
Automatic detection of available area for rooftop solar panel installations
CS-433 Machine Learning — December 2020, EPFL, Switzerland

Alexander Apostolov, Auguste Baum, Ghali Chraibi
Supervisor: Roberto Castello (roberto.castello@epfl.ch)

EPFL Laboratory of Solar Energy and Building Physics

Abstract—In this work, we used a state-of-the-art
convolutional neural network architecture for auto-
matic detection of available rooftop surfaces on aerial
images. We labelled data and tuned on multiple hyper-
parameters. Our best-tuned model has a F1-score of
0.77 and an intersection-over-union (IoU) of 0.62 on an
unprocessed dataset, where many images might exhibit
no available area.

I. Introduction

A. Importance of the task & Related work
With global warming, renewable energy and in partic-

ular solar energy has become a major topic of interest.
In Switzerland, solar panels have furnished 3.4% of the
electricity consumed in 2018 and this number is increasing
each year. [1]
To encourage the efficient deployment of solar panels,

the Swiss Federal Office of Energy provides an interesting
tool to estimate the potential of solar panels on the roofs
of Switzerland. [2] However, roofs often have obstacles to
the installation of solar panels (chimneys, windows, pre-
existing solar panels, etc.) which the tool does not account
for. In this paper, we propose a model to detect roof
surfaces available for solar panels since there is no existing
baseline for this task.

B. Data
The dataset used consists of ortho-rectified aerial images

of the Geneva canton (Switzerland) provided by the Swiss
Federal Office of Topography. The images are split in tiles
corresponding to different region of the canton. Images are
250× 250 RGB arrays saved in PNG format. Each pixels
correspond to 0.25× 0.25 m2.

II. Models and Methods

A. Data labelling
Together with another student group working on the

same project, we labelled 876 images using an updated
version of an existing labelling tool based on OpenCV. [3]
This tool was made to label solar panels which are usually
rectangular, and we extended it for our task by making it
possible to extrude parts of a labelled region (here, parts of
a roof not available for solar panels). Pixels that represent
rooftop space available for photovoltaic panels are referred
to as PV pixels, whereas the others are referred to as no-
PV pixels.

The labelled images were chosen from a randomized
subset of the dataset mentioned above, taken from dif-
ferent tiles (regions of the canton) in order to have the
most representative variety of rooftop shapes and types:
industrial area, old town, center town, countryside, etc.

B. Data preprocessing
1) PV images vs. no-PV images: We distinguish PV

images that contain at least some PV pixels from no-PV
images that contain only no-PV pixels. We separate our
images based on whether they are PV or no-PV, to control
how many no-PV images are used during training.
2) Data augmentation: We artificially enlarge our

dataset by applying a random transformation on each
image-label pair. The transformation is composed of:

• a random square crop which takes at least 60% of the
image and is then resized to 250× 250 pixels, and

• a horizontal flip of the sample, with probability 0.5.
3) Training, validation, test: The dataset is split into

train, validation and test sets in the following proportion
70%/15%/15%.
The model should not require any pre-processing, hence

the validation and test sets are not augmented by trans-
formations and they exhibit the original ratio of PV to
no-PV images. We alter this ratio and transform images
only when training the model.

C. U-Net
Convolutional networks are a model of choice in com-

puter vision. Here we use such a model called a U-Net, [4]
a sort of encoder-decoder architecture introduced in 2015
for image segmentation in biomedical imaging; it can yield
state-of-the-art results with only few images. The U-Net
as shown in Figure 1 consists of two parts, the contracting
and the expanding path. The former is used to detect
features on an image and the latter to find the locality
of these features in the original space.
The contracting path we use consists of 5 stages where

we apply two 3×3 convolutions padded by 1 pixel on each
side, each followed by a batch normalization layer and a
rectified linear unit. We use the same number of channels
as described in Figure 1, namely 64, 128, 256, 512 and
1024 for each stage of the contracting path. Stages in the
contracting path are separated by a 2 × 2 max-pooling
layer with a stride of 2.
The expanding path we use consists of 4 stages starting

by an upsampling by a factor of 2 and a 2× 2 convolution



Fig. 1: U-Net example as described in the original pa-
per [4]. Blue boxes correspond to multi-channel feature
maps; the number of channels is found on top of the box,
and the dimensions are at the lower left edge. White boxes
represent copied feature maps.

to halve the number of channels, a copy of the feature
map in the corresponding stage of the contracting path
is concatenated and then 3× 3 convolutions padded by 1
pixel on each side are applied, each followed by a batch
normalization layer and a rectified linear unit. We use the
same number of channels per stage as in Figure 1, namely
512, 256, 128 and 64.

