
Classification of zebrafish embryo using various ML methods

Saoud Akram, Juliette Meurgey, Simon Zamora
Ecole Polytechnique Fédéral de Lausanne, Switerland

I. INTRODUCTION

The formation of the precursors of the segmented verte-
bral column along the body-axis of a vertebrate embryo is
governed by a complex genetic machinery. Those precursors,
so-called somites, appear in a rhythmic and sequenced
manner during the development of an embryo[1]. Their
formation depends on the precise oscillation of a complex
genetic network termed the segmentation clock. This clock
allows a precise space-time formation of somites along the
body axis of the embryo. A lot of work is being done to
understand how such complex structures can appear under
the supervision of the segmentation clock and what are the
underlying mechanism.

One classic model organism that is used to study the
development and formation of the diverse structure of an
embryo is the Zebrafish, (Danio Rerio). It has the advantages
of growing externally after fertilization and thus can be ob-
served easily throughout its whole development. It presents
a perfect model to study the formation of somites under the
control of the segmentation clock as it can be genetically
manipulated. The effect of a mutation on specific genes can
thus be directly monitored by observation of their phenotype.

This project was done in collaboration with the Segmenta-
tion Timing and Oscillation laboratory, directed by professor
Andrew Oates at EPFL. The main objective of the project
was to create a classifier that could classify images of em-
bryos depending on the specific phenotype they showed. For
this purpose, the lab sent us images of embryos of Zebrafish
that presented four specific phenotypes corresponding to
their four different genotypes. We had at our disposal three
different mutant type embryos: Tbx6 mutants, the so-called
fussed somite, that showed a phenotype characterized by a
complete lack of somite formation along the body axis.

Herst mutants, that present mutations in two different
genes Her1 and Her7. These are oscillatory genes that are
important for the segmentation clock, so any perturbation
in their functionality will give rise to defective, not well-
defined somites along the whole body axis.

N1a mutant, also called Notch 1a, corresponds to a muta-
tion on a gene that takes part in local cell-to-cell signaling
which is essential for precise synchronisation of the cellular
oscillation. Mutations in this gene result in a disorganised
oscillation of the whole system and result in somite defects
appearing progressively along the body axis.

Finally, the last type of embryos we had at our disposal

(a) Embryo class type her (b) Embryo class type n1a

(c) Embryo class type tbx6 (d) Embryo class type wildtype

Figure 1. The four provided embryo class types

was wild-type embryos that presented no defects in their
somite formation. Having this image set at our disposal we
proceeded to create classifiers that could correctly classify
each image to their corresponding mutant classes using
various machine learning techniques.

II. PROBLEM STATEMENT

Our main objective was to build a reliable classifier for the
four different types of zebrafish embryo in our data set : her,
n1a, tbx6 and wildtype. Once we had this classifier, our goal
would be to try to gain insight into which features it used
to classify each embryo by creating the activation map of
each neural network model. In this way, we could hopefully
extend the capacity for humans to classify zebrafish embryos
with methods they would not have considered otherwise.

III. INITIAL DATA CLEANING

The initial data set contained 509 specimens : 78 her
mutant, 161 n1a mutant, 57 tbx6 mutant and 213 wildtype.
The images differed somewhat from each other; the framing
was centered differently from one to the next, there were
sometimes hairs or drops on the image, and the relative
orientation of the embryo from the framework. For these
reasons, we decided to crop the images by hand and we
also flipped some of the images so that that head of the
embryo was on the left side to have a standardized input.
We used the Crop function from ImageJ to crop each image
to the size of 544 by 160 pixels. We then saved the images
with a Tiff format to conserve the original data format.



Figure 2. Cropped image of size 544 x 160

IV. PROGRAMMING ENVIRONMENT & LIBRARIES USED

Our entire project was done in Python 3.7. Given the
expensive computational cost that arises from the use of
Deep Neural Networks to classify images, we used Google
Colab as our hosting environment and ran our notebooks
on the provided GPU. This was the hosting environment
that we used for our final version of our code.

