Color in Image Collections and Archives

Sabine Süsstrunk

Images and Visual Representation Group (IVRG),
School of Computer and Communication Sciences (IC)
Ecole Polytechnique Fédérale de Lausanne (EPFL),
Switzerland

sabine.susstrunk@epfl.ch

1st Int. Workshop on Standards and Technologies in Multimedia Archives and Records (STAR), Lausanne, 2010-04-26/27

В

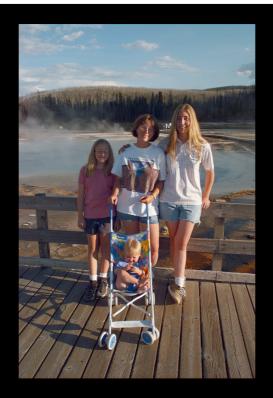
 C

D

E

A: RAW Color Filter Array Data (CFA) stored by the Digital Camera

A: RAW Color Filter Array Data (CFA) stored by the Digital Camera


B: After linearization, dark current subtraction, flare removal, and channel balancing: still RAW

C: Color interpolated to produce fully populated RGB color channels: still RAW format.

D: After color space conversion: scene-referred image data (ITU-R.BT709, RIMM RGB, XYZ, Lab).

E: After "preference" rendering to virtual display: output-referred image data (sRGB, Adobe RGB,...)

What is an Image Archive?

- The purpose (and usage) of an image archive varies.
- Images either represent digital reproductions of original artwork...
- ...or are the original digital artwork.
- Images should be accessible and usable indefinitely.
- Images should be easy to manage.

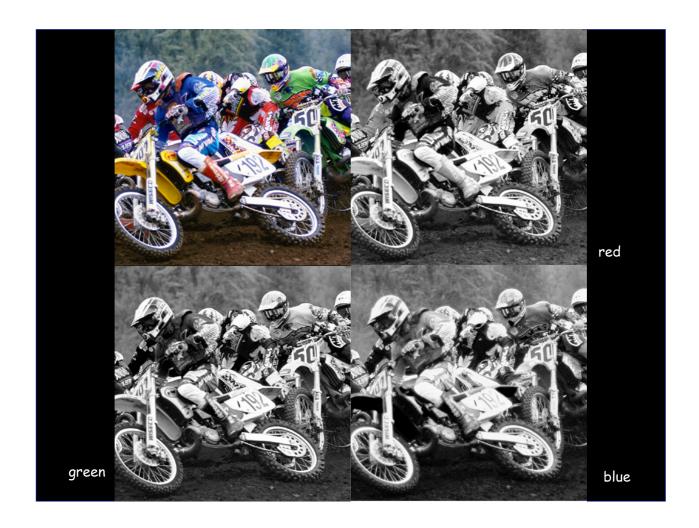
How to manage color during the initial capture stage, maintenance, and deployment of images in an archive?

Usage of Digital Images

- The digital image is only used as a visual reference.
 - Consumer imaging, on-line visual representation (collections management systems), low-end print representation.
- The digital image is used for print reproduction.
 - Commercial image libraries, professional photographers, cultural institutions, consumer printing.
- The digital image represents a "replacement" of the original.
 - Cultural institutions with high quality demand and/or fragile original artwork.
- An image database may contain one or more representations (master/derivative files).

Color Spaces and Encodings

• RGB:


- Captured by the sensor
- Displayed by the monitor
- Usually encoded in file formats such as RAW or any RGB spaces (e.g. sRGB, Adobe RGB, ProPhoto RGB, ECI RGB)
- Used for image processing

XYZ (color matching functions):

 Based on the human visual system (Basis for colorimetric RGB image encodings and opponent color encodings)

LMS (cone responses):

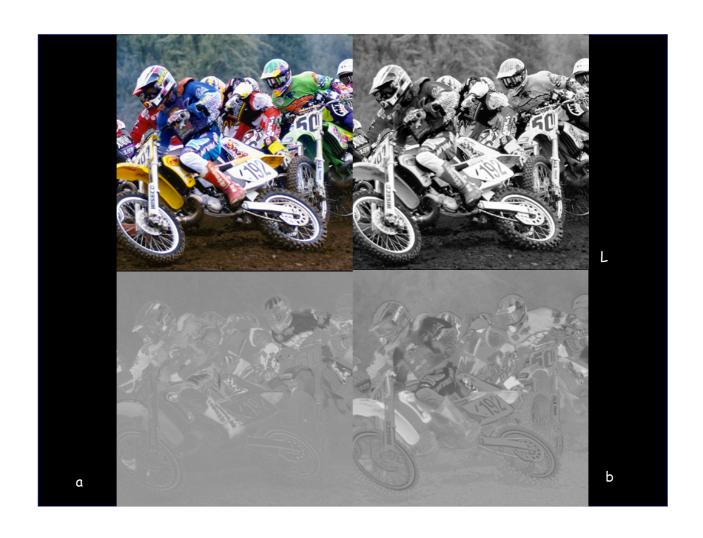
 Used primarily in psychophysics, rarely in imaging.