The model terminates by a 1×1 convolution to a feature
map with only one channel; we finally apply a sigmoid to
get the probability that each pixel is PV.

D. Loss
This is a binary problem, the pixel is either PV or no-

PV. We try the following three losses:
• Binary cross entropy (BCE),
• Weighted binary cross entropy (wBCE), and
• L1 loss.
The weighted binary cross entropy can be used when

there is a class imbalance, which is the case here: most
pixels are no-PV. The formula for this loss is:

L = 1
N

N∑
n=1

[pyn log(σ(xn)) + (1− yn) log(1− σ(xn))],

where xn and yn are respectively the raw output of the
model and the true class (0 or 1) for pixel n, and p
is the weight given to the positive class. Setting p > 1
increases the recall, whereas p < 1 increases the precision.
As described in the documentation of PyTorch we set this
weight as support(0)

support(1) in the dataset.

E. Training
We train the model with different hyperparameters and

choose the combination which has the best results on
the validation set. In particular, we look at the following
parameters:
1) Optimizer: We decide to try Adam [5] and Stochastic

Gradient Descent (SGD) to train the U-Net.

2) Effect of using no-PV images during training: We
surmise that using too few no-PV images might lead to
overfitting (many false positives), while too many might
incentivize the model to always predict no-PV (many false
negatives). Hence, we vary the proportion of no-PV images
compared to PV images in the train set, between 0%, 25%
and 50%.
3) Loss: We compare the three losses mentioned in

subsection II-D. For the weighted cross entropy loss we
use a different weight depending on the percentage of no-
PV images in the train set; we compute it as support(0)

support(1) :

Percentage no-PV Weight for wBCE
0% 5.13
25% 6.46
50% 8.10

4) Learning rate scheduling: For the optimizer, the
learning rate is an important factor: small values tend to
lead to a lower minimum of the loss function but very
slowly and might easily get stuck in local minima, while
big values lead to faster convergence but do not guarantee
the best minimum. To combine the best of both, we also
use a learning rate scheduler, decreasing the learning rate
as training progresses.

F. Tuning threshold on probability after training model
After using a sigmoid to transform the model output

into numbers in [0, 1], we still need to find a decision
boundary to compare the prediction with the true label—a
threshold probability θ over which a pixel is decided to be
PV. We hence perform a grid-search over thresholds be-
tween 0 and 1, computing the F1-score over our validation
set for each threshold.
As a reminder, the F1-score is computed as 2 ×

precision×recall
precision+recall , where the precision of the prediction cor-
responds to P{Pred = 1 | Label = 1} while the recall cor-
responds to P{Label = 1 | Pred = 1}. As such, both are
susceptible to become undefined if #{Label = 1} = 0 or
#{Pred = 1} = 0, respectively.
Since we must have no-PV images in the validation and

test sets in order to faithfully represent real-world usage,
these possibilities must be accounted for. By default, the
precision and recall functions we use can catch these errors
and arbitrarily set the each value to 0 or to 1.
Setting the value to 0 in case of no-PV is not sensible,

because in this case, even if the model perfectly predicts
all pixels as 0, both precision and recall will be set to 0
(and so will the F1-score). However, setting the value to 1
also seems suboptimal, because then we cannot make the
difference between getting a high score because PV pixels
are predicted well, and just because the image is no-PV.
In both cases, the F1-score is being influenced artificially
in a varying way.
Another solution was then to compute precision and

recall as weighted averages, as is done with multi-class



problems. In this case, we compute the precision and
recall, once with PV as the positive class (so that a true
positive corresponds to a pixel that is no-PV both in
the predicted label and the true label) and then once
with no-PV as the positive class (so that a true positive
corresponds to a pixel that is no-PV both in the predicted
label and the true label). Then, we take a weighted
average of the two, where the weights are the support
of each class. Using this method, division-by-zero issues
naturally disappear. Unfortunately, we could not interpret
the results because we tended to get a disproportionately
high precision whereas the recall was not as affected.

Finally, we decided that the best would be to concate-
nate all the images in the set and compute each metric just
once. That way, though we lose out on the statistical power
that computing for each image might bring, we are certain
that no undefined behaviour will occur, and interpretation
is easier than with modified metrics.

