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Abstract—Recent work in audio-super-resolution tasks has
focused on Generative adversarial networks as a means to
improve the audio quality of low-resolution signals. In this
paper, we investigate the integration of the HiFi-GAN dis-
criminator into an existing GAN network. We observed a
small improvement in the time-domain loss of the network
during training. We also present the novel loss function spectral
flatness that attempts to mitigate issues with the traditional
time-domain loss. Adding this loss to the network resulted in
less audible noise when the weight was properly tuned.

I. INTRODUCTION

In this paper, we present a contribution to the re-
search regarding audio super-resolution. Earlier works have
shown promise in creating high-resolution audio from low-
resolution input. Our contribution focuses on the integration
of a state-of-the-art discriminator network (HiFi-GAN) to an
existing GAN framework and analyzing the resulting GAN.
Moreover, we investigate a new loss function that could
mitigate some of the issues with current losses within the
audio-super-resolution GAN setting.

II. THEORETICAL BACKGROUND
A. GAN

A generative adversarial network (GAN) is a machine
learning framework for estimating generative models for
generic data. It has demonstrated its success in the vision
domain, as well as the audio domain, including tasks such as
style transfer, domain to domain translation[1]], and super-
resolution.

On a high level, GAN models the training process as
a differentiable 2 player game between a generator and a
discriminator, which are neural network models for synthe-
sizing data and classifying data respectively [2].

1) Equilibrium Condition

GAN models the training process for generator and
discriminator as a finding the model parameters (67, 67,)
such that they achieve the Nash Equilibrium [3]].

L(0c,0p) < L(6¢,0p) < L(0¢,0p)

If we further assume the loss for both generator and dis-
criminator is twice differentiable, the above condition can
be reduced to the first-order condition

HVQGL(HZNH*D)H = HVGDL(HZ‘!’HB)H =0,

together with the second-order condition that V_ L(6¢,, 67)
being positive definite and V§ L(6,0},) being negative
definite.

2) Optimal Generator and Discriminator
The optimal Generator is the one such that p, = pg,
whose output distribution matches the true distribution.
The optimal Discriminator is the one achieves accuracy:

pa(z)
pa(x) + py(x)
III. MODEL ARCHITECTURE

D*(z) =

In this section, we will provide an overview of the model
architecture. As presented in the previous section, our model
consists of two distinct networks, the discriminator, and the
generator. The discriminator used in this implementation was
first presented in the paper titled “HiFi-GAN: Generative
Adversarial Networks for Efficient and High Fidelity Speech
Synthesis “ [4]. In their paper, they present two distinct
types of discriminators, which in conjunction make up the
entire discriminator network. The two presented models are
the Multi-Period discriminator (MPD) and the Multi-Scale
discriminator (MSD).

A. Multi-Period Discriminator

In their paper, the authors explain that human speech
signals consist of sinusoidal audio signals of various periods,
the same is true for natural audio signals in general. Because
of the fact that audio consists of signals of multiple periods,
the authors propose the MPD, this MPD consists of multiple
sub-discriminators that each act on a subset of equally
spaced audio signals. For each sub-discriminator, the audio
is reshaped from its original length T to a data matrix of
shape pxT where p is the period of the sub-discriminator. On
this new reshaped data, a 2D convolution with stride 3 with
kernel size 1xk where k is 5 is applied in order to only apply
the convolution on one equally spaced sample of audio.
Each sub-discriminator is a stack of 6 convolutions layers
with input sizes [1, 32,128,512, 1024, 1024] and output sizes
[32,128,512,1024, 1]. After each convolutional layer except
the last, a leaky ReLU activation is used with slop 0.1. The
complete MPD then consists of 5 sub-discriminators with
periods [2,3,5,7,11], note that the choice was made to use
prime periods as this minimizes the overlap between the sub-
discriminators. Figure [1| b shows an overview of an MPD
sub-discriminator with a period of 3.

B. Multi-Scale discriminator

The second network in the discriminator is the MSD,
this network, in contrast with MPD, attempts to capture the
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Figure 1.  Sub-discriminators of MSD and MPD. On the left is a sub-
discriminator of MSD with 4x average pooled audio. On the right a sub-
discriminator with period 3. [4]

larger structure of the waveform, i.e. repetitive patterns and
long-term dependencies. To this end, the MSD uses multiple
sub-discriminators with different pooling of the input audio
signal to operate on different smoothed wave-forms [4]. This
MSD architecture was proposed in the MelGAN architecture
(3.

