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Abstract

The intrinsic stochasticity in the dynamics of mRNA and protein expression has important consequences on gene regulation and on non-genetic cell-to-cell variability. Recently experimental work
in prokaryotes and eukaryotes using single cell resolution time lapse imaging has enabled a quantitative analysis and modeling of the stochastic processes underlying observed fluctuations.
Gene transcription was found to occur mainly during short and intense periods referred to as transcriptional bursts, interspersed by silent periods. The fine transcriptional kinetics of endogenous
genes in mammalian cells has recently been measured (Suter et al. 2011) by live imaging at high temporal resolution of short-lived luciferase reporters. Here, we further develop the probabilistic
framework to model these recordings based on three-layered Hidden Markov Models that describe the three main processes of gene expression: gene activation, transcription and translation.
We propose models with different number of sequential gene states describing the activation and inactivation events. To study those, we developed and tested several approximations to
efficiently compute the transition probabilities and the likelihood of the models. We select the optimal model using Markov-Chain Monte Carlo (MCMC) sampling, which provide new insights
about the number of gene activity processes and their characteristic timescale leading to transcriptional bursts.

1. Real-time measurement of transcription

1.1 Experimental setup
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1. Constructs with a modified luciferase reporter are made

2. A lentovirus is used to insert the construct into the genome of NIH
3T3 cells

3. Special modifications are carried out to ensure short half-lives of
both mRNA and protein (30’-40’ and 20’ respectively)

4. Images are captured every 5 minutes at single-cell resolution with a
high-sensitive camera

5. Recordings of endogenous promoter, Bmal promoter and synthetic
promoter are obtained

6. The camera is calibrated : P (s|p) ∼ N (s;αp, σb + βp)

2. Stochastic Modeling of Gene Expression

2.1 HMM framework
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• Posterior probability over trajectories: P (Λ|SΘ)

• Signal deconvolution
• reconstruct the gene activity pattern
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1. The system being observed is assumed to be a Markov process with
unobserved states λi = (pi,mi, gi), where pi, mi and gi are the protein
copy number, the mRNA copy number and the gene activity at each
time point.

2. Given a model Θ, the states of the system Λ are infered from the
signal time trace S.

• Forward algorithm

→ Likelihood L(S|Θ) =
∑

all paths Λ

P (s1|λ1)P (λ1)

T∏
i=2

P (si|λi)P (λi|λi−1)

• Forward and Backward algorithm

→ Posterior decoding P (Λ|SΘ) =
P (Λ|Θ)

P (S|Θ)

• Viterbi algorithm
→ Maximum Path Λmax

3. To compute those quantities one needs the transition probabilities
P (λ|λ′) which can be computed by solving the master equations of
the model Θ.

2.2 The Telegraph Model
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1. Transcriptional bursts can be
modelized by a gene stochasti-
cally switching between a state
of transcriptional activity (ON-
state) and inactivity (OFF-state).

2. This is the simplest model ac-
counting for the 3 main pro-
cesses : translation, transcrip-
tion and gene activity.

3. All the parameters are as-
sumed to be constant, the rates
kp, γp, γm are measured whereas
km, kon, koff are inferred.

2.3 Refractory Period
The telegraph model predicts exponentially distributed ON-time and
OFF-time and yet the data show a refractory period in the OFF-time
distribution (Suter et al. 2011). We need at least 2 inactive states to
account for this refractory period.
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3. Extension : multi sequential OFF-states Model

3.1 Minimal Model for refractory period
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1. Simplest extension : gene activ-
ity modelized by one ON-states
and N sequential OFF-states.

2. Minimal Model accounting for re-
fractory period : N ≥ 2.

3. Questions : How many off-states
do we need to best explain the
data ? What are the typical
timescale of these OFF-states ?
What are the biological mecha-
nisms behind this refractory pe-
riod ?

