Master semester project Damien Matti

Mushroom Recognition

Master Semester Project, for Multimedia Signal Processing Group
February to June 2010

Under the supervision of Péter Vajda, and
Prof. Touradj Ebrahimi

(AW mm

ECOLE POLYTECHMIQUE ‘PG
FEDERALE DE LAUSANMNE

Master semester project Damien Matti

Abstract

The purpose of this project is to implement a program that enables visual mushroom
recognition on a mobile phone. It uses the possibilities of such a tool to take a picture and to
send it to a server through internet, which will do the image recognition.

The algorithm will extract some of the already known features, and then find the best match in a
provided database.

Some specific features are also proposed and tested, but not used for the final program. These
features are aiming another kind of classification, using a biologist’s knowledge about
mushroom morphology.

In the first part of this project, a biologist’s point of view is presented, which give essential
information about mushroom in general. Then, an overview and a description of the program
are done, and the results are presented. Finally, some important information are given for
further work.

CONTENT

IDIETOAUCTION ettt s s e s e s bR £ EA £ SRR R s bbb s b 3
A BiolOZIST'S POINE Of VIEW ...coriieeieeeereeeeemeesssessess st seessesssess s sesssesssess st e ssssss s s ss st sessssssssssssssssss e sanes 4
20 (0 o4 0 0o T 6
FRATULES .ot R R 8

COMINON FEATUTES ..oveeieiereieesesessessessesses s ssssssessesse s s s s s s s s s bR R RS se b 8

Y 01T ol ST U T3P 9
RESULES c1vuvevseraeemseeseesssesssessseessesesees s s s s s s b s R R R RS E RS R R AR 10
(000 ol 103 [) o 100U 12
REFEIEIICES ..oueurieueuseeuseeseeuse et seesse s esseb s s s s s R s x R R eSS AR R E AR AR bbb Ea b 13

N 8N 8 1) (T 15

Master semester project Damien Matti

INTRODUCTION

Let’s imagine you are walking in the woods, and see a mushroom on the ground. You would like
to taste it, but have no idea about what kind of mushroom it could be. With a good digital
camera and a recognition program, you could get some useful information, such as whether a
mushroom is edible or not.

The aim of the project is to develop a mushroom recognition program based on specific
characteristics extracted from photography. The main purpose of this program is to use mobile
phone resources. Indeed, there are several advantages of combining a mobile phone with the
mushroom recognition program. For instance, mobile phones are of everyday use and rather
easy to understand for anyone, moreover they are powerful and rather simple to exploit. In
addition, with the internet connectivity, one can benefit of an internet server which takes care of
the computation part.

The state-of-the-art of mushroom recognition is nowadays only used for robot and automated
sorting machine in food industry [1, 2]. However, the program developed in that case is specific
for one task and is of no use in more general applications. Actually, these simple techniques
focus only on a few features (like colour), and are not efficient in a more general purpose.

Consequently, more general image classification method are used, because it is a widespread
topic, and there is a lot of well known features (such as colour histogram, sift, hog [3], shape
descriptors [4], mser [5]). Thanks to the many studies, it is possible to find source code on
internet. In order to focus on the main structure of the program, the mobile phone
implementation, the database retrieving and specific feature creation, we will benefit of these
source codes.

The final program should first provide a segmentation algorithm. In addition, like in most of the
image recognition programs, a database of mushroom pictures has to be done, as well as a
learning method to extract the features for the database, and a matching method to retrieve the
best match from the database.

Several additional small programs have been implemented to gather information for results.

Master semester project Damien Matti

A BIOLOGIST’S POINT OF VIEW

In the following section, three persons are introduced. All of them provided important
information, nevertheless, all of them told that it will not be an easy task. The image
classification focuses only on visual components, therefore the outcomes deal only with the
subject.

Mr. Jean-Yves Férréol

Jean-Yves Férréol is an expert of visual mushroom recognition,
and a member of an association dedicated to the control of
people’s gathering, in order to avoid intoxication. On the
contrary, biologists are not doing this kind of visual mushroom
recognition anymore, because of its lack of efficiency. So for our
application, his help and knowledge were essential.

