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Abstract

The aim of this project is to get quantita-
tive data on L-form bacteria (uropathogenic
E. coli treated with fosfomycin in Synthetic
Human Urine medium) such as their position,
length, width etc. from multi-channel mi-
croscopy images, in order to quantify the L-
form bacteria formation, killing and regrowth
over time during antibiotic treatment and
subsequent washout phases.

We present a pipeline for a supervised
learning approach using a fully connected
convolutional neural network (U-net) archi-
tecture for semantic segmentation, followed
by object classification and quantification us-
ing standard image analysis techniques.

1 Introduction

Urinary tract infections (UTIs) are among the most
common bacterial infections, affecting about 150
million people worldwide each year and generat-
ing substantial healthcare costs. The vast major-
ity of community-acquired infections are caused by
uropathogenic strains of Escherichia coli, termed in
short UPEC. The gold standard treatment course
remains to date the administration of antibiotics,
the first-line drugs of choice being trimethoprim-
sulfamethoxazole, nitrofurantoin and fosfomyecin.
The latter is a cell-wall inhibitor, which acts by block-
ing the synthesis of the bacterial cell wall. This mesh-
like structure is made of peptidoglycan and is located
— in the case of Gram-negative bacteria such as E.
coli — in between the inner and outer plasma mem-
branes. It gives bacteria their shape and helps them
endure the turgor pressure caused by most growth
media having a lower osmolarity than the bacterial
cytoplasm. This causes bacteria to lyse when treated
with a cell-wall inhibitor in conventional growth me-
dia. However, in a hypertonic medium such as hu-
man urine, bacteria can survive the loss of peptido-
glycan caused by the action of the antibiotic and turn
into so-called 'L-form bacteria’, where the cell wall

structure is gone and the inner and outer membrane
are free from one another. As these membranes are
more fragile than peptidoglycan, most L-form bacte-
ria eventually also die or at least cannot regrow when
the antibiotic is removed, yet a small fraction of them
manage to revert back to their original shape and pro-
liferate, leading to a resurgence of the disease.

In order to combat this resurgence, it is important
to understand what differentiates bacteria that are
able to revert back and proliferate from those that are
not. To get data on this phenomenon, uropathogenic
E. coli expressing GFP (green fluorescent protein)
were grown in Synthetic Human Urine medium in a
custom-made microfluidic chip, into which fosfomycin
was flown and then washed out. The formation of E.
coli L-forms was observed, and the chip was imaged
on phase-contrast and green fluorescence channels ev-
ery 5 minutes for 12 hours in total, at which point
some E. coli had reverted back to their original shape
and started proliferating, leading to the formation of
bacterial microcolonies inside the device.

2 Method

2.1 Data Exploration

The original time-lapses were in .ndi format (Nikon
microscope format), each containing 144 .tif images
with 3 channels: Phase (bright-field), GFP (fluores-
cence linked to Green fluorescent protein) and TRITC
(a dye used to visualise the addition and wash of the
antibiotic).

Using ImageJ (a common bio-analysis software),
we selected only the Phase and GFP channels. We
took the frames 34 (antibiotic has just been washed
out) to 63 (beginning of regrowth of reverted bacte-
ria) of each time-lapse, that is to say we analyse the
2h30 of time-lapse where the bacteria are all in L-
form shape. These images were renamed with their
time-lapse number and a new frame number going
from 000 to 029 instead of 34-63 , but the order was



conserved. They were saved as separate .tif files.

This newly created dataset was first analyzed us-
ing a bio-microscopy image analysis software called
Iastik. This software uses a series of features (filters)
to perform semantic and/or instance segmentation of
cells with only a few hand drawn annotations. As
seen in Figure 1, this software gives a relatively good
semantic segmentation for qualitative analysis, but is
not precise enough for single cell quantitative mea-
surements as it does not allow for instance segmenta-
tion.

To increase the quality of our segmentation, we
decided to use a supervised learning approach. Hence
we had to annotate our images. Seeing as free soft-
ware for instance segmentation were not readily avail-
able, we chose to do a semantic annotation, and use
image analysis methods for object classification on
the segmentation masks created by the supervised
learning approach.
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Figure 1: Segmentation map using Ilastik

2.2 Ground truth annotation

Phase images were hand-annotated (semantic seg-
mentation) using the raster graphics software Krita.
The cell ground-truths were painted in a transpar-
ent layer on top of the phase image. In the result-
ing mask, the objects were determined by the alpha-
channel value (from 0, i.e. transparent, for back-
ground, to 1, i.e. opaque, for cells).

The annotation process is extremely time consuming,
annotating a single image takes 1h30-3h in order to
circle the 500-1000 cells present in each image. This
is why we annotated only 6 images. To still capture
the heterogeneity of the bacteria’s shape during the
experiment (the L-form bacteria grow) as well as the
variation in lighting or other factors between time-
lapse, we chose to annotate the first and last images
of 3 time-lapses.

The ground truth annotation for the GFP images was

done using Ilastik. This was possible because of the
high contrast of the GFP images.