The libraries we used for this project are:
• Scikit-learn, which we mainly used for the KNN algo-

rithm as well as to print our Confusion Matrix
• OpenCV, that we used for image processing
• Keras, which we used ro deploy, train, and evaluate our

Convolutional Neural Networks

V. METHODS USED & RESULTS

A. K-NN approach

Our first attempt at classifying these images was to use
the K-nearest neighbours (K-NN) algorithm. We devised
two models, with different input vectors. The first one used
all the pixels of the input image and then transformed it
into a 1-dimensional vector. The second model created a
1-dimensional array of the RGB histogram of the input
image. This allowed us to have a baseline in regards to the
classification accuracy which will serve us when assessing
the quality of subsequent and more complex models. To train
both models and find the best k, we used hold-out cross
validation (i.e. we split our training set into a training and
a validation set and then used the validation set to find the
best k that classifies our data).

The accuracy of the predictions generated by both models
ranges from 60% to 75%. This is mainly due to the fact
that the K-NN algorithm is very sensitive to the relative
position of each pixel so it is not much of a surprise for us
that this algorithm doesn’t perform well when taking into
consideration the high variability of embryos positions in
our data set. The confusion matrix shows us that the first
model can easily classify n1a mutants (often reaching a
precision of 75% or slightly higher) while the precision for
her mutants is quite low (50% or below). For the second
model, we observed that it could more easily classify images
of wildtypes (reaching a precision of approximately 80%)
and had decent results with n1a and tbx6 mutants (precision
higher than 65%), but, again, isn’t efficient with her mutants.
The fact that both these models struggle with classifying her

mutants is due to the fact that we are using an unbalanced
dataset containing a small number of images (508 in total).

B. Data preparation for Convolutional Neural Netwrok

Before beginning analysis on the data set using Convo-
lutional Neural Network, we had to prepare what would
become our Train set and our Test set. For this purpose,
we separated our complete data set in two. We randomly
took one-fifth of our data set for our test set (102 images)
and the rest for our train set (407 images). The test set was
used to evaluate the performance of our model as the train
set was used to fit our model. This way we could assess the
precision of our model on a data set it has not seen, thus
reflecting its real performance. For the rest of the report, we
used the term accuracy to refer to the performance of the
model on the test set.

C. Basic Convolutional Neural Network approach

After having established a baseline of prediction precision
we wanted to start using a Convolutional Neural Network
as they are more adapted for an image classification task.
We used the Keras libraries to build a Sequential model. We
built our own CNN with the following simple architecture:

Layer Type activation function
Convolutional2D (32 filters) relu
MaxPooling2D layer
Convolutional2D (64 filters) relu
MaxPooling2D layer
Dropout Layer 0.4
Flatten Layer
Dense layer (4 nodes) softmax

Architecture of the Convolutional Neural Network

The Dropout layer was added to avoid overfitting on our
training set. The factor 0.4 next to it means that 40% of the
layer will be dropped to construct the final model. The whole
model is relatively simple regarding more complex CNN and
had a total of 1’412’036 trainable parameter. Once trained
on our trained set the model achieved a precision of 68%
on the test set (missclassifying 34 out of 102 images). We
didn’t try to fine-tune this model as we knew that we wanted
to move on to pre-trained models that would certainly give
us a higher precision.

D. Transfer Learning - VGG16 and MobileNetV2

Given the fact that our dataset is very small, it was
natural for us to look towards pre-trained Convolutional
Neural Networks (CNN) in order to classify our images.
We used these pre-trained models as starting points for our
own models, which we fine-tuned to our task at hand. This
process is called Transfer Learning.

The first pre-trained model we considered is VGG16
which has approximately 138 million pre-trained parameters.