He warned us against doing classification with only one image. In FiGURE 1 JEAN-YVES FERREOL
order to recognize the mushrooms, he usually holds it in his

hands. He can see, smell and cut it if necessary. His judgement would not be reliable if he had
only one image. In case he is not sure about a mushroom, he uses lens to analyse its structure.
However, he usually does not deal with microscopy.

Then, he explained us what are the usual morphological relevant features that he controls. It is
easy to find the same information in books about mushrooms and on internet as well.

However, the following point must be highlighted: the mushroom attributes (colour, cap
ornament, etc...) is not always reliable information. Indeed, it can change, depending on the
meteo and growth state. An amanita can lose his dots during strikes, and its colour can change
from red to orange. The rain has also visual effects on several mushrooms. The shape also
depends on the age or the room available. The smell can be relevant, but we have to pay
attention to the objectiveness of this attribute.

In addition to those statements, he also said that we should never trust an image for mushroom
recognition. But on a French internet forum [6], they try to find the name of the mushroom by
watching an image, whereas it is not nonsense to do it. Then Jean-Yves redirected me to another
person, Prof. Heinz Clémengon, a retired professor from the University of Lausanne.

Prof. Ian Sanders

He is a Professor at the University of Lausanne, successor of Prof.
Heinz Clémencon.

For the database, he explained that morphological analysis is
anterior to image digitization. Consequently, it would not be easy
to find a good one. As for the recognition, a trained brain is far
more efficient than informatics program; this is why some people
are able to do it. Nowadays, biologists use DNA for a reliable
recognition. He also told to speak with Heinz Clémengon.

FIGURE 2 PROF. IAN SANDERS

Master semester project Damien Matti

Prof. Heinz Clémeng¢on

He sent a mail, in which he says that if the project has mycological purpose,
it will be a failure for many reasons. First of all, if it is for image analysis
purpose, he advised to restrict the number of objects to recognize.
According to macroscopic attributes, the objects to classify should be easily
differentiable. He also helped to contact someone for the database.

Secondly, the mycological purpose will fail because the macroscopic
classification of mushroom is old-fashioned. Nowadays, techniques FIGURE 3 PROF. HEINZ
such as photonic microscopy and wall chemistry of spores and CLEMENCON
cytoplasm are used. Indeed if we can easily recognize some species (such as amanita), those are
exceptions. He added that it’s amateurship to think that we can do recognition with a photo.
Although considering good quality pictures, human will in most of the case be wrong.

For image analysis purpose, he advised to choose one species in a specific region which is easy
to recognize visually such as Amanita from the North of the Alpes.

Books, internet, database

As regards for the program, the idea is to find a mushroom tree, on which we can find the
mushroom name according to some biologic criteria such as:

For the cap: shape, surface, structure, colour, ornament and border shape

For the gills: attachment, spacing, size, colour, structure and disposition

For the stalk: shape, root, surface and colour above/below ring, ornament (valve, ring), colour,
structure

And some others: growth surface (habitat), population, smelling, spore-print colour, ring
number and ring type

There is a database of these criteria available on internet (Schlimmer’s mushroom database
[7]), butit’s only to investigate the edibility component by data mining, and don’t contain any
images nor mushroom names.

The climate, the chemical nature of ground, physical nature and also biotic factors can influence
the state of a mushroom. For clarity, the list of criteria is not exhaustive. There are so many
elements to take care, and for each type of mushroom, there are different attributes to analyze

8].

The actual set of images is coming from Miss. Béatrice Senn, which after several mails sent
pictures of mushrooms from the region. The pictures have been taken by the mushroom
amateur Max Danz (from Attiswil, Solothurn, Switzerland). Due to the small database, there are
only two images (sometimes three) for each mushroom type. It is not really a good set to train
the program. On internet, we can find a lot of photography, but they have to be collected one by
one, and it may not be reliable for the mushroom names.

Master semester project Damien Matti

FIGURE 4 DATABASE SAMPLES

PROGRAM

The program is divided in several parts and takes advantage of the OpenCV c++ library. On one
side we have the server and mobile client, and on the other side the segmentation algorithm and
the database learning and matching.

When the client sends the correspondent command, the server will call the segmentation
program or the matching program. A small program overview is annexed.