2.3 Preprocessing
2.3.1 Registration

In order to modify all the images at once, they needed
to be registered. We cropped the upper left corner of
all images to get an image with a single pillar. This
allowed us to use pattern matching between a circle
and the pillar’s halo to get the position of the center
of the pillar. The shift in between frames was calcu-
lated by subtracting the position of the pillar in each
frame to that of the first frame. The images were the
registered according to their shift.
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Figure 2: Graph or center position, pattern matching
and shifts

2.3.2 Gaussian blur

As you can see on the phase images, pillars are en-
veloped by a bright halo, which makes the detection
of cell close to the pillars harder. To decrease the
brightness of this halo, we performed a Gaussian blur
(sigma=7) on the phase images. The blurred images
were then subtracted from the original images. This
operation basically equates to applying a low-pass fil-
ter on the phase image.

2.3.3 Binary mask

The transparent mask was converted to a single-
channel binary mask ( 0 for background, 1 for cells).

2.3.4 Splitting

In order to avoid excessive resizing which would lead
to loss of information, and to bring the images to a
format more similar to known successful examples,
each image was split into 4 sub-images.



3 Supervised Learning with U-Net

3.0.1 Data Augmentation

5 operations were implemented to augment the
dataset : rotations at 90°, 180° and 270°, along verti-
cal and horizontal flipping. Because of the pillars, we
decided not to implement deformations in the images.

3.0.2 U-Net
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Figure 3: U-net Architecture, Ronneberger et al, 2015
U-net is a fully-convolutional neural network created
by Ronneberger et al in 2015 [3]. Its name comes
from its U-shaped architecture. It is composed
of a contracting path (left side) and an expansive
path (right side). The contracting path consists of
consecutive 3x3 convolutions, each followed by a
ReLU activation step and a 2x2 maxpooling step.
The expansive path consists of 2x2 upconvolutions,
concatenation with the corresponding feature map
from the contracting path, then 3x3 convolutions.

This network has shown good results on cell segmen-
tation, even with small datasets. This network won
the ISBI cell tracking challenge in 2015 [3]

Adam was chosen as the optimizer for its fast conver-
gence and computational efficiency.

3.0.3 Choice of Loss Function

Several loss functions were considered and imple-
mented for this project.

e Binary crossentropy
e Dice loss
e Focal loss

Binary crossentropy is a common choice of loss
function for image segmentation applications. It was
also the recommended loss function in the original

U-Net paper [3].

Dice loss is based on the Sgrensen—Dice coefficient,
also known as the F1 score. The Sgrensen—Dice coef-
ficient is a statistic used to estimate the similarities
of two samples.

| True N Predicted|

SDC =
|True| + |Predictet|

The associated loss function is of the form :

Dice loss =1 — SDC

The Dice loss function was created for segmen-
tation problems where the classes were strongly
unbalanced|2], which is the case here.

Focal loss is a variant of the crossentropy loss
function [I]. It was introduced to handle class im-
balance in the object detector RetinaNet. Focal loss
assigns more weights to examples that are hard to
classify,which is more suited to cases where the class
imbalance is strong. It contains a hyperparameter ~
which can be otpimized for the task at hand.

All three loss functions were implemented and tested
in our model.

4 Object classification and Quan-
tification

The U-net model creates a binary segmentation map.
However, we are interested in instance segmentation
To bridge the gap, we
transform every segmented cell (pixel of high intensity
surrounded by pixel of low intensity) into an object,
with its own label. The newly created image repre-
sents every separate object with the intensity equal to
the label (background = 0, first cell = 1 and so on).
We then extract the following characteristic for every
cell: label number, position (x and y axis), length,
width, perimeter and area.

To turn these features into actionable data, we need
to make a few modifications. The shift, which was
induced by the registration step (see Registration) is
subtracted to get the position of the center in the
non-registered image. Furthermore, all lengths and
surfaces, which are in pixels, are converted into pum
using a pixel to um ratio of 4.633. This ratio was
obtained using ImageJ’s Set Scale functionality with
a distance between the center of the pillars of 30um.
The final output is a .csv file. It is named after the
time-lapse and frame number, and contains all the
characteristics mentioned above for each cell.

instead of a semantic one.



Figure 4: Example of instance segmentation from se-
mantic segmentation mask

5 Result

5.0.1 Training : Short-term Behaviour
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Figure 5: Phase (column 1), GFP (column 2),
Ground Truth (column 3) and Predictions (column
4) after 10 epochs, with Dice loss

Short training sessions (< 20 epochs) showed that the
CNN was learning primarily on GFP data.

5.0.2 Training : Long-term Behaviour
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Figure 6: Model metrics
The precision and recall systematically decay over
time, eventually outputing an empty mask. This
problem occurred with every loss function, indepen-
dently of whether the data was augmented or split.

5.0.3 Potential improvements

To improve on this, the first step would be to generate
more annotated data.
Various parameters may also be optimized :

e Batch size for Stochastic Gradient Descent
e The hyperparameter yof the focal loss function

e Removing artefacts in the microscopy images

6 Conclusion

Our project is a first step to a functional segmenta-
tion network. The data preprocessing was carefully
crafted to address the unique characteristics of our
dataset. The object classification and quantification
has been shown to work perfectly using ground truth
images. Given the impressive track record of U-net in
other biological segmentation challenges, we believe
that, with sufficient optimization and troubleshoot-
ing, and a bigger annotated dataset, our project could
become an effective tool in characterization of L-form
E.coli. It would still be interested to consider more
basic approach for segmentation, such as K-means on
the phase images or spectral clustering on a compos-
ite image of GFP and phase.
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