Characteristics method for fluid/rigid systems Application to self-propelled motions

J.-F. Scheid

Institut Elie Cartan de Nancy Université de Lorraine, INRIA

- Joint work with T. Takahashi, M. Tucsnak, (Nancy),
 - J. San Martín (University of Chile, Santiago),
 - L. Smaranda (University of Pitești, Romania)

Introduction

Fluid-Structure interaction problems considered:

- Fluid/solid systems: rigid bodies immersed in a viscous fluid
- Fluid/deformable body

Self-propulsion of a deformable body = motion by shape changes (bacteria, amoeba, ciliate, eel, fish, ...)

White blood cell vs bacterium (David Rogers, Vanderbilt University, 1950)

Outline

A. Rigid body system

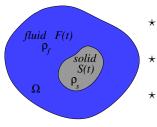
- 1. Monolithic finite elements scheme with a characteristics method
- 2. Convergence result for the case $\rho_f = \rho_s$
- 3. Modified characteristics method for the case $\rho_f \neq \rho_s$
- 4. Link with the fictitious domain method

B. Self-propelled motion of deformable body

- 1. Deformations
- 2. The full system
- 3. Numerical simulations for the fish-like swimming

A. The rigid body system

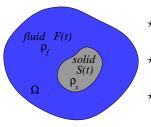
Fluid/rigid interaction. Rigid body S(t) immersed into a fluid filling a bounded domain $F(t) = \Omega \setminus \overline{S}(t)$.



- Incompressible viscous fluid : Navier-Stokes
- Motion of the rigid body : Newton's laws
 - Continuity of the velocity fluid/rigid

A. The rigid body system

Fluid/rigid interaction. Rigid body S(t) immersed into a fluid filling a bounded domain $F(t) = \Omega \setminus \overline{S}(t)$.

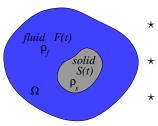


- * Incompressible viscous fluid : Navier-Stokes
- Motion of the rigid body : Newton's laws
- Continuity of the velocity fluid/rigid

 The position of the body is unknown and results from the interaction with the fluid → free boundary problem.

A. The rigid body system

Fluid/rigid interaction. Rigid body S(t) immersed into a fluid filling a bounded domain $F(t) = \Omega \setminus \overline{S}(t)$.



- Incompressible viscous fluid : Navier-Stokes
- Motion of the rigid body : Newton's laws
 - Continuity of the velocity fluid/rigid

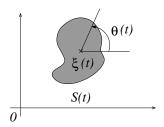
- The position of the body is unknown and results from the interaction with the fluid → free boundary problem.
- Constant densities ρ_f (fluid) and ρ_s (solid).

Fluid/rigid system

a- Rigid displacement (2D)

The **unknown** position of the rigid body S(t) into the fluid is defined by :

- the position of the mass center $oldsymbol{\xi}(t) \in \mathbb{R}^2.$
- an orientation angle $\theta(t)$.



Eulerian velocity field for the solid: for all $x \in S(t), t \ge 0$

$$\mathbf{u}_S(\mathbf{x},t) = \boldsymbol{\xi}'(t) + \theta'(t)(\mathbf{x} - \boldsymbol{\xi})^{\perp}$$

where
$$\mathbf{x}^{\perp} = (-x_2, x_1)^{\top}$$
.

b- The full system

 $\Omega \subset \mathbb{R}^2$ is a bounded domain occupied by the fluid F(t) together with the rigid body S(t).

The **unknowns**:

- velocity \mathbf{u} and pressure p into the fluid.
- position ${m \xi}$ of the mass center and orientation angle ${m heta}$ of the rigid body.

b- The full system

 $\Omega \subset \mathbb{R}^2$ is a bounded domain occupied by the fluid F(t) together with the rigid body S(t).

The **unknowns**:

- velocity **u** and pressure p into the fluid.
- position ${m \xi}$ of the mass center and orientation angle ${m heta}$ of the rigid body.