Segmentation

When the client on the phone is started, you can take a picture, and then select the foreground
and the background for the segmentation. This will create a mask. Then you send it to the
server, which will do the segmentation and return the segmented image. If the image is well
segmented, it will afterwards run the matching sequence on the server, and send you back the
information about the best match.

The segmentation algorithm is called GraphCut and is based on Graph Theory. It is grouping the
pixel image in two: the object, and the background using the min-cuts/max-flow algorithm. This

Master semester project Damien Matti

method was chosen to let the user participate, and use the phone touch screen capability. The
GraphCut technique lets you put a hard constraint for the segmentation, and is relatively
efficient.

The min-cut/max-flow algorithm comes from the duality theorem that states, if max-cut has a
solution, min-cut has the same solution. The implementation of the algorithm has been done in
c++ by Yuri Boykov and Vladimir Kolmogorov [9, 10, 11]. The segmentation structure comes
from a matlab toolbox implemented by Mohit Gupta and Krishnan Ramnath from the Robotics
Institute in Pittsburgh.

Database learning

This is a simple standalone program that is called manually. It has to be ran every time the
database changes. This will simply extract the features for each image contained in the database
folder.

Image matching

It will take the segmented image, and extract the features from it. Then it will compute the
Euclidian distance between this image feature and features from the images in the database.
The SIFT feature doesn’t use the Euclidian distance for matching, but it counts how many point
of interest are the same between two images. Afterward, it is possible to define the image from
the database which has the smaller Euclidian distance to be the best match (or the bigger
number of corresponding points for the SIFT).

The last thing to do is to get the real name from the best match in the database. In consequence,
a file has to be prepared, in which the database pictures are linked to a mushroom name.

Additional programs

There are also useful standalone programs implemented: one to test a feature, a second to
segment one image after another to prepare the database and a third to save each Euclidian
distance in a file. This last program should have helped for a potential mixture feature.

To test a feature, the idea is to take one by one the images of mushroom, and to compare it with
the database. Of course the best match will be the same image, but only the second best match is
considered. As we have at least two elements for one object, it should allow counting how many
times the first and second best match are from the same mushroom. For the blob and the ring
detection, another procedure is used. A file stores the true information for each object to
recognize, and then we compare the feature result with this truth to get the score.

Android

The mobile client is coded for the android operating system, in order to work on a lot of devices.
This implies to use java programming language. The structure is a basic client-server
communication through internet. The only tricky part is to create the mask.

Master semester project Damien Matti

FEATURES

Here is presented all the features implemented and used in the main program. In order to do a
good classification, we can use three types of data: the common features, the specific features
and the contextual features.

COMMON FEATURES

1. Color histogram (LaB) [12, 13]

This is a basic and simple feature that group pixels according to the colour into bins. For our
purpose, the Lab colour space has been used, but several other colour space exists. This choice
was motivated by its efficiency, as it is representative of the human visual system.

2. Sift [14]

This scale-invariant feature uses a stage filtering approach. The aim of this is looking for key
location by finding extrema of difference-of-Gaussian function, the only smoothing kernel for
scale space analysis. This technique that consists of finding point of interest is efficient for linear
transform invariance. From these points, some features (called SIFT keys) are extracted over
local area. They are considering gradient magnitude and orientation (this is to reach rotation
invariance), and also orientation histogram.

By counting the number of same point of interest (by identificating similar keys) corresponding
between two images, it is possible to characterize the amount of likeliness.

3. Gabor Wavelet [15, 16, 17]

The code used for the Gabor Wavelet transform comes from the FELib [18]. The interest for this
feature is that values are representative of the texture (repetitive patterns) of the image. As
mushrooms are quite textured, it can be a good candidate.

4. Shape Feature [19]
The shape is also a good candidate for our application.
4.1 Moments [20]

First we just have to extract the contour, in order to compute statistical moments. To improve
the feature, we can use the HU moments which are invariant to rotation, scale and translation.

4.2 Fourier Descriptor [21]

This is another basic shape feature. It consists of the creation, with the contour coordinates, of a
one dimension complex signal.

(xy) =x+j*y

Master semester project Damien Matti

Then, we compute the discrete Fourier transform, and keep only a certain number of low
frequency components, as it is the main component in the shape.