Color Spaces and Encodings

• Additive (RGB):

- Captured by the sensor
- Displayed by the monitor
- Usually encoded in file formats such as RAW or any RGB spaces (e.g. sRGB, Adobe RGB, ProPhoto RGB, ECI RGB)
- Used for image processing

XYZ (color matching functions):


 Based on the human visual system (Basis for colorimetric RGB image encodings and opponent color encodings)

LMS (cone responses):

 Used primarily in psychophysics, rarely in imaging.

Opponent (CIELAB, CIELUV, YCrCb)

- Transforms from RGB
- Used in "perceptual" encodings, such as CIELAB, CIELUV, CIECAM02
- Used in color measurement and color evaluations
- Used in compression (JPEG, JPEG2000)
- Used in image processing

Color Spaces [ISO 22028-1]

Color Image Encoding = Color Space Encoding = Color Space + Digital Encoding Method + Information necessary to properly Interpret the color values (image state,

viewing environment, etc.)

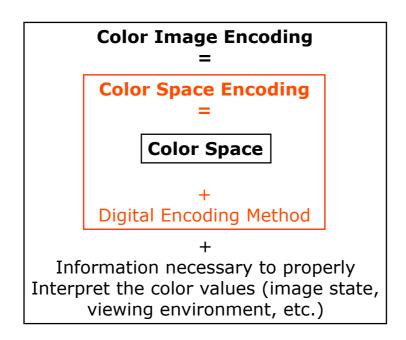
Color Space

- According to the CIE [CIE87], a color space is a "geometric representation of colors in space, usually of three dimensions."
 - colorimetric, color appearance, and device dependent.
- Colorimetric Color Space:
 - The relationship between the color space and CIE colorimetry is clearly defined.
 - Additive RGB color spaces
 - Primaries, linear transform to XYZ, color space white-point, and color component functions are defined.
 - CIEXYZ, CIELAB, CIELUV
 - XYZ under D65 is different from XYZ under D50.
 - YCC, YCrCb, etc.
 - Linear transform from RGB to more de-correlated, opponent color spaces.
 - Such color spaces are generally the basis for color image encodings used in compression.

Color Space

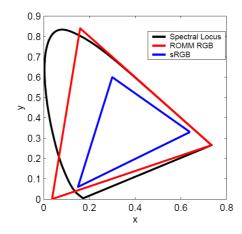
• Color Appearance

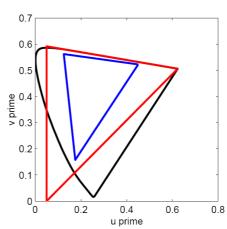
Output of color appearance models, such as CIECAM02.

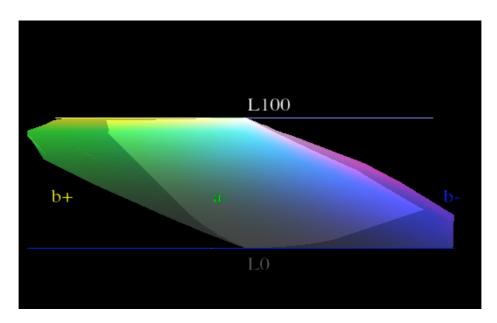

• Device Dependent:

- No direct relationship with CIE colorimetry
- Spectral characteristics, color component function, and white-point of an actual or idealized input device needs to be specified.

Example: color space characteristics

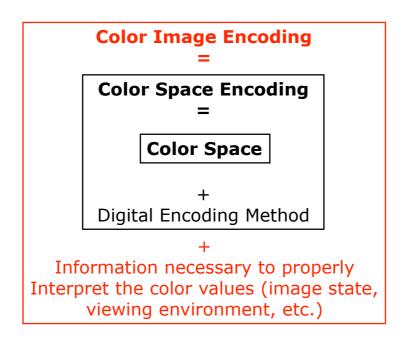

	sRGB	RIMM RGB
Color space type	Colorimetric RGB color space	Colorimetric RGB color space
Color component transfer function	C'=12.92xC for C ≤0.0031308	C'=45xC/1.402 for C ≤0.018
	$C'=1.055xC^{1/2.4}-0.055$ for $C>0.0031308$	$C'=(1.099xC^{1/2.2}-0.099)/$ 1.402 for C >0.018
Luma-Chroma matrix	N/A	N/A
Color space white point luminance	80 cd/m ²	15'000 cd/m ²
Color space white point chromaticity	D65	D65


Color Spaces [ISO 22028-1]


Color Encodings

- Color Space plus digital encoding method
 - Digital code value range (8-bit, [0..255]) associated to color space range (RGB, [0..1])
 - The same color space can result in different color encodings. Example: sRGB and scRGB, ROMM RGB (ProPhoto RGB): 8 bit, 12-bit, 16-bit.
 - Using color space primaries and color space range, color encoding gamuts can be visualized.