The fluid:

• The Cauchy stress tensor

$$\sigma(\mathbf{u}, p) = 2\nu D(\mathbf{u}) - pI_d$$

- $\nu > 0$ viscosity
- $D(\mathbf{u}) = (\nabla \mathbf{u} + \nabla \mathbf{u}^{\top})/2$ symmetric strain tensor.

The full fluid/rigid system

$$\rho_f \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right) - \nu \Delta \mathbf{u} + \nabla p = \rho_f \mathbf{f} \quad \text{in } F(t)$$
$$\text{div } \mathbf{u} = 0 \quad \text{in } F(t)$$
$$\mathbf{u} = 0 \quad \text{on } \partial \Omega$$

The full fluid/rigid system

$$\rho_f \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right) - \nu \Delta \mathbf{u} + \nabla p = \rho_f \mathbf{f} \quad \text{in } F(t)$$
$$\text{div } \mathbf{u} = 0 \quad \text{in } F(t)$$
$$\mathbf{u} = 0 \quad \text{on } \partial \Omega$$

$$m\boldsymbol{\xi}''(t) = -\int_{\partial S(t)} \boldsymbol{\sigma}(\mathbf{u}, p) \mathbf{n} \ d\Gamma + \int_{S(t)} \rho_s \mathbf{f}(\mathbf{x}, t) \ d\mathbf{x},$$

$$I\theta''(t) = -\int_{\partial S(t)} (\mathbf{x} - \boldsymbol{\xi})^{\perp} \cdot \boldsymbol{\sigma}(\mathbf{u}, p) \mathbf{n} \ d\Gamma + \int_{S(t)} \rho_s(\mathbf{x} - \boldsymbol{\xi})^{\perp} \cdot \mathbf{f}(\mathbf{x}, t) \ d\mathbf{x}$$

The full fluid/rigid system

$$\rho_f \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right) - \nu \Delta \mathbf{u} + \nabla p = \rho_f \mathbf{f} \quad \text{in } F(t)$$

$$\operatorname{div} \mathbf{u} = 0 \quad \text{in } F(t)$$

$$\mathbf{u} = 0 \quad \text{on } \partial \Omega$$

$$m \xi''(t) = - \int_{\partial S(t)} \sigma(\mathbf{u}, p) \mathbf{n} \, d\Gamma + \int_{S(t)} \rho_s \mathbf{f}(\mathbf{x}, t) \, d\mathbf{x},$$

$$I\theta''(t) = -\int_{\partial S(t)} (\mathbf{x} - \boldsymbol{\xi})^{\perp} \cdot \boldsymbol{\sigma}(\mathbf{u}, p) \mathbf{n} \ d\Gamma + \int_{S(t)} \rho_{s}(\mathbf{x} - \boldsymbol{\xi})^{\perp} \cdot \mathbf{f}(\mathbf{x}, t) \ d\mathbf{x}$$

$$\mathbf{u} = \boldsymbol{\xi}' + \boldsymbol{\theta}' (\mathbf{x} - \boldsymbol{\xi})^{\perp} \text{ on } \partial S(t)$$

mass m and moment of inertia I of the rigid body.

Some numerical methods for fluid-rigid systems

ALE / moving mesh methods + fixed point.
 Donea & Giuliani & Halleux 1982, Hughes & Liu & Zimmermann 1981, ..., Formaggia & Nobile 1999, Gastaldi 2001,2004, Legendre& Takahashi 2008

Some numerical methods for fluid-rigid systems

- ALE / moving mesh methods + fixed point.
 Donea & Giuliani & Halleux 1982, Hughes & Liu & Zimmermann 1981, ..., Formaggia & Nobile 1999, Gastaldi 2001,2004, Legendre& Takahashi 2008
- Monolithic scheme (global weak formulation)
 - Distributed Lagrange multipliers/ fictitious domain, fixed mesh (eulerian method): Glowinski & Pan & Hesla & Joseph & Périaux, 2000.
 - San Martín & JFS & Takahashi & Tucsnak, 2005, San Martín & JFS & Loredana, 2011.
 - Penalization methods and Level-set: Angot 1999, Bost & Cottet& Maitre 2010