SPECIFIC FEATURES

5. Ring detection

The idea is to do a one-way edge detection on the mushroom’s stalk, to project the white pixels
over the y axis, and to process this result. Furthermore, we need to rotate the stalk by using the
covariance matrix to optimize the projection.

To detect a ring, we first separate the stalk from the cap, using the same segmentation technique
as explained before. Then, we do the one-way edge detection (using one Sobel kernel). To get
the angle for the rotation, we have to compute the arctan of the eigenvector of the covariance
matrix which has the bigger eigenvalue [21]. After projecting the white pixels over the y axis,
the output vector is normalized. Now, all values smaller than a specified threshold is set to zero.
The last thing to do is to remove the values above the threshold if they are near the end or the
beginning of the stalk.

If there is a value different of zero in the final vector, we consider there is a ring.

FIGURE 5 RING DETECTION

7. White Blob detection

This feature is based on morphological analysis, so we have to threshold the image in order to
make it binary. For this application, we want to detect white dots, so the threshold is set to two
hundred. Now we simply want to keep only the small white dots, and to remove the big white
elements.

Master semester project Damien Matti

In order to make the dots disappear, we open the image with a big structuring element. We can
now subtract this image to the original thresholded image. Thus we keep only the dots. After the
opening, the image is quite deformed, so we have to restore it before subtraction.

We consider that the mushroom has dots only if the total sum of the white pixels is above a
defined limit. This limit has been set to one thousand.

FIGURE 6 BLOB DETECTION

RESULTS

Each feature has been tested over a dataset of one hundred and four segmented images. After
using the program to test each features, we can display the efficiency of the features.

ft-sift ft-colorhist f-fourierd fi-shape f-hlob fi-ring
feature name

FIGURE 7 RESULTS

Master semester project Damien Matti

The common features, which are efficient for general image recognition, obviously perform very
badly. The colour histogram has apparently the best score, and this means that the colour is an
important component for the mushroom recognition. For every other feature, we only use black
and white images, and considering only black and white images from different mushrooms, it’s
far more difficult to distinguish them.

Demo

The demo consists of the client android program running on the mobile phone, and the server,
running on the computer. We have to take care of putting the good IP address and to connect
both mobile phone and server to internet. We can first run the client, take the picture, make the
selection of the background and foreground, and send it. After a while, we can see the
segmented picture showed on the phone. If we are satisfied with the segmentation, we can click
a button to begin the matching. Then, it will show us the name of the corresponding mushroom
according to each feature.

FIGURE 8 DEMO ANDROID CLIENT FIGURE 9 DEMO SERVER

Master semester project Damien Matti

CONCLUSION

Personal conclusion

This has been a hard project which brought me a lot of knowledge. Now, [would have done
things differently, as I am going to explain below in further work. As it was already said, we
cannot use the common features as they are really not efficient. A better approach is to
implement several specific features. Although using different specific features could be the
solution, the results are surprisingly poor.

The database used for this project is not exhaustive and the results could be really improved
Further work

To improve this program, several changes have to be made. The first one refers to the database:
we must find a better one, with higher resolution, and better mushroom position. Indeed,
sometimes, the position implies occlusion, or some attributes are not visible and potentially not
recognizable. Furthermore we should do more specific features, in order to do a more efficient
discriminating classification based on biologic tree. We can also use more advanced matching
techniques such as in machine learning to achieve good results.

An important improvement could be to use the contextual information, as we have seen the
influence of the external local factors on mushroom determination. We can get them by the
mobile phone sensors (GPS, time, camera focal data), and even asking the user, like for the
mushroom smell, to finalize the matching. This is supposing we have to prepare with attention
the database, which should not anymore contain only images. Some useful contextual
information would be (if possibly retrievable) the weather forecast, on which ground it has
grown, the age, etc...

We can deduce from all this work that this application, if it worked well, can’t be used as a real
reliable tool. It can only help to begin in this domain, for the interested people, but we should
not trust it if the life of someone is at risk.

Acknowledgment

[want to thank all the people indirectly implied in this project, such as Max Danz, Béatrice Senn,
the Biologists, and the people who did some code. I wish to thank specially my assistant Péter
Vajda, who helped so much for the mobile phone and server program, Veronica Sergi, who had a
lot to do for the fast English correction of the report, and my sister Capucine Matti for the
beautiful title illustration.

