Detecting rooftop available surface for installing PV modules
in aerial images using Deep Learning

Riccardo Cadei, Rapha¢l Attias, Shasha Jiang
Department of Computer Science, EPFL, Switzerland

Abstract

Mapping the location and size of potential surface on rooftops to install photovoltaics (PV) panels can be a valuable input for policymakers
and for investing in distributed energy infrastructures. Machine Learning techniques, combined with satellite and aerial imagery, allow to
overcome the limitations of surveys and sparse databases in providing this mapping at large scale. In this project we apply a supervised method
based on convolutional neural networks to delineate available rooftop area for the installation of PV panels by means of pixel-wise image
segmentation. We created the dataset from scratch, using satellite images of Geneve and labelling them manually. We explored different data
augmentation and we varied network parameters in order to maximize model performance. First we trained our model on the whole dataset,
then we focused on only on a specific class of images, residential area: our hypothesis is that in order to generalize our solution on new
different geographical areas, it is better, in a first step, splitting the dataset in classes (i.e. residential area and industrial area) in a supervised or
unsupervised way and then train a different model for each one. Preliminary results show that, training a different model for each area, at the
cost of having less data, increases anyway the performance of our detection. In particular we are able to automatically detect, on the residential
areas, the available rooftop area at pixel level with an accuracy on the test set of about 0.97 and an Intersection over Union index of 0.77 using
only 244 images in the training. The scalability of the trained model should allow to predict the available rooftop area at the Swiss national
scale, while new classes (in add to residential and industrial area) could be found to improve and adapt our solution to other country with

different geographic settlement,

I. INTRODUCTION

Nowadays, people pay more attention to low-carbon develop-
ment and the use of renewable energy. Installing photovoltaic (PV)
panels can effectively lower greenhouse gas emissions and reduce
our collective dependence on fossil fuels. Thus, it is extremely
useful to detect the available area on a rooftop (ARA) for PV panel
installation. In order to automatize it, we can use Machine Learning
approaches to segment potential PV panel areas on the satellite
images. Currently, potential estimation is for the entire rooftop,
but our goal here is to obtain an even more precise evaluation of
potential areas, where chimneys, windows, existing PV panels and
other superstructures are also considered.

As inspired by the automatic detection of rooftop solar panels
[1] and images segmentation of rooftops [2]], we developed a
Conventional Neural Network model based on U-net [3]. The
model was trained to do binary pixel-wise segmentation on satellite
images from Geneva, Switzerland and we aim to generalize our
solution on national scale. The labels to predict are binary masks,
where the pixels representing ARA are ones, and zero otherwise.
By giving a satellite image as input, the output of our model is
again a binary image, where the pixels are ones if the probability
of representing ARA is bigger than a fixed threshold.

II. DATA ANALYSIS
A. Data Selection & Labeling

Prefessor Castello Roberto provided us with the satellite images.
The dataset was in three folders from three different urban or
rural areas in Geneva. Every folder contains 1000 RGB images
in PNG form and each image has size 250 x 250 x 3 with pixel
size 0.25 x 0.25%. We selected 657 images randomly among them
for our project. We manually labelled pixels in ARA and non
ARA over selected images by a provided tool base on Python.
Other 3 people helped us labelling images so we fixed consistent

criteria: we used shadow to identify a building and marked the
edge the rooftop of the buildings. Superstructures on the rooftops
were marked out from the rooftops, eg. the chimneys, windows in
the residential areas; pipes, container boxes in the industrial areas.
Any other area that is not available to install PV was also excluded.
A double check leaves us to hope that the images have been well
classified even if sometime the mapping is not trivial even for a
human. We tried to label the available areas as precise as possible
but it is clear that further efforts in the production of a greater data
set will reinforce our research.

Then, as the images looked quite different among them, we
manually split the dataset in classes: 257 images in the residential
area class, 193 in industrial area class, and the rest 207 images
are from non available rooftop area (noARA), where there are not
available rooftop areas at all. Since we are not really interest in
this last class of images, and they are too easy to predict (all 0s),
we dropped all the noARA images except 50 that we consider to
reinforce the rejection of false positives,

B. Data prepossessing & train/validation/test set splitting

Because we have RGB images and colours play an important
role in our segmentation task, when loading the dataset, we first
saturated them in order to emphasize the contrast of the rooftops
with respect to the environment. After that, we standardized each
image with the mean and the variance of the whole dataset, to make
sure all datapoints have the same scale, thus equally important
features.

Besides, we tried to adjust the brightness of images, hopefully
to support the shadows detection, but it did not seem to improve
our detection. Also, we tried to add uniform and gaussian noise to
fight overfitting, as our dataset is small, but the accuracy on the
validation set did not increase as well.