In the MSD architecture, a sub-discriminator consists
of a pooling layer that smoothes the raw input wave-
form, followed by stacked 2D convolutional layers with
leaky ReLU activation. The pooling layers used in the
network are 1x, 2x, and 4x average pooling, meaning
that the first sub-discriminator simply works on the raw
waveform. The convolutional layers have input sizes of
[1,128,128,256,512,1024, 1024, 1024] and output sizes of
[128,128,256,512,1024, 1024, 1024, 1].

C. Generator

The generator used in our network is the same as the
implementation created by [6]. The generator network is
based on the paper by [7]. The generator consists of a U-Net
architecture in which multiple down and up-sampling blocks
make up the network [8]. The architecture uses 8 up and
down-sampling blocks combined with skip connections. In
addition, the generator makes use of inception modules [9]]
in order to prevent the careful hand selection of kernel sizes.
Moreover, the generator implements subpixel and superpixel
layers[10]. These superpixel and subpixel layers were used
to increase the spatial resolution, while at the same time
preventing checkerboard artifacts which can be induced by
large spatial filters.

IV. Aubpio DOMAIN BACKGROUND
A. Motivation for using spectral flatness

If we look at the spectrum of a sound that gives us a clear
sense of pitch, we will find regularities in the distribution of
its frequencies. In particular, the energy of the signal should
be concentrated on the harmonic series of a fundamental
pitch. The distribution of the frequencies in the sound at a
given time should be far away from uniform.

Spectral flatness [[11], similar to entropy, describes the
notion of “spikiness” or “flatness” of the frequency domain
distribution of a sound. Because of this reason, we are
interested in incorporating spectral flatness in a loss function
to guide our generative model.

We hope that the spectral flatness loss could mitigate an
issue with the current time-domain loss, where a network
could attempt to minimize the loss by simply adding an
average noise on a specific frequency band.

V. Loss FUNCTIONS

The total loss for the discriminator and the generator is

the following:
Ltotal (D7 G) = Ladv (D7 G)

Ltotal (G7 D) = )\adeadv(G; D)+)\flathlat(G)+Ltime(G)
A. Adversarial losses

The Discriminator adversarial losses is normally of fol-
lowing form:

Laav(D; G) = E[log(D(x)) + log(1 — D(G(x)))]

We applied the Lo version, as this loss was used in HiFi-
GAN, and prevents vanishing gradients during the training
process [12].

Loav(D; G) = E[D*(z) + (1 — D(G(2))?]
B. Time-domain loss

Normally one would use the Mel-spectrogram loss:

Lye(G) =E[|l¢(za) — ¢(zp) 3]

where ¢ is the function that transforms audio to its Mel-
spectrogram. However, since in our cause we are working
with the time-domain signal directly, we use the time-
domain loss:

Ltime(G) =K [”xG - -Z'DH%]

C. Spectral Flatness loss

Liat(G) = E [|SF(zg) — SF(xpll3)]

exp( - 2, (X (w,1)))

Ny 2w X(w,1)
where X is the short-term Fourier transform of z. SF is
a vector of the ratios between the geometric mean and the
arithmetic mean of the short-term Fourier transform signal
across frequency.

Librosa [13]], a popular Python package for audio signals
has implemented spectral flatness. We build a PyTorch
version so that gradient could pass through the function
to train the GAN model. Our PyTorch version was tested
against Librosa’s implementation to ensure that they have
the same result.

SF(z) =




VI. DATA PREPARATION

A. Using EQ modification to simulate “low-resolution” au-
dio

Instead of down-sampling by applying noise to the audio,
we silence out the high-frequency sound from the audio to
achieve the effect of low-resolution audio, creating a mum-
bling texture that blurs the sound. Based on our listening, we
feel this choice better captures the perceptual notion of low-
resolution audio and it is the same effect as one covering a
speaker with a cardboard box for example.

Here is an example of the Mel-spectrograms for the
original and EQ modified audio sample.

Figure 2. Down sampling with silencing the high frequency sound. Left
is the original (target) sample and right is the EQ modified (input) sample

VII. TRAINING AND EVALUATION
A. Hyper-parameters

We tried various values [1,1071,1072,1073] on two of
the main hyper-parameters: A\,q, and Afiq; which are the
weight for the adversarial loss and the weight for spectral
flatness loss respectively.