Master semester project Damien Matti

REFERENCES

R.D. Tillett and B.G. Batchelor, “An algorithm for locating mushrooms in a growing bed”,
Computer and Electronics in Agriculture, 6 (1991) 191-200, Elsevier Science Publishers
B.B, Amsterdam

Raji A. 0. and A. O. Alamutu “Prospects of Computer Vision Automated Sorting Systems
in Agricultural Process Operations in Nigeria”, Department of Agricultural Engineering,
University of Ibadan, Nigeria

Navneet Dalal and Bill Triggs, “Histograms of Oriented Gradients for Human Detection”,
INRIA Rhoéne-Alpes,655 avenue de 'Europe, Montbonnot, France

Yang Mingqgiang, Kpalma Kidiyo and Ronsin Joseph, “A Survey of Shape Feature
Extraction Techniques”, in Pattern Recognition, Peng-Yeng Yin (Ed.)(2008) 43-90

Per-Erik Forssén and David G. Lowe, “Shape Descriptors for Maximally Stable Extremal
Regions”, Department of Computer Science, University of British Columbia

http://www.champis.net
http://archive.ics.uci.edu/ml/datasets/Mushroom

Roger Heim, “Champignons d’Europe”, editions N. Boubée et Cie, Place
Saint-André-des-Arts 3, Paris, France

Yuri Boykov and Vladimir Kolmogorov, “An Experimental Comparison of
Min-Cut/max-Flow Algorithms for Energy Minimization in Vision”, in IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI), September 2004

Yuri Y. Boykov and Marie-Pierre Jolly, “Interactive Graph Cuts for Optimal Boundary &
Region Segmentation of Objects in N-D Images”, Siemens Corporate Research, 755
College Road East, Princeton, USA

Vladimir Kolmogorov and Ramin Zabih, “What Energy Functions Can Be Minimized via
Graph Cuts?”, IEEE Transactions on pattern analysis and machine intelligence, vol. 26,

no. 2, February 2004

Michael J. Swain and Dana H. Ballard, “Color Indexing”, Iternational Journal of
Computer Vision, 7:1, 11-32 (1991), Kluwer Academic Publishers, Netherlands

Gernot Hoffmann, “CIELab Color Space”, September 15, 2009

David G. Lowe, “Object Recognition from Local Scale-Invariant Features”, Computer
Science Department, University of British Columbia, Vancouver, Canada, 1999

Master semester project Damien Matti

[15]

Jianke Zhu, Mang I Vai and Peng Un Mak, "A New Enhenced Nearest Feature Space
(ENFS) Classifier for Gabor Wavelets Features-Based Face Recognition”, University of
Macau, Macau, China

P. Kruizinga, N. Petkov and S.E. Grigorescu, “Comparison of texture features based on
Gabor Filters”, Institute of Mathematics and Computing Science, University of

Groningen, Netherlands

Anil K. Jain and Farshid Farrokhnia, “Unsupervised Texture Segmentation Using Gabor
Filters”, Michigan State University, East Lansing

http://appsrv.cse.cuhk.edu.hk/~jkzhu/felib.html

Remco C. Veltkamp and Michiel Hagedoorn, “State-of-the-art in Shape Matching”,
Utrecht University, Department of Computing Science, Netherlands

M. K. Hu, “Visual Pattern Recognition by Moment Invariants”, IRE Trans. Info. Theory,
vol. IT-8, pp.179-187, 1962

Prof. Jean-Philippe Thiran, “Image analysis and pattern recognition”, Master lecture at
EPFL

Damien Matti

Master semester project

ANNEXES

1. Program overview

Selection Mask

1. Segmentation

Segmented image

Matlab
Commands :
1. Segmentation Java
2. Matching
C++
Segmented image
2. Matching v

Image Processing
& Matching

Database
Learning

|/

Best match name

Master semester project Damien Matti

2. Source code of blob feature

int main(int argc, char** argv)

{

IplImage* src_image = cvLoadlmage(argv[1l] ,0);
if(src_image==0){printf("'Image was not loaded.-\n");}
CvSize src_size=cvGetSize(src_image);