3.2 Propagators
Assuming γm∆t � 1, one can factorize the propagator which simplify
considerably the problem :

P (pmg|p′m′g′) ' P (p|p′m′)P (mg|m′g′) if γm∆t� 1

3.2.1 Protein transition

The transition probabilities of the protein P (p|p′m′) are described by a
simple birth and death process :

d

dt
P (p, t) = −(kp + pγp)P (p, t) + kpP (p− 1, t) + (p + 1)γpP (p + 1, t)

The exact solution of this equation is given by :

P (p|p′m′) =

p′∑
q=0

(
p′

q

)
P(p− q; kpm

′

γp

(
1− e−γpt

)
)(e−γpt)q(1− e−γpt)p′−q

The mean and the variance of the distribution :

µp(m
′, t) =

kpm
′

γp

(
1− e−γpt

)
+ p′e−γpt

σ2
p(m

′, t) =
kpm

′

γp

(
1− e−γpt

)
+ p′e−γpt

(
1− e−γpt

)
For large amount of proteins, the linear noise approximation ca be used
if σp � p :

P (p|p′m′) =
1√

2π(µp(m′, t)− p′e−2γpt)
exp

(
− (p− µp(m′, t))2

2(µp(m′, t)− p′e−2γpt)

)

3.2.2 mRNA and the gene state transition

The transition probabilities of the mRNA and the gene P (mg|m′g′) are
obtained by solving the following master equation :

d

dt
P (m, g, t) = −kmδg,onP (m, g, t)−mγmP (m, g, t) + kmδg,onP (m− 1, g, t)

+(m + 1)γmP (m + 1, g, t) + kgP (m, g − 1, t)− kg+1P (m, g, t)

The solution of this master equation can be obtained by applying the
exponential on the state rate matrix M :

P (mg|m′g′) = 〈mg| exp (M∆t)|m′g′〉

4. Model Selection : MCMC Sampling

4.1 Reversible Jump MCMC
The model selection is based on the posterior distribution :

P (m|S) =

∫
L(S|m, θ′m)P (θ′m)P (m)dθ′m∑

m′
∫
L(S|m′, θ′m)P (θ′m)P (m′)dθ′m

Instead of computing this quantity, one can sample the targeted distri-
bution P (m, θm|S) with the Reversible Jump MCMC algorithm.

A move set has to be defined to change the dimensionality of the sam-
pling space according to the model (the jump), for instance :
1. split randomly a given component θk such that θk = θ′k + θ′k+1

2. merge two components θk and θk+1 such that θk + θk+1 = θ′k
3. stay in the same model, update the components according to the

proposal distribution

1 2 3 4 5 6

Jumps between models, number of OFF-states

This algorithm is very similar to the Metropolis-Hastings, except that
the sampling space X =

⋃
m∈M({m} × θm) involves spaces of different

dimensions.

The iterative protocol :
1. Choose a move for the chain randomly
2. Compute the likelihood for the proposed parameters n, θn
3. Sample u from a uniform distribution U[0,1]

4. If u < Am→n, then accept the move and update the chain

Am→n = min

{
1,
L(S|n, θn)P (n)P (θn)Q(m|n)Qn→m
L(S|m, θm)P (m)P (θm)Q(n|m)Qm→n

Jm→n
}

4.2 Results

Simulated Model, Number of OFF states
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Estimated number of OFF-states for simulated data with Gillespie al-
gorithm (left picture). Estimated number of OFF-states for Bmal1 (right
picture).
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Estimated burst-size (left picture) and transcription rate km (right pic-
ture) for Bmal1.
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Estimation of the total OFF-time τoff = k−1
on +

∑N
i=2 k

−1
off,i (left picture) and

the ON-time τon = k−1
off,1 (right picture) for Bmal1.

5. Conclusion

1. We have presented a minimal extension of the telegraph model to
account for the refractory period.

2. We are able to estimate the kinetic parameters and the number of
OFF-states applying an MCMC approach.

3. The presence of this refractory period may reflect the requirement
of several processes before elongation : chromatin remodeling, tran-
scription factors binding, polymerase recruitment, etc.

4. The main advantage of this framework is the great flexibility it pro-
vides. The gene activity part of the model can be easily changed to
account for transcription factors binding or other mechanisms.

5. There are still open questions : Is the infered number of OFF-states
common between different genes ? What are the biological mecha-
nisms accountable for this refractory period ?