(a) Validation and test accuracy
MobileNetV2

(b) Validation and test accuracy
VGG16

Figure 3. Test and validation accuracy in function of layer unfrozen

We changed the input layer such that the model accepts
544x160 images. We also added a Dense layer (which is
there for combining features that the VGG16 model has
recognized in the image) as well as a Dropout layer (which
may prevent overfitting and, as such, improve generalization)
before adding an output layer that sorts the pictures in one
of four classes. The second pre-trained model we used was
MobileNetV2 a lighter model with about 4.3 million pre-
trained parameters. Just like our model based on VGG16,
we also changed its input layer for it to accept our own
images and added this time only one output layer to allow
the multi-class classification needed. When training, we used
Categorical Cross-Entropy Loss, as it is the one that is usu-
ally used when undertaking multi-class classification. There
were other parameters that we used for the compilation of
both our models. We used as an optimizer the Keras Adam
optimizer with a learning rate of 0.0001 and to evaluate
the performance of our model we used the accuracy metrics
provided by Keras. For the moment we only allowed training
on the layer that we manually added and froze the rest of
the model.

The test accuracy we got by building a model for each
of those pre-trained CNNs was very high, with VGG16
achieving an accuracy of 97% (with only 3 out of 102 images
misclassified) and MobileNetV2 achieving 93% (with 7 out
of 102 images misclassified).

It is important to mention that both VGG16 and Mo-
bileNetV2 were initially trained on the ImageNet dataset,
which includes more than 14 million images belonging
to 1000 classes but none having anything close to a mu-
tant zebrafish embryo. Furthermore, both VGG16 and Mo-
bileNetV2 have been trained using images of a different
square format, 244x244 for example, so we found it really
interesting and encouraging to see that without any fine-
tuning the pre-trained model reached such good precision.

E. Best Model Selection

When building a model of your own off a pre-existing
one, there are multiple parameters to tune such that the
model best fits the problem at hand. First of all, we need
to consider how many layers of each pre-trained model we
will ”unfreeze” (i.e. we look at how many of these pre-

Figure 4. Confusion Matrix for MobileNetV2

trained layers we need to re-train to try and optimize the
validation accuracy and validation loss). In order to achieve
this, we trained a model whilst unfreezing a certain number
of layers and chose the model which had the lowest loss in
the validation set. To compute this validation loss, we used
the validation split functionality from Keras that generates
a validation set automatically at each new epochs. We chose
a value of 0.2 for this parameter meaning that at each step,
a randomly chosen fifth of the total training set will be used
as a validation set.

When training, to find the optimal number of epochs, we
followed an ”earlystop” methodology to find the optimal
number of epochs to use. This method checks if the last
registered validation loss for a given epoch e is the lowest
across the next 6 epochs (if it is, then it stops and reverts
to the weights learned after e and stops the training ; if it
isn’t, it sets the lower validation loss as the last registered
validation loss and restarts). To further optimize the VGG16
model, we tried to find the optimal values for the number
of hidden nodes as well as the batch size.

Figure 3. shows the resulting evolution of the test and
validation accuracy in term of the number of unfrozen layer
when the model was trained with the best hyper parameters.
We can see that for MobileNetV2, the maximum of the
validation accuracy (in blue) reaches its maximum at 9
unfrozen layer and with a batche size of 10. The model
manage to achieve a precision of 99% for the test set. A
higher precision on the test set has been achieved with a
higher number of layer unfrozen but we can see that the
validation accuracy decrease meaning that the overall pre-
cision of the model was poorer. VGG16 has the maximum
validation accuracy with 5 unfrozen layer (and 512 hidden
layers) and manage to correctly predict all the images of
the test set. In Figure 4. you can see the resulting confusion
matrix of MobileNetV2 on our test set. In this case our
model manage to classify all images except one her mutant
that was classified as n1a.

