10.2. Slope limited schemes 263

For ¢(1) = 1 we should recover the second order accurate Lax-Wendroff scheme
(@ =—11in (10.12)) which suggests that the slope & #; must be chosen as

Aty a>0
"=]
o { A~a? a<0
Hence, the general form of the slope limiter should be
-1 —-rn
(/z(r}.)A™] a>0

Ur)Atir 4<0 "’ (18.19)

Su; = (Al A il = {

where ¢(a, b) or ¢(r) plays the role of the slope limiter and

A_&?}-

it — —.
/ Ata

The minmod-function (10.3) is an example of this. Comparing (10.13) and (10.14), it is
clear that there is a direct relation between the two forms of limiting for the linear case.
For the nonlinear case, this direct relation no longer exists. W

With the insight gained in the previous example, we can define slope limiter func-
tions ¢ to ensure TVD-stability along the lines of (10.3).
The simplest minmod slope limiter is given as

& om(a, b) = minmod(a, b),

while a slightly generalized version, known as the MUSCL slope limiter, takes the form
[49]

a+b
2

Sbmx(‘z’b):minmod(,261,229).

The Superbee limiter [39, 34] is given as

¢sp(a, b) = minmod(maxmod(a, b), minmod(24,25)),

where the maxmod-function is defined analogously to the minmod function. Its imple-
mentation is illustrated in maxmod.m.

Script 10.8. maxmod.m: Implementation of the maxmod function.

function m—fmi?s-_—' maxmod (v)
% function mfund = maxmod(v)
% Purpose: Implement the maxmod function on wvector v
N = size(v,1); m = size(v,2); psi = zeros(N,1);
s = sum(sign (v),2)/m; ids = find (abs(s)==1);
if(7 isempty (ids))
psi(ids) = s(ids).xmax(abs(v(ids,:)) [1:2)
end
return ;

Finally, an often used slope limiter is the van Albada limiter on the form [42]

@+ b+ (b2 + P
¢w(“’ b) = az + b2+2{:2

448

Chapter 12. Discontinuous Galerkin methods

and evaluate the minmod-based indicator

7 = i —minmod(#; —wt , , A, ATi), (12.80)

- _ -I +—- ——-
Ui x;,A ;s},,A x}).

If #F is different from ﬁji, the local solution is reduced to a linear solution and slope
limiting applied. On the other hand, if no limiting is needed, the full polynomial
solution is used. This approach retains TVD/TVB-stability in non-smooth regions,
while achieving full order accuracy in smooth parts of the solution.

The implementation of the TVD slope-limiting for a general piecewise polynomial
function is illustrated in SlopeLimitCSDG.m.

Script 12.13. SlopeLimitCSDG.m: Applycation of TVD slope limiting to a
piecewise polynomial solution.

function [ulimit] = SlopeLimitCSDG (x,u,m,h,N,V,iV);
% function ulimit = SlopeLimitCSDG (x,u,m,b,N,V,iV);
% Purpose: Apply slopelimiter by Cockburn—Shu (1989)
% to # — an m’th order polynomial

eps0=1.0e—8;

% Strength of slope limiter — Minmod: theta=1, MUSCL: theta=2
theta=2.0;

% Compute cell averages and cell centers
uh = iVsu; uh(2:(m+1),:)=0; uavg = Vsuh; ucell = uavg (1,:);
ulimit = u;

% Extend cell awerages
[ve] = extendDG (ucell ,’N’,0, N’ ,0);

% extract end values and cell averages for each element
uel = u(1,:); uer = u(end,:);

vj = ucell; vjm = ve(1:N); vjp = ve (3:N+2);

% Find elements that reqsir'e limiting !
vel = vj — minmod ([(vj—uel)4(vj—vim}4(vip—vj 1)’
ver = vj + minmod ([(wer—v; 4 (vi—vim)4(vip—vj } 1)’
ids = find (abs (vel—uel)>epsO | abs(ver—uer)>eps0);

% Apply limiting when needed
if (" isempty (ids))
% create piecewise linear solution for limiting on specified
elements
uhl = iVsu(:,ids); uhl(3:(m+1),:)=0; ulin = Vsuhl;
ux = 2/hx(vj(ids)—ulin (1,:));

% Limit function

x0h = ones(m+1,1)#(x(end ,:)+x (1 550 2

ulimit (:,1ds) = ones(m+1,1)*vj (ids)+(x (: ,1ds)}—x0h (:, ids)) .= (
ones (m+1,1) *...

minmod ([ux (1,:) 4theta = (vjp (ids)—vj (ids))./h4. ..