B. Scheduler, optimizer

During the training of the models, except the original
GAN, the AdamW optimizer was used with 5; = 0.8, 8 =
0.99, and a learning rate of 0.0002. We used an exponential
step-size decay on the learning rate with v = 0.999.

C. Loss curves

In the first comparison, we examine the effect of incorpo-
rating HiFi-GAN multi-discriminator on the general loss in
the time-domain. We choose this loss to compare because
it’s the only objective criteria that are the same between the
baseline and current model. In Figure 3] the dark blue curve
is our baseline (without the Hifi-GAN multi-discriminator)
and the light blue and grey curve is the new discriminator
with spectral flatness loss untoggled/toggled. We see that the
Hifi-GAN discriminator improves the time-domain generator
loss.

In particular, within the new discriminator model, we
compared the training processes of two runs, the first is

without spectral flatness (A\gqp = 10*3,)\ﬂat = 0) and
the second is with spectral flatness (Agay = 1073, Af1ar =
10~3). Both runs were 20 epochs and took 6 hours each
to finish. From Figures [4] [3] and [5} we see that model
can minimize the spectral flatness without sacrificing for
worse performance in Discriminator loss and Generator
time-domain loss. This shows that the spectral flatness loss,
at least at our current training stage and with a low weight
setting, does not cause conflict with the other loss. However,
in other runs when we set A, to be higher, we observe
that the generator’s time-domain loss was sacrificed for the
spectral flatness loss. This means that tuning A f;4¢ is a subtle
process.

Figure 3. Generator loss on Time-domain (grey is with spectral flatness,
light blue is without spectral flatness, dark blue is the baseline)

Figure 4. Discriminator loss (grey is with spectral flatness, blue is without
spectral flatness)

Figure 5. generator spectral flatness loss (grey is with spectral flatness,
blue is without spectral flatness)
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Figure 6. Spectral flatness (bottom row) curves alongside with Mel-spectrogram (upper row). For the generated samples (the 3 columns of the right side),

the perceived quality increases as the spectral flatness curve decreases.

Figure 7.

We observe a minimal difference in the output samples when
using cross-entropy loss vs Lo in binary classification

VIII. DISCUSSION
A. Choice between log and Lo on binary classification loss

Aside from preventing the vanishing gradient problem for
log, another point is interest is to examine is how this choice
affects the generated result. From Figure [7] We observed a
minimal difference in the Mel spectrogram of the output
sample. We also listened to the audio and found no particular
differences.

B. Effect of Spectral flatness loss on the perceived quality
of the model output

There are many unexpected results, both positive and neg-
ative, concerning the spectral flatness loss. On the positive
side, across the different generated samples for the same
input, the ones that sound better are the ones with low
spectral flatness, this means the notion of spectral flatness

is at least pointing to the right direction (see Figure [),
moreover, from close listening, it became apparent that
spectral flatness suppressed the volume of noise in the
generated signal. On the negative side, high weights for
spectral flatness loss lead to a high-frequency noise and high
spectral flatness in the generated audio, which is against our
intuition.

There could be several reasons that lead to this phe-
nomenon and could be further investigated in further re-
search. First, since the spectral flatness loss is implemented
as minimizing the L2 distance between the generated target
sample, some outliers at some point in time, in particular
silence, could tamper with the distance. Looking at the input
spectral flatness curve in figure [6] we see that the overall
spectral flatness is low but there is this high flatness region
before the onset of the first note. We suspect that this outlier
segment encourages the model to generate results with high
spectral flatness. One possible solution to account for this is
to weigh spectral flatness at a certain time window by the
signal’s amplitude.

C. Beyond spectral flatness

Spectral flatness is invariant of permutation in the fre-
quency domain. So it only captures part of the acoustic
regularities above. The rest, in particular, the information
about harmonic series is outside the scope of this measure.
In future works, we could design a better loss function that
further focuses on the distribution of harmonics.

IX. SUMMARY

Our contribution consists of two parts. First, by incor-
porating the Hifi-GAN multi-discriminator, we observed
improvement in the time domain loss for the generator.
Second, we found some interesting effects of the spectral
flatness loss that are both positive and negative, which may
provide further insights on designing a new loss function to
control the quality of music audio synthesis. Our code could
be found here [1]

Uhttps://github.com/CS-433/ml-project-2-super_audio
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