IplImage* thres_image = cvClonelmage(src_image);
IplImage* temp_image = cvClonelmage(src_image);
IplImage* morph_image = cvClonelmage(src_image);
IplImage* rest_image = cvClonelmage(src_image);
IplImage* out_image = O;

cvThreshold(src_image, thres_image,200,255,CV_THRESH_BINARY);

//
//Morphology
//

//CLOSING

IplConvKernel* strel_close = 0;

strel_close = cvCreateStructuringElementEx(3,3,1,1,CV_SHAPE_ELLIPSE);//ELLIPSE,RECT,CROSS
cvMorphologyEx(thres_image, morph_image, temp_image,strel_close,CV_MOP_CLOSE,3);

//0PEN

IplConvKernel* strel_open = 0;

strel_open = cvCreateStructuringElementEx(3,3,1,1,CV_SHAPE_ELLIPSE);//ELLIPSE,RECT,CROSS
cvMorphologyEx(morph_image, morph_image, temp_image,strel_open,CV_MOP_OPEN,8);

//Prepare for restauration
IplConvKernel* strel_dilate = 0;
strel_dilate = cvCreateStructuringElementEx(5,5,1,1,CV_SHAPE_ELLIPSE);//ELLIPSE,RECT,CROSS

//restauration : DO with rectangular structuring element, it"s better
CvScalar morph_pix;
CvScalar thres_pix;
CvScalar white;white.val[0]=255;
cvZero(rest_image);
for(int i=0;i<9;i++) {
cvDi late(morph_image,morph_image,strel_dilate,1);
for (int i = 0; 1 < src_size.height ; i++) {
for (int j = 0; j < src_size.width ; j++) {
morph_pix = cvGet2D(morph_image,i,j);
thres_pix = cvGet2D(thres_image,i,j);
if (morph_pix.val[0] == 255 && thres_pix.val[0] == 255){
cvSet2D(rest_image,i,j,white);
b

}
}

//Removing big parts
CvScalar pix;
CvScalar black;black.val[0]=0;
out_image=cvClonelmage(thres_image);
for (int 1 = 0; i < src_size.height ; i++) {
for (int j = 0; j < src_size.width ; j++) {
pix = cvGet2D(rest_image,i,j);
ifT (pix.val[0] == 255){
cvSet2D(out_image,i,j,black);
}

Master semester project Damien Matti

//0PENING the output
cvMorphologyEx(out_image, out_image, temp_image,strel_open,CV_MOP_OPEN,3);

/*
IpIConvKernel* strel_erode = 0;
strel_erode =
cvCreateStructuringElementEx(5,5,1,1,CV_SHAPE_ELLIPSE);//ELLIPSE,RECT,CROSS
cvErode(out_image,out_image,strel_erode,1);

*/
//
//Count white pixels
//
//Count
int result=0;
for (int i = 0; 1 < src_size._height ; i++) {
for (int j = 0; j < src_size.width ; j++) {
pix = cvGet2D(out_image,i,j);
if (pix.val[0] == 255){
result = result+l;
3
3
}
//cout << "result : " << result << endl;
if (result > 1000){result = 1;}else{result=0;}
//
//Display
//
/*
cvNamedWindow("‘Picture'™ , CV_WINDOW_AUTOSIZE);
cvShowlmage('"'Picture”, thres_image);
cvNamedWindow("Picture2"™ , CV_WINDOW_AUTOSIZE);
cvShowlmage(*""Picture2™, out_image);
cvNamedWindow("Picture3"™ , CV_WINDOW_AUTOSIZE);
cvShowlmage(""Picture3™, rest_image);
cvWaitKey(0);
cvDestroyWindow(*'Picture™);
cvDestroyWindow("'Picture2™);
cvDestroyWindow("'Picture3™);
*/
//========
//Cleaning
[/========

cvReleaselmage(&src_image);
cvReleaselmage(&thres_image);
cvReleaselmage(&temp_image);
cvReleaselmage(&morph_image);
cvReleaselmage(&rest_image);
cvReleaselmage(&out_image);

//
//Save it to a File
//

ofstream feature_output(argv[2]):

feature_output << result << ™ *;
if(feature_output.failQ){printf("error saving feature to file .\n");}
feature_output.close();

Master semester project Damien Matti

3. Source code of ring feature

{

int main(int argc, char** argv)