1 - Monolithic finite elements scheme with characteristics

a- A global weak formulation

• Space of functions (velocity) which are *rigids* into the solid S(t):

$$\mathcal{K}(t) = \{ \mathbf{u} \in H_0^1(\Omega) \mid D(\mathbf{u}) = 0 \text{ in } S(t) \}$$

Remark: for all $\mathbf{v} \in \mathcal{K}(t)$, there exist $l_{\mathbf{v}} \in \mathbb{R}^2$ and $\omega_{\mathbf{v}} \in \mathbb{R}$ s.t.

$$\mathbf{v}(\mathbf{x}) = l_{\mathbf{v}} + \omega_{\mathbf{v}}(\mathbf{x} - \boldsymbol{\xi})^{\perp} \quad \forall \mathbf{x} \in S(t).$$

• The space for pressure :

$$\mathcal{M}(t) = \left\{ p \in L^2(\Omega) \mid \int_{\Omega} p \ d\mathbf{x} = 0, \ p = 0 \ \text{in} \ S(t) \right\}$$

Bilinear forms

$$a(\mathbf{u}, \mathbf{v}) = 2\nu \int_{\Omega} D(\mathbf{u}) : D(\mathbf{v}) d\mathbf{x} \quad \forall \mathbf{u}, \mathbf{v} \in H_0^1(\Omega),$$
 $b(\mathbf{u}, q) = -\int_{\Omega} (\operatorname{div} \mathbf{u}) q d\mathbf{x} \quad \forall \mathbf{u} \in H_0^1(\Omega), \ q \in L^2(\Omega)$

Material derivative of v associated to the velocity u

$$\frac{d\mathbf{v}}{dt} = \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{v}$$

Let $(\mathbf{u}, p, \boldsymbol{\xi}, \theta)$ be a strong solution to the fluid-rigid system. \mathbf{u} and p are extended to the whole domain Ω :

$$\mathbf{u}(\mathbf{x},t) = \boldsymbol{\xi}'(t) + \theta'(t)(\mathbf{x} - \boldsymbol{\xi}(t))^{\perp} \quad \text{if } \mathbf{x} \in S(t),$$
$$p(\mathbf{x},t) = 0 \quad \text{if } \mathbf{x} \in S(t).$$

Global mixed formulation.

For all $t \in (0, T)$,

$$\int_{\Omega} \rho \frac{d\mathbf{u}}{dt} \cdot \mathbf{v} \ d\mathbf{x} + a(\mathbf{u}, \mathbf{v}) + b(\mathbf{v}, p) = \int_{\Omega} \rho \mathbf{f} \cdot \mathbf{v} \ d\mathbf{x} \quad \forall \mathbf{v} \in \mathcal{K}(t)$$
$$b(\mathbf{u}, q) = 0 \qquad \forall q \in \mathcal{M}(t)$$

density
$$\rho(\cdot, t) = \begin{cases} \rho_f & \text{in } F(t) \\ \rho_s & \text{in } S(t) \end{cases}$$

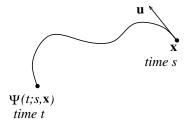
Material derivative of **u** and the characteristic function.

$$\frac{d\mathbf{u}}{dt}(\mathbf{x},t_0) = \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u}\right)(\mathbf{x},t_0) = \frac{d}{dt}[\mathbf{u}(\psi(t;t_0,x),t)]_{|t=t_0}$$

The characteristic function $\psi:(\mathbb{R}^+)^2 \times \Omega \to \Omega$ is the solution of

$$rac{d}{dt}\psi(t;s,\mathbf{x}) = \mathbf{u}(\psi(t;s,\mathbf{x}),t)$$
 $\psi(s;s,\mathbf{x}) = \mathbf{x}$