12.2. Nonsmooth problems 449

theta*(vj(ids)—vim(ids))./h]))
end
return

A slightly more aggressive limiter is proposed in [11]. As a first step, the slope is
limited as

3_%;- = minmod(&u}-, 9A+zij, QA_sE}-) :

Since this is similar to the TVD approach discussed above, it reduces the accuracy to
first-order at local extrema. To address this, it is proposed to consider

3“}‘ :minmod(cs\wj,&Hj_],a“jH);

and modify the definition of the slopes as

3?; = maxmod (3;;" 5:;) ;

The maxmod function is intended to eliminate the local loss of resolution without
introducing artificial oscillations. While there is no known theoretical justification,
qualitative arguments and extensive computational results presented in [11] support
the claim of stability.

The implementation of this more aggressive slope limiting for a general piecewise
polynomial function is illustrated in SlopeLimitBSBDG.m.

Script 12.14. SlopeLimitBSBDG.m: Application of TVD-slope limiting to
piecewise polynomial solution, following [11]

function [ulimit] = SlopeLimitBSBDG (x,u,m,h,N,V,iV);

% function ulimit = SlopeLimitBSBDG (x,u,m,h,N,V,iV);

% Purpose: Apply slopelimiter by Burbeau—Sagant—Brunean (2001)
% to u — an m’th order polynomial

eps0=1.0e—8;

% Strength of slope limiter — Minmod: theta=1, MUSCL: theta=2
theta=2.0;

% Compute cell averages and cell centers
uh = iVsu; uhx = uh; uh(2:(m+1),:)=0; uavg = Vszuh; ucell = uavg

(1,:);
uhx (3:(m+1) ,:)=0; ulin = Vsuhx; ux = 2/h*(ucell — ulin (1 2))s
ulimit = u;

% Extend cell averages
[ve] = extendDG (ucell ,’P’,0,’P*,0); [vxe] = extendDG (ux, ’P’,0,'P
50)5

% extract end values and cell averages for each element

uel = u(1,:); uer = u(end,:); vj = ucell; vim = ve(1:N); vjp =
ve (3:N+2);

vxj = ux; vxjm = vxe (1:N); vxjp = vxe (3:N+2);

% Find elements that require limiting

450

Chapter 12. Discontinuous Galerkin methods

vel = vj — minmod([(vj—uel)l{(vj—vjm)qi(vjp—vj)‘])l;
ver = vj + minmod ([(uer—vj)‘ﬁ(vj—vjm)‘g(vjp—vj Y1
ids = find (abs(vel—uel)>eps0 | abs(ver—uer)>eps0);

% Apply limiting when needed
if(7isempty (ids))
% create piecewise linear solution for limiting on specified
elements
uhl = iVsu(:,ids); uhl(3:(m+1),:)=0; ulin = Vsuhl;
xOh=ones (m+1,1) *(x (end ,:)+x (1,:)) /2;

% Limit function
ux1 = minmod ([vxj(ids);theta=(vjp (ids)—vj(ids))./h;...
thetax(vj(ids)—vim(ids))./h]); LR
ux2 = minmod ([vxj (ids) jvxjm (ids)¢vxjp (ids)]);
ulimit (:,ids) = ones(m+1,1)*vj (ids)+(x(:, ids)—xOh (:,ids)) .*...
(ones (m—i—l,l)*maxmod([uxl‘{uxZ‘])‘);
end
return

An alternative approach to high-order limiting was first proposed in [7], and subse-
quently further developed and refined in [11]. Let us begin by expressing the local
solution as

“;(x)=zoﬁj,jpi(x)>

where P; is the Legendre polynomial and, for sake of simplicity only, we restrict
ourselves to x € [—1,1]. It is clear that # ; =il . To ensure TVD/TVB-stability, the
limiting of the slope

(#)e(x) =D ; Pi(x),
=1

involves the choice of #; ; =0. A slightly different approach involves the individual
moments, #; ; of the solution. To ensure monotonicity of the momensts, these are
limited as

V(@i + 120 +3)i; 1y, = minmod(«,/(Zi + 12 3 40, 0 40— 55;,), 000, ; — ;zf._u)),

where 6 > 0 is a free parameter. This approach is applied in a backward fashion to the
moments of decreasing order, i.e., i =m —1,...,0. Furthermore, it is adaptive in the
sense that once a moment is not limited, no lower moments are altered.