//
//Read the image and initialization
//

IplImage* src_image = cvLoadlmage(argv[1l] ,0);
if(src_image==0){printf("'Image was not loaded_-\n");}
CvSize src_size=cvGetSize(src_image);

IplImage* fil_image = cvClonelmage(src_image);
CvScalar white;white.val[0]=255;

//
//Edge detection for one direction
//

//Create edge detection kernels

float valsdown[] = {-1,-2,-1,0,0,0,1,2,1}; // Sobel kernel
CvMat* kerneldown = new CvMat;

cvinitMatHeader (kerneldown,3,3,CV_32FC1,valsdown);

float valsup[] = {1,2,1,0,0,0,-1,-2,-1};
CvMat* kernelup = new CvMat;
cvinitMatHeader(kernelup,3,3,CV_32FC1,valsup);

//Filtering with the kernels
//cvFilter2D(src_image, fil_image,kerneldown);
cvFilter2D(fil_image, fil_image,kernelup);

//
//1Inertial axis and angle computation
//

//Covariance matrix based on the centered moments
CvMoments* moments = new CvMoments;
cvMoments(fil_image, moments);

float valscov[] = {moments->mu20,moments->mull,moments->mull,moments->mu02};
CvMat* cov_mat = new CvMat;
cvinitMatHeader(cov_mat,2,2,CV_32FC1,valscov);

//Center of gravity

float valsgrav[] = {moments->m10/moments->m00,moments->m01/moments->m00};
CvMat* center_grav = new CvMat;
cvinitMatHeader(center_grav,1,2,CV_32FC1,valsgrav);

//Compute and store the eigenvalues and eigenvectors of covariance matrix
CvMat* e_vect = cvCreateMat(2 , 2 , CV_32FC1);

CvMat* e_vals = cvCreateMat(1 , 2 , CV_32FC1);

cvEigenVV(cov_mat, e_vect, e_vals);

//Some output

//cout << moments->ml0/moments->m00 << " ' << moments->m0l/moments->m00 << endl;
//cout << cvGetReallD(center_grav,0) << " " << cvGetReallD(center_grav,1l) << endl;
//cout << 100*cvGetReal2D(e_vect,0,0) << " " << 100*cvGetReal2D(e_vect,0,1) << endl;
//cout << cvGetReal2D(e_vect,1,0) << " " << cvGetReal2D(e_vect,1,1) << endl;
//cout << cvGetReallD(e_vals,0) << " " << cvGetReallD(e_vals,1l) << endl;

//Compute 2 lines for each inertial axis
CvPoint pointl;pointl.x = cvGetReallD(center_grav,0);pointl.y =

cvGetReallD(center_grav,1);

CvPoint point2;

point2.x = 100*cvGetReal2D(e_vect,0,0) + cvGetReallD(center_grav,0);
point2.y = 100*cvGetReal2D(e_vect,0,1) + cvGetReallD(center_grav,1l);
//cvLine(fil_image,pointl,point2,white,8);

point2.x = 100*cvGetReal2D(e_vect,1,0) + cvGetReallD(center_grav,0);
point2.y = 100*cvGetReal2D(e_vect,1,1) + cvGetReallD(center_grav,1l);
//cvLine(bw_image,pointl,point2,white,8);

Master semester project Damien Matti

//Compute the angle for the two inertial axis

int e_vect_select=1;

if (cvGetReallD(e_vals,0) > cvGetReallD(e_vals,1)){e vect_select = 0;}

double angle = (-1) *
cvFastArctan(cvGetReal2D(e_vect,e_vect_select,0),cvGetReal2D(e_vect,e_vect_select,l));

//
//Rotation
//

//Rotation initialisation

IplImage* rot_image = cvClonelmage(fil_image);

CvPoint center;

center.x=src_image->width*0.5F;
center.y=src_image->height*0.5F;

double scale = 1.0;

CvMat* rot_kernel = new CvMat;

float valsrot[] = {0,0,0,0,0,0%};
cvinitMatHeader(rot_kernel,2,3,CV_32FC1,valsrot,CV_AUTOSTEP);

//We do the rotation kernel
cv2DRotationMatrix(cvPointTo32f(center),angle,scale,rot_kernel);

//We do the rotation

cvWarpAffine(fil_image,rot_image,rot_kernel);