Using this strategy, we could compute precision-recall
curves and maximise the F1-score. Such a precision-recall
curve is shown in Figure 3.

G. Testing
Once the best threshold is found, we use this to produce

the final model; we apply this on our test set and compute
standard classification metrics for each prediction, using
the last method presented in subsection II-F.

Because the precision, recall and F1-score were used
to find the best threshold, it makes sense to use other
indicators for testing (the same way that using the training
data for testing is not the best indicator of real-world
performance). We use the IoU loss for testing, as it corre-
sponds to the tightness of the overlap between predicted
and true labels. If our task is used to estimate the total
area available for solar panels, this tightness is a very
relevant metric.

III. Results
After selecting appropriate learning rates we choose to

train the models listed in Table I.
We notice that rescheduling the learning rate during the

training only once after 50 epochs gives the best results.
We also notice that when rescheduling, we need to shorten
the training to 80 epochs to avoid overfitting, whereas with
a constant learning rate we train for 100 epochs to have
the best results before overfitting.

Each model is run on a validation set to perform a grid-
search of the best threshold, and the model is then applied
with that threshold to a test set. Various standard classi-
fication metrics are computed and collected in Table II.

We choose the model 21 as the best model because it
has the best IoU and F1-score. The train and validation
error during training are shown in Figure 2. We see that
there are some peaks but their frequency and intensity
decreases after the rescheduling after 50 epochs. This
suggests that using the learning rate scheduling was a

N◦ Optimizer %noPV Learning rate Loss
1 ADAM 0% 10−3 wBCE
2 ADAM 0% 10−4 wBCE
3 ADAM 0% 10−3 and 10−4 wBCE
4 ADAM 25% 10−3 wBCE
5 ADAM 25% 10−4 wBCE
6 ADAM 25% 10−3 and 10−4 wBCE
7 ADAM 50% 10−3 wBCE
8 ADAM 50% 10−4 wBCE
9 ADAM 50% 10−3 and 10−4 wBCE
10 SGD 0% 10−3 wBCE
11 SGD 0% 10−2 wBCE
12 SGD 0% 10−2 and 10−3 wBCE
13 SGD 25% 10−3 wBCE
14 SGD 25% 10−2 wBCE
15 SGD 25% 10−2 then 10−3 wBCE
16 SGD 50% 10−3 wBCE
17 SGD 50% 10−2 wBCE
18 SGD 50% 10−2 and 10−3 wBCE
19 ADAM 0% 10−3 and 10−4 BCE
20 ADAM 25% 10−3 and 10−4 BCE
21 ADAM 50% 10−3 and 10−4 BCE
22 ADAM 0% 10−3 and 10−4 L1
23 ADAM 25% 10−3 and 10−4 L1
24 ADAM 50% 10−3 and 10−4 L1

TABLE I: Hyperparameter combinations for the different
models we consider. We write two values for the learning
rate, when we use learning rate rescheduling.

N◦ Jaccard (IoU) F1-score Precision Recall
21 0.6223 0.7672 0.7491 0.7862
4 0.5999 0.7499 0.7047 0.8013
6 0.5921 0.7438 0.6939 0.8015
7 0.5862 0.7391 0.7339 0.7444
8 0.5834 0.7369 0.6716 0.8164
9 0.5781 0.7327 0.6742 0.8022
20 0.5762 0.7311 0.6932 0.7735
15 0.5685 0.7249 0.6707 0.7887
2 0.5659 0.7228 0.6542 0.8075
22 0.5609 0.7186 0.6919 0.7476
18 0.5493 0.7091 0.6493 0.7810
19 0.5472 0.7073 0.6550 0.7688
23 0.5338 0.6961 0.6650 0.7303
14 0.5265 0.6898 0.6149 0.7856
24 0.5243 0.6879 0.6530 0.7268
3 0.5159 0.6807 0.5951 0.7949
1 0.4868 0.6548 0.5479 0.8137
5 0.4766 0.6455 0.5629 0.7566
12 0.4703 0.6397 0.5533 0.7581
17 0.4570 0.6273 0.5915 0.6678
16 0.4026 0.5741 0.5190 0.6422
11 0.3841 0.5550 0.4453 0.7364
13 0.3471 0.5153 0.4583 0.5885
10 0.2351 0.3806 0.2745 0.6207

TABLE II: Test results for all models, each with its best
threshold according to arg maxF1(θ). Sorted according to
the IoU (Intersection-over-Union).