The implementation of hierarchical moment limiting for a general piecewise poly-
nomial function is illustrated in MomentLimitDG.m.

Script 12.15. MomentLimitDG.m: Routine for applying moment limiting to
plecewise polynomial solution

function [ulimit] = MomentLimitDG (x,u,m,h,N,V,iV);

% function wlimit = MomentLimitDG (x,u,m,bh,N,V,iV);

% Purpose: Apply moment limiter to u — an m’th order polynomial
eps0=1.0e—8; epsl = 1.0e—38;

12.2. Nonsmooth problems 451

% Strength of slope limiter — Minmod: theta=1, MUSCL: theta=2
theta=2.0;

% Compute cell averages and cell centers
uh = iVsu; uh(2:(m+1) ,:)=0; uavg = Vxuh; ucell = uavg(1,:);
ulimit = u;

% Extend cell averages
[ve] = extendDG (ucell , N’ ,0, N’ ,0);

% extract end values and cell averages for each element
uel = u(1,:); uer = u(end,:); vj = ucell; vjm = ve (1:N); vip =
ve (3:N+2);

% Find elements that require limiting ;
vel = vj — minmod ([(vj—uel)'s(vj—vjm)'s(vip—vj)1);
ver = vj + minmod ([(uer—vj)4 (vj—vim)3(vip—vj)]);
ids = (abs(vel—uel)<epsl & abs(ver—uer)<epsl);
mark = zeros (1,N); mark = (ids | mark);

% Compute expansion coefficients
uh = 1Vsu;

% Apply limiting when needed
for i=m+1:—1:2
uhl = uh(i,:); uh2 = uh(i—1,:);
[ubh2e] = extendDG (uh2,’P’,0,’P’,0); uh2m = uh2e (1:N); uh2p =
uh2e (3:N4+-2);
con = sqrt ((2xi1+1)%(2xi—1));
uhl = 1/con+*minmod ([con*uhty thetas(uh2p — uh2)y ...
theta+(uh2 — uh2m)])". (1 —mark) + mark .« uh 'y
idsh = abs(uhl—uh(i,:))<eps0; mark = (idsh | mark);

uh(i,:) = uhl;
end
ulimit = Vsuh;
return

The scheme combines simplicity with the use of all available high-order information.
However, no stability theory is known.

This same approach can be applied to the more aggressive limiter, and extended to
higher order by introducing the limiting function

V(@i +1)(2i +3)#; 4, = minmod (v/(2i + D2 +3)#, ., 0w}, 1=, 00— w7),

where

Wiuz = ’;}'ir,j FV(2i+1)(2i +3 ﬁ‘jil,iH'

In the case of systems, these techniques should generally be applied to the characteristic
variables in order to avoid oscillations, as discussed in Chapter 11.3.4. However, for
some problems it may suffice to apply limiting to the conserved variables [7, 11]

488 Chapter 12. Discontinuous Galerkin methods

% Set problem parameters

xmin = —1.0; xmax = 1.0;

FinalTime = sqrt (2.0); CFL = 0.25;

epl = 1.0; mul = 1.0; epr = 2.0; mur = 1.0;

% Generate mesh

VX = (xmax—xmin) % (0:N) /N + xmin; r = LegendreGL (m);

x = ones (m+1,1)«VX(1:N) + 0.5x%(r+1)=(VX(2:N+1)-VX(1:N));
h = (xmax—xmin) /N;

% Define domain, materials and initial conditions
Ef = zeros(m+1,N); Hf = zeros (m+1,N);
for k = 1:N
[Ef(:,k), Hf(:,k), ep(:,k), mu(:,k)] = ...
CavityExact (x(: ,k), epl, epr, mul, mur, 0);

2

end

% Set up material parameters

epsl = [epl«ones(1,N/2), eprxones(1,N/2)];
mul = [mulxones(1,N/2), murxones(1,N/2)];

ep = ones(m+1,1)+epsl; mu = ones(m+1,1)smul;

% Solve Problem) . b -
e =[E{Hf]; 4‘:26203(M-i,w*2-\} ﬂﬁ[‘.‘-.t\-‘q; ﬁ('t'\l\ ’HQ'l
[q] = MaxwellDGID (x,q,ep,mu,h,m,N,CFL, FinalTime) ;

In MaxwellDG1D.m, the system is integrated in time using a third order SSP-RK
scheme. This relies on the evaluation of the right hand side, discretized using the
discontinuous Galerkin method, as illustrated in MaxwellDGrhs1D.m.