 $\psi(t;s,\mathbf{x})$ is the position of a particle at time t which is in \mathbf{x} at time s.



b- Space and time discretisation - monolithic scheme

Triangulation \mathcal{T}_h of the complete domain Ω (fluid+solid) \rightarrow fixed mesh

Approximations with
$$\mathcal{T}_h$$
: velocity $\mathbf{u}_h^k \simeq \mathbf{u}(\cdot, t^k)$ pressure $p_h^k \simeq p(\cdot, t^k)$ mass center $\boldsymbol{\xi}_h^k \simeq \boldsymbol{\xi}(t^k)$ orientation angle $\theta_h^k \simeq \theta(t^k)$

Finite elements space for the velocity $\mathcal{K}_h^k \simeq \mathcal{K}(t^k)$

Finite elements space for the pressure $\mathcal{M}_h^k \simeq \mathcal{M}(t^k)$

Suppose the approximate solution $(\mathbf{u}_h^k, p_h^k, \boldsymbol{\xi}_h^k, \theta_h^k)$ is known at time $t = t^k$. We aim to compute the solution at time $t = t^{k+1}$.

• Computation of the new position of the mass center and the new orientation angle of the solid.

$$\boldsymbol{\xi}_h^{k+1} = \boldsymbol{\xi}_h^k + \Delta t \, \mathbf{u}_h^k(\boldsymbol{\xi}_h^k),$$

$$\boldsymbol{u}_h^{k+1} = \boldsymbol{u}_h^k + \Delta t \int_{\mathbb{R}^n} (\boldsymbol{u}_h^k(\boldsymbol{\xi}_h^k) + \boldsymbol{u}_h^k(\boldsymbol{\xi}_h^k) + \boldsymbol{u}_h^k(\boldsymbol{\xi}_h^$$

$$\theta_h^{k+1} = \theta_h^k + \frac{\Delta t}{I} \int_{S_h^k} \rho_s(\mathbf{u}_h^k(\mathbf{x}) - \mathbf{u}_h^k(\boldsymbol{\xi}_h^k)) \cdot (\mathbf{x} - \boldsymbol{\xi}_h^k)^{\perp} d\mathbf{x} \quad \text{with } S_h^k = S(\boldsymbol{\xi}_h^k, \theta_h^k)$$

Computation of the new position of the mass center and the new orientation angle of the solid.

$$\begin{aligned} \boldsymbol{\xi}_h^{k+1} &= \boldsymbol{\xi}_h^k + \Delta t \, \mathbf{u}_h^k(\boldsymbol{\xi}_h^k), \\ \boldsymbol{\theta}_h^{k+1} &= \boldsymbol{\theta}_h^k + \frac{\Delta t}{I} \int_{\boldsymbol{S}_h^k} \rho_s(\mathbf{u}_h^k(\mathbf{x}) - \mathbf{u}_h^k(\boldsymbol{\xi}_h^k)) \cdot (\mathbf{x} - \boldsymbol{\xi}_h^k)^{\perp} \, d\mathbf{x} \quad \text{with } \boldsymbol{S}_h^k = \boldsymbol{S}(\boldsymbol{\xi}_h^k, \boldsymbol{\theta}_h^k) \end{aligned}$$

Monolithic scheme: <u>Global</u> computation of the velocity $\mathbf{u}_h^{k+1} \in \mathcal{K}_h^{k+1}$ and the pressure $p_h^{k+1} \in \mathcal{M}_h^{k+1}$.

