also  

-  detected in the nucleus with a sharp 
day night transition phase. 

è may be due to a weakening of the 
nuclear envelope resulting from rhythmic 
endoreplication/replication.  

Previous work 

SILAC mass spectrometry analysis of mouse liver nuclei 
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Fig.4 Rhythmic activities of kinases 
predicted by nuclear phospho-proteome 
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A) and B) Examples and heat maps of rhythmic nuclear phospho-proteins 
with non-rhythmic nuclear proteins.  
C) Peak phases of rhythmic kinase activities predicted by the nuclear 
phospho-proteins, some of which are confirmed by their nuclear protein 
accumulations in D)   
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