Script 12.27. MaxwellDG1D.m: Time-integration routine for Maxwell equa-
tions using the discontinuous Galerkin method.

function [q] = MaxwellDGID(x,q,ep ,mu,h,m,N,CFL, FinalTime)
% function [q] = MaxwellDGID(x,q,ep ,mu,h,m,N,CFL, FinalTime)

% Purpose : Integrate 1D Maxwells equation until FinalTime
using a DG
% scheme and a 3rd order SSP—RK method.

% Initialize operators at Legendre Gauss Lobatto grid

r = LegendreGL (m); V = VandermondeDG (m, r); D = DmatrixDG (m, r,
V);

Ma = inv (V¥V'); S = Ma:D;

% Initialize extraction wector
VtoE = zeros(2,N);

for j=1:N
VioE(1,)) = (j—=D*(m+1)+1; VioE(2,j) = j*(m+1);
end

% Compute smallest spatial scale timestep
rLGLmin = min (abs (r(1)—r(2)));
time = 0; tstep = O0;

% Set timestep
cvel = 1./sqrt(ep.+*mu); maxvel = max (max(cvel));

12.5. Discontinuous Galerkin methods in action 489

k = CFL#rLGLmin*h/2/maxvel;

% integrate scheme
while (time<FinalTime)
if (time+k>FinalTime) k = FinalTime—time; end

% Update solution
[rhsq] = MaxwellDGrhsiD (x,q,ep,mu,h,k,mN,Ma,S, VtoE, maxvel) ;
ql = q + kxrhsq;
[rhsq] = MaxwellDGrhs1D(x,ql sep,mu,h,k,m,N,Ma, S, VtoE , maxvel) ;
q2 = (3%q + ql + kxrhsq) /4;
[rhsq] = MaxwellDGrhle{x,qZ,ep,mu,h,k,m,N,Ma,S,VtoE,maxve]);
q = (q + 2%q2 + 2xk=xrhsq)/3;
time = time+k; tstep = tstep+1;

end

return

Script 12.28. MaxwellDGrhs1D.m: Evaluation of the right-hand-side for
solving the one-dimensional Maxwell equations using a discontinuous Galerkin

method.
function [rhsq] = MaxwellDGrhs1D (x,q, ep ,mu, h,k,m,N,Ma, S, VtoE,

maxvel);

% function [dq] = MaxwellDGrhs1D (x,q,ep ,mu,h,k,m Ma,Sr, VtoE,
maxwel) ;

% Purpose: Evaluate right hand side for Maxwells equation using
DG method

Imat = eye(m+1);Ee = zeros(2,N+2); He = zeros (2,N+2);

EMI = zeros(N,2); EMr = zeros(N,2); FMm = zeros (N,2); EMp =
zeros (N, 2) ; E:%(:.'-tl\" -H:ct(u‘_z\;

% Impose boundary conditions
[Ee] = extendDG (g(VtoE) ,’D’,0,’D’,0);
[He] = extendDG (g} VtoE ,2),’N’,0, ’N’,0);

% Compute numerical fluxes at interfaces

EMr = [Ee(2,2:N+1)" He(2,2:N+1)’]; EMIl = [Ee(1,2:N+1)’ He(1,2:N
+1)°];

EMm = [Ee(2,1:N)’ He(2,1:N) ’]; EMp = [Ee(1,3:N+2)” He(1,3:N+2)
s];

fluxr = MaxwellLF (EMr,EMp, ep (1,:) ’,mu(1,:) ’,k/h, maxvel) ’;

flux] = MaxwellLF (EMm,EMI, ep (1 ,:) > ,mu(1 1) T, k/h, maxvel) *;

% Compute right hand side of Maxwell’s equation
rE = §$’+H./ep — (Imat (: ,m+D)xfluxr (1,:) — Imat(:,1)«fluxl (1,:));
rH = §°+E. /mu — (Imat (: ,m+1)*fluxr (2,:) — Imat (:,1)*fluxl {2 ::));

rhsq—=—(h/2+Ma)\f+E—H |; rhs%(\:ll\ : Q‘[:.H«‘\\rE; rhaql(x'-,‘z\ s Q"A_'ﬂ«\\vﬂi

return

It is clear that, if we design the grid such that the material interface is within an element,
the limited regularity of the solution will impact the overall achievable accuracy. Based
on the theoretical developments in Chap. 12.1.1, we expect €(h*2) in such a case, in
agreement with the computational results in Chapter 5.3.4.