//0r cvTransform(src_image, dst_image, &MVapMatrix, NULL);

//0r cvGetQuadrangleSubPix(const CvArr* src, CVvArr* dst, const CvMat* mapMatrix);
//for subpix accuracy

//
//Pixel counting - create a vector
//

//\We create a vector to count the white pixels on each row
int num_bins = 11;
vector<int> pixel;
int temp;
CvScalar pix;
for (int x=0;x<src_size.height;x++){
temp = O;

for (int i=-(nhum_bins-1)/2;i<=(num_bins-1)/2;i++){
If (Xx+i < src_size.height && x+i > 0){
for (int y=0;y<src_size.width;y++) {
pix = cvGet2D(rot_image,Xx+i,y);
temp = temp + pix.val[0];

b
pixel _.push_back(temp);

//
//Vecor processing and normalization
//

//NORMALIZATION

// store max value
temp = 0;
for (int x=0;x<src_size.height;x++){
if (pixel[x] > temp) {
temp =pixel[x];
3

}

//Scaling the x axis
int max=temp;
int factor=max/100;

vector<int> norm_pixel;

for (int x = 0 ; x<(int)pixel.size() ; x++){
norm_pixel .push_back(round(pixel [x]/factor));

¥

Master semester project Damien Matti

//PROCESSING

//length of the feet

temp=0;

while (norm_pixel[temp]==0){
temp++;

3

int a = temp; // beginning of non-zero values

temp=norm_pixel.size()-1;
while (norm_pixel[temp]==0){
temp--;

int b = temp; // end of non-zero values

// keep only values above 95
int info[temp];
int size_temp = temp;
temp=0;
for (int x =0; x< (int)norm_pixel.size();x++){
if (norm_pixel [x]>95){
info[temp]=x;
temp++;

int tpl,tp2,tp3=0;//,tpd=0;
int info2[size_temp];

// Control at the beginning if there is values inside the forbidden zone to remove
for (int x = 0 ; X < size_temp; x++){
info2[x]=info[x];
tp2 = x-1;
iT(tp2<0){tp2=0;}
if (info[x] <= a+10 || tpl==1) {
tpl = 1;
info2[x]=0;

}

it (info[x]>a+10 && (info[x] - info[tp2]) > 5) {
tpl=0;

}

}

// Control at the end if there is values inside the forbidden zone to remove
for (int x = size_temp ; x > 0; x--){
tp3 = x+1;
if(tp3>size_temp){tp3=size_temp;}
it (info[x] >= b-20 || tpl==1) {
tpl = 1;
info2[x]=0;

}

iT (info[x] < b-20 && (info[tp3] - info[x]) > 5) {
tpl=0;

}

}

//
//Display the vector
//

//To show a line at the beginning and the end of non-zero values
norm_pixel[a] = 100;
norm_pixel[b] 100;

//Creating the size of the "hist"”
CvSize new_size;

new_size.height = src_size.height;
new_size.width = round(max/factor);

//Creating the "hist" image
IplImage* hist = cvCreatelmage(new_size,8,1);
cvZero(hist);

//Setting the pixels according to the vector content
for (int x=0;x<(int)norm_pixel.size();x++){
for (int i=0;i<norm_pixel[x];i++){
cvSet2D(hist,x, i,white);
3

Master semester project

Damien Matti

/*

*/

/7
//Displaying
//

cvNamedWindow("Picture'™ , CV_WINDOW_AUTOSIZE);
cvShowlmage("Picture', rot_image);//rot_image);

cvNamedWindow(*“‘Picture2'™ , CV_WINDOW_AUTOSIZE);
cvShowlmage("Picture2”, hist);

cvWaitKey(0);
//cvDestroyWindow('kernel™);
cvDestroyWindow("'Picture');
cvDestroyWindow("'Picture2');

/7
//Compute the output
/7

int output=0;
for (int i=1;i<size_temp;i++){
if (info2[i]>0){output=1;break;}

cvReleaselmage(&src_image);
cvReleaselmage(&fil_image);

//
//Save it to a file
/7

ofstream feature_output(argv[2]);

feature_output << output << " *';
if(feature_output.failQ){printf("error saving feature to file
feature_output.close();

-\n"):}