 \rightarrow approximations of the material derivative and the characteristic function

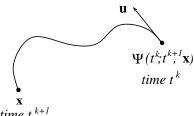
Time approximation of the characteristic function:

$$\frac{d\mathbf{u}}{dt}(\mathbf{x}, t^{k+1}) = \frac{d}{dt} \left[\mathbf{u}(\boldsymbol{\psi}(t; t^{k+1}, \mathbf{x}), t) \right]_{|t=t^{k+1}}$$

$$\simeq \frac{\mathbf{u}(\mathbf{x}, t^{k+1}) - \mathbf{u}(\boldsymbol{\psi}(t^k, t^{k+1}, \mathbf{x}), t^k)}{\Delta t}$$

 $\text{where } \left\{ \begin{array}{ll} \displaystyle \frac{d}{dt} \psi(t;t^{k+1},\mathbf{x}) & = & \mathbf{u}(\psi(t;t^{k+1},\mathbf{x}),t), \quad t \in [t^k,t^{k+1}] \\ \\ \psi(t^{k+1};t^{k+1},\mathbf{x}) & = & \mathbf{x}. \end{array} \right.$

 $\psi(t^k; t^{k+1}, \mathbf{x})$ is the (exact) position of a particle at time t^k which is in \mathbf{x} at time t^{k+1} .



2 - The homogeneous case of a constant density function $(\rho_f = \rho_s)$

[SMSTT05] J. San Martín, J.-F. Scheid, T. Takahashi and M. Tucsnak, Convergence of the Lagrange-Galerkin method for the equations modelling the motion of a fluid-rigid system, SIAM J. Numer. Anal., Vol. 43 (2005).

We assume that $\rho_f = \rho_s = 1$.

Find
$$\mathbf{u}_h^{k+1} \in \mathcal{K}_h^{k+1}$$
, $p_h^{k+1} \in \mathcal{M}_h^{k+1}$ s.t.

$$\left(\frac{(\mathbf{u}_h^{k+1} - \mathbf{u}_h^k \circ \overline{\mathbf{X}}_h^k)}{\Delta t}, \phi \right) + a(\mathbf{u}_h^{k+1}, \phi) + b(\phi, p_h^{k+1}) = (\mathbf{f}_h^{k+1}, \phi) \quad \forall \phi \in \mathcal{K}_h^{k+1},$$

$$b(\mathbf{u}_h^{k+1}, q) = 0 \quad \forall q \in \mathcal{M}_h^{k+1},$$

where $\overline{\mathbf{X}}_h^k$ is the approximate characteristic function at time t^k .

 $\overline{\mathbf{X}}_h^k$ is the approximate position at time t^k of a particle which is in \mathbf{x} at time t^{k+1} .

$$egin{aligned} \overline{\mathbf{X}}_h^k &= ilde{\psi}(t^k; t^{k+1}, \cdot) \simeq \psi(t^k, t^{k+1}, \cdot) \ & \left\{ egin{array}{l} rac{d}{dt} ilde{\psi}(t; t^{k+1}, \mathbf{x}) &= & P \mathbf{u}_h^k(ilde{\psi}(t; t^{k+1}, \mathbf{x})), \ & ilde{\psi}(t^{k+1}; t^{k+1}, \mathbf{x}) &= & \mathbf{x}. \end{array}
ight.$$

P is the orthogonal projector on the finite elements space

$$\mathcal{R}_{\textbf{h}} = \{ \textbf{rot} \, \varphi_{\textbf{h}}, \,\, \varphi_{\textbf{h}} \in E_{\textbf{h}}, \,\, \varphi_{\textbf{h}} = 0 \,\, \text{on} \,\, \partial \Omega \}.$$

Interest of
$$\underline{P}$$
: $\operatorname{div}(P\mathbf{u}_h^k) = 0$ in Ω (fluid+solid) and since $P\mathbf{u}_h^k = 0$ on $\partial\Omega$, we have $\overline{\mathbf{X}}_h^k(\Omega) = \Omega$.

The finite elements spaces \mathcal{K}_h^k and \mathcal{M}_h^k .

Finite elements for Stokes: \mathbb{P}_1 -bubble/ \mathbb{P}_1 , $\mathbb{P}_2/\mathbb{P}_1$, \mathbb{P}_1 -iso- $\mathbb{P}_2/\mathbb{P}_1$, \cdots