0 20 40 60 80

0.1

0.2

0.3

0.4

Epochs

E
rr
o
r

Training
Validation

Fig. 2: Train and valida-
tion errors during training
of the model N◦21.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(0.716, 0.655)

Recall

P
re
ci
si
on

Fig. 3: Precision-recall
curve of model N◦21.
Red dot indicates best
threshold.

Fig. 4: Prediction of model N◦21 on an image from the
Test set using a threshold of 0.37.

good idea. Figure 3 shows the precision-recall curve and
highlights the point that has been chosen as a threshold
(0.37), giving the results shown in Table II.

IV. Discussion

We convince ourselves that this model works well by
looking at the predictions it makes. Figure 4 shows the
prediction of the model on a test image. We see that
the model recognizes roofs really well and manages to
exclude many obstacles and solar panels. However it has
more trouble spotting small obstacles on the roof, and
differentiating a roof from a flat ground surface. From
our experience in labelling the data, we can note that the
scenarios mentioned above can be hard to label for humans
as well. Also, it often happens that the model makes better
predictions than humans, so more accurate labelling could
increase its performance.

We used a test set corresponding to the real distribution
of PV and no-PV images, so that our model stays as
general as possible. Another model might give better
results on a preprocessed dataset with less no-PV images.

In general, we see that ADAM outperforms SGD. We
observe that using the L1 loss is consistently the worst
and surprisingly, using the weighted version of BCE does
not always give the best results. This might be due to
the fact that we are basing our predictions on a threshold
that we calculate once the U-Net is ready, independently
of the loss used during training. By doing so, we ensure
that even models trained with an unbalanced loss, that
would tend to more easily predict no-PV pixels, can give
meaningful results by using a low threshold. Indeed, we
see that models trained with BCE have have significantly
lower decision thresholds. We also note that training with
more no-PV images generally yields better results.
Depending on the use case for which this model would

be used, it can make more sense to use a different metric
to set the threshold value for decisions. If the user wants
to minimize the false negative rate, in order to make sure
not to underestimate the available area for solar panels, we
would suggest to decrease the threshold and vice versa.
Because we are using a shared GPU from the lab

running other experiments, we are limited in our computa-
tional resources, but more fine-tuning of the hyperparam-
eters, especially the learning rate and its scheduler, could
further increase the performance of our model.

V. Conclusion
In this project we propose a model to detect rooftop

solar panels in aerial images based on a U-Net. When
applied on a test set of images that have not been prepro-
cessed (e.g. removing no-PV images), we get a F1-score
of 0.77 and an IoU score of 0.62. In our analysis, we fix
the decision threshold for this model to 0.37 but we also
give insights on how to change this value depending on
the final use of the model. The U-Net could give better
performances with more labelled data. We thus provide a
tool that enables to label new data more easily.

Acknowledgements
We would like to thank Roberto Castello and Simon

Roquette from the Solar Energy and Building Physics Lab
for their guidance and valuable advice during this project.

References
[1] Swisstopo. How much electricity or heat can my roof

produce? url: https://tinyurl.com/yd4klnqd.
[2] Swisstopo. Why is solar power struggling to take off

in Switzerland? url: https://tinyurl.com/y9btpapb.
[3] Roberto Castello et al. “Deep learning in the built

environment: automatic detection of rooftop solar
panels using Convolutional Neural Networks”. In:
Journal of Physics: Conference Series (2019).

[4] Olaf Ronneberger, Philipp Fischer, and Thomas
Brox. U-Net: Convolutional Networks for Biomedical
Image Segmentation. 2015.

[5] Diederik P. Kingma and Jimmy Ba. “Adam: A
method for stochastic optimization”. In: ICLR. 2015.

https://tinyurl.com/yd4klnqd
https://tinyurl.com/y9btpapb

	Introduction
	Importance of the task & Related work
	Data

	Models and Methods
	Data labelling
	Data preprocessing
	PV images vs. no-PV images
	Data augmentation
	Training, validation, test

	U-Net
	Loss
	Training
	Optimizer
	Effect of using no-PV images during training
	Loss
	Learning rate scheduling

	Tuning threshold on probability after training model
	Testing

	Results
	Discussion
	Conclusion