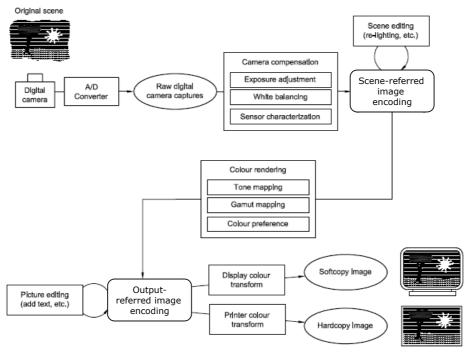
ROMM vs. sRGB Gamut



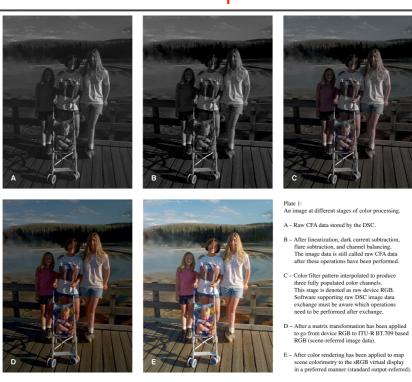
ROMM: large Gamut sRGB: small Gamut

Example: color encoding characteristics

	sRGB	RIMM RGB
Color space value range	Linear RGB: [01]	Linear RGB: [02]
Color gamut	Video display-based	extended
Digital code value range	[0255] ex.,	[0255] (8-bit)
	others allowed:	[04,095] (12-bit)
	WDC=2 ⁿ -1, KDC=0	[065,535] (16-bit)


Color Spaces [ISO 22028-1]

Color Image Encoding


- Color Space Encoding plus parameters necessary to interpret the color values:
- Image State (color rendering of the image data):
 - Input-referred (scene or original): image data represents an estimate of the scene or original colorimetry (scRGB, RIMM RGB)
 - Output-referred: image data represents the colorimetry of the original data color rendered to a real or virtual output device (sRGB, ProPhoto).
- Reference Viewing Conditions:
 - Surround, adapted white-point, luminance of the adapting field, viewing flare
 - Output-referred additionally needs a reference imaging medium, either a real or virtual monitor or print.

Generic Digital Photography Workflow

[ISO 22028]

Example

J. Holm, I. Tastl, L. Hanlon, and P. Hubel, "Color Processing for Digital Photography," in *Colour Engineering: Achieving Device Independent Color*, Wiley, 2002.

Example: color image encoding characteristics

	sRGB	RIMM RGB
Image state	Output-referred (CRT)	Scene-referred
Image background / surround	20% of display white- point luminance (16 cd/m²)	Surround: 20% of adapted white-point
	20% reflectance of ambient luminance level (4.1 cd/m²)	
Adapted white-point luminance	Not specified	15'000 cd/m ²
Adapted white-point chromaticity	Not specified	D50
Luminance of adapting field	Not specified	Not specified (20% of adapted white-point luminance)

Example: color image encoding characteristics

	sRGB	RIMM RGB
Viewing flare (typical viewing conditions)	6.9% of color space white-point luminance	N/A
Valid relative luminance range (without flare or glare)	0.0 to 1.0	0.0 to 2.0
Reference medium white point luminance	80 cd/m ²	N/A
Reference medium white point chromaticity	D65	N/A
Reference medium black point luminance	1 cd/m ²	N/A
Reference medium black point chromaticity	D65	N/A

CIE TC8-09 (Archival Colour Space)

• Terms of References:

- To recommend a set of techniques for the accurate capture, encoding and long-term preservation of colour descriptions of digital images that are either born digital or the result of digitizing 2D static physical objects, including documents, maps, photographic materials and paintings.
- Archive Requirements (poll of stakeholders):
 - Parameters of "Archival" color space, e.g. primaries, gamut, white point, gamma correction, bit depth, etc.
 - Method to evaluate and validate the accuracy of images.
 - Making color space conversion and rendering intent part of this discussion.
- Contact: Robert Buckley (rrbuckley@alum.mit.edu)

Conclusions

- Color (RGB) can only be interpreted if the physical encoding parameters are known.
- There are several encoding strategies possible, each optimized for a given step in the color image processing workflow.
 - But none for archival yet! Work of CIE TC8-09.
- To be able to read and interpret images in the future, its color needs to be managed the same as all the other formats.
 - File format, support, etc.