Finally, we split the data into three sets: 80% of images for the
training, 10% for the validation and 10% testing,



C. Data Augmentation

As we have a rather small dataset, we applied a real-time
augmentation method only on the training set. In model training
processing, each time we get an image from the data loader,
we randomly flipped it horizontally or flipped it vertically or
rotated it in ninety degrees: this increased the dimension of the
dataset of a factor 8. After each epoch, all images are used to
train, but in every epoch, the images are presented differently.
This allowed us to enlarge the dataset without engage additional
memory. Other techniques of data augmentation were tested, i.e.
increasing randomly saturation or brightness, but without evident
improvements.

ITII. MODEL

Starting from an existing model of Convolutional Neural Net-
work developed for biomedical image segmentation, called U-net
[3], we adapted its architecture for our task, proposing a different
training algorithm and loss function and tuning different hyper-
parameters. The U-net was shown in [3]] to work well with only
a limited number of training examples, provided one made use of
data augmentation, and this is exactly our framework.

A. Architecture

U-net is a Fully Convolutional Network (FCN) divided in two
phases: a contracting path which extracts features of different levels
through a sequence of convolutions, ReLU activations and max
poolings, allowing to capture the context of each pixel (encoder),
and a symmetric expanding path which upsamples the result to
increase the resolution of the detected features (decoder). In the
U-net architecture, skip-connections (concatenations) are added
between the contracting path and the expanding path, allowing pre-
cise localization as well as context. The expanding path therefore
consists of a sequence of up-convolutions and concatenations with
the corresponding feature map from the contracting path, followed
by ReLU activations. To obtain the prediction on an input image,
we pass the output of the model in a sigmoid activation function,
which gives us for each pixel a probability that it is available for
PV installation. Then we take a threshold at 0.5 to label either O
or 1. In Figure [I] the original architecture of U-net is presented.

184 6

input
image |
tile

output
"| segmentation
£ map

=>conv 3x3, ReLU
copy and crop
§ max pool 2x2
4 up-conv 2x2
= conv 1x1

Figure 1: U-Net architecture. Each blue box corresponds to a multi-channel
feature map. The number of channels is denoted on top of each box. The
image pixel size is provided at the lower left edge of the box. White boxes
represent copied feature maps. The arrows denote the different operations.

In order to detect rooftop available surface for installing PV
modules, we chose to use a slightly modified version of U-Net. First
of, we changed the dimensions of the input images to 250 - 250 - 3,
as the original U-net was designed for images of size 572 - 572 - 3
and the output to only 1 channel, since we need only the probability
of one of the classes (pixel-wise binary classification problem).
Then we modified the padding to "same” to avoid shrinking when
doing convolutions and added batch normalization after each ReLU
activation to speed-up training. Inspired by [4] we didn’t increase
the number of channel in the last down-convolution step. We also
added dropout in each convolution layer with a rate of 0.1 and 0.2,
but since it did not seem to improve the performances we soon took
it off: in fact we did not see an evident overfitting while training
the model, partly thanks to the use of data augmentation. In general
the benefits of using drop out in FCN are not yet very clear and
in doubt and short on time to experiment, in agreement with [5],
we prefer to use only batch normalization. In Figure [2] we present
an our representation of the architecture of our variant of U-Net.
In total there are 14°788°929 trainable parameters.

HH- —HH

H— AL
HH H
D*

+ Max pool 2x2

4 Up-conv 2x2

= Conv 1x1
Figure 2: Variant of U-Net architecture used in this project. We can
observe the padding added after each upconv to obtain a final output
with the same dimensions as the input. The output is only 1 channel, we
need the probability of one of the classes since this is a pixel-wise binary
classification problem. Finally we can note that the last downconv block
does not increase the number of channels.

B. Training

We do not start from a pre-trained model; hence we train the
algorithm starting from a random set of weights, using batches of
5 images from the training set (higher batch size is not supported
in terms of memory on our machine).

Since our data set is quite unbalanced (more not ARA pixels
than ARA), as in [1]], we propose a weighted pixel-wise categorical
cross entropy loss function:

L(xy) = *ﬁ Z an [Pcyn;i - log o (2n;i)

n=1iel
+ (1 = yn:i) - log(1 — o(zn:i))] (1)

computing the mean of the weighted entropy loss over all the
pixels i € I(= {1, ...,250}?) of all the N (= 5) images of a batch.
We assign larger weight pc to the false negative loss (predicting
ARA instead of no-ARA) and we combine the final Sigmoid layer
and the loss in one single class. This version is more numerically
stable [6] than using a plain Sigmoid followed by a loss as, by



combining the operations into one layer, we take advantage of the
log-sum-exp trick.