F. Data Augmentation - Testing Robustness

In order to test the robustness of our models, we aug-
mented our test set to assess its performance. As Mo-
bileNetV2 perform really poorly we only report the result
of VGG16. It is understable knowing that as MobileNetV2
has 4 times less parameters than VGG16, it present a much
lower robustness. We also trained our VGG16 model with



Figure 5. Example of an activation map for one image (type her)

augmented training sets to see how they would perform on
non-augmented sets and augmented sets. As such, we will
consider 4 forms of data augmentation:

1) Non-Augmented (A)
2) Flips and Rotations (B)
3) Zooming and adding noise (C)
4) Flips, Rotation, Zoom, Noise (D)
For each augmented dataset, we trained our model and

looked at the efficiency on augmented and non-augmented
test sets. Here are the resultin accuracy on the test set we
got:

- A B C D
A 0.951 0.76 0.56 0.54
B 0.99 0.98 0.52 0.66
C 0.94 0.71 0.84 0.71
D 0.95 0.96 0.9 0.9

This table can be understand this way. AA correspond to
the test accuracy when neither the training or the test set
was augmented. CB corresponds to the accuracy when the
training set was augmented using Zooming and Noising and
the test set was augmented using Flips and Rotation (in other
words, rows correspond to the training sets and columns to
the test sets). These results are quite interesting. It makes
sense that when taking more and more diverse pictures when
training, the model is able to generalize (which explains why
row D seems to have the best accuracies, while row A seem
to have the worst).

G. Class Activation Maps

After looking at how robust our dataset was on trans-
formed images, we looked at which parts/pixels of each
image in the test set have contributed more to the final
classification output of our models. This could be of great
use for the labs as it could indicate the presence of patterns
in the embryo which is specific to each mutant class. Also,
for our problem we expect the model to be activated by the
embryo’s dorsal somites as it is there that all the various
mutation on the genome produce the different phenotype.
To produce those activation map, we extracted the last
Convolution layer in our MobileNetV2 model and used them
to create a heatmap[2]. We then superimposed all heatmap
onto a superimposed set of all images for each class to see

(a) Compilation for her (b) Compilation for n1a

(c) Compilation for tbx6 (d) Compilation for wildtype

Figure 6. Compilation of class activation maps for the four types

the most important features. We produce the resulting Class
Activation Map (CAM) for each of our mutant type which
is presented in Figure 6.. By plotting these superimposed
images we could see which part of the zebrafish embryo
image carried the most information for classification from
the point of view of the model.Despite the high variability
in the embryos position from one image to the other, from
which result the blurriness of the top compilation, the CAM
manage to highlight some region on the dorsal spine of the
embryo. What will be interesting for the lab is the variability
of CAM highlight from one class to the other. For example,
the position of the bottom of the spine seemed to be a more
determining factor than the top in the identification of the
n1a type. We gave all those resulting CAM to Oates Lab
for further analysis.

VI. CONCLUSION

We were able to produce a zebrafish embryo classifier
with a high accuracy based on the images we were provided.
Furthermore, in the generation of the class activation maps,
we were able to determine the regions of the images that
were the most useful in the classification. We ran our
classifier on test images and obtained an accuracy of 99%.
This goes to prove that our model is useful to classify images
that were not used to fit it the model and thus could serve
future researchers in the classification of other zebrafish.
A future goal of this project would be to delve deeper
into the class activation maps to see if we could identify
classification features with more detail, such as individual
vertebrae rather than just areas of the image.



ACKNOWLEDGEMENTS

Many thanks to Martin Weigert, Arianne Bercowsky
Rama, and Professor Andrew Oates from the Segmentation
Timing and Dynamics Laboratory, EPFL, Switzerland

REFERENCES

[1] A. C. Oates, L. G. Morelli, and S. Ares, “Patterning
embryos with oscillations: structure, function and dynamics
of the vertebrate segmentation clock,” Development, vol.
139, no. 4, pp. 625–639, 2012. [Online]. Available: https:
//dev.biologists.org/content/139/4/625

[2] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Tor-
ralba, “Learning deep features for discriminative localization,”
in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 2921–2929.

https://dev.biologists.org/content/139/4/625
https://dev.biologists.org/content/139/4/625

	Introduction
	Problem Statement
	Initial Data Cleaning
	Programming environment & Libraries used
	Methods Used & Results
	K-NN approach
	Data preparation for Convolutional Neural Netwrok
	Basic Convolutional Neural Network approach
	Transfer Learning - VGG16 and MobileNetV2
	Best Model Selection
	Data Augmentation - Testing Robustness
	Class Activation Maps

	Conclusion
	References