In order to evaluate the final performances of our model we
consider two metrics: the Accuracy and the Jaccard index, as
known as intersection over union (/oU). Given two set A,B, in our
task representing the pixels predicted as ARA in an image and the
real ARA pixels, we define:

AN B|
" |Au B

Evaluate the Accuracy is a standard in Supervised Learning
tasks, however when the data set is unbalanced, and this is the case,
it becomes a too optimistic metric to evaluate the performance of
a model since classify the elements of the bigger class it is easier.
IoU is a standard in Image Segmentation and by definition can
manage unbalanced dataset: somehow it expresses how much the
object detected is complete or not. For this reason we focus on JoU
in order to evaluate the performance of our model. In literature
IoU > 0.5 is considered a good prediction.

For this reason, we tuned the value of pc in the loss using Grid
Search maximizing the JoU on the validation test.

We replaced the Stochastic Gradient Descent with the Adam
Optimizer, known to converge faster during training [7] and we
combined it decreasing the learning rate of each parameter group by
v every step_size epochs. Using a decreasing learning rate allowed
our loss function to converge during the train, fact that we didn’t
get it before. To be honest this adding came from an error, but it is
known life’s greatest lessons are usually learned at the worst times
and from the fundamental mistakes. In particular we were running
a Grid Search (using Cross Validation) to evaluate the best constant
learning rate for Adam, proposing a list of decreasing values.
We forgot to reset the weights of the model after each training,
but the surprising result was that the loss function converged, for
the first time, and the final model was predicting with the right
criteria (even if without excellent performances). As we discovered
our error we replicated this involuntary huge adaptive learning
directly decreasing the learning rate of each parameter group by
v every step_size epochs. We tuned the initial learning rate, y
and step_size through Grid Search (this time correctly resetting
the weights of the model at each iteration) maximizing the JoU
on the validation test. Training was done on our personal GPU, a
Nvidia GTX 1660 with 6 GB of VRAM.

IoU(A, B)

IV. RESULTS
A. Model on full training set

First we trained the model described in section[[II-A]on the entire
training set equal to the 80% of 257 residential, 193 industrial and
50 NoARA images. As the quality of labelling on the industrial
areas is worse because of their complex structures, we expected
a lower IoU on this full training set. Setting the initial learning
rate to 0.1, the (v, step) parameters of the scheduler to (0.8, 60),
we trained for 1000 epochs to decide where should we stop the
training for the final model, avoiding to overfit. We observed that
after 225 epochs, our model had the best balance of low loss and
high IoU on validation set, before to start to get worse. Retraining
with the optimal number of epochs (225) we obtained a final loss
on the val set of 0.8702, and an IoU of 0.6121 again on the val
set. On the test set, the JoU obtained is 0.5886. Figure [3] shows

the evolution of the loss and IoU with respect to the number of
epoch during the training.

Evolution of the loss with respect to the number of epochs Evolution of the loU with respect to the number of epochs

164 & ++@-- loss train 07 | @7 doU traln
o loss val e e louval
PRS- el

o

25 50 75 100 125 150 175 200 225 25 50 75 100 125 150 175 200 225
Number of Epochs Number of Epochs

Figure 3: Evolution of the loss and 10U with respect to the number of
epoch, on the train set or validation set. We can observe that at iteration
X, we minimized the loss and 10U on validation set.

In Figure 4 we present some predictions outputted by this model
on the testing data.

Input Image Expected Mask Predicted Mask

Transformed Input Image
0Ty p ©

100 200

Expected Mask Predicted Mask

100 100

Transformed Input Image Expected Mask Predicted Mask
0 0

Figure 4: 3 examples of prediction on images from the test, by the model
trained on 225 epochs on the entire training set (industrial & residential
images).

While the model seems to perform adequately in average on
the test set, we observed some predictable behaviors. The model
trained on the full training set seems to perform well on residential
areas but poorly on industrial areas. This could be explained my
multiple factors, first the buildings in residential areas are mostly
small rectangular shaped buildings, with easily distinguishable
rooftop structures. This is in opposition to industrial buildings,
where the buildings can fill the entire image, or the complexity
of some additional structures are detrimental to the performance
of the algorithm. Secondly the model could be confused from
so different structure to detect. We deduced then that it may be
beneficial to train a different model for each specific class at time
and we focused only on the segmentation of satellites images from
residential areas. Before moving on we summarize in Table [I] the
performances of our network on this first problem.

B. Model on residential training set

We trained a new network in a similar framework than the
previous subsection just considering only the 257 residential area






	Introduction
	Data Analysis
	Data Selection & Labeling 
	Data prepossessing & train/validation/test set splitting 
	Data Augmentation

	Model
	Architecture
	Training

	Results
	Model on full training set
	Model on residential training set

	Prospects
	Conclusion
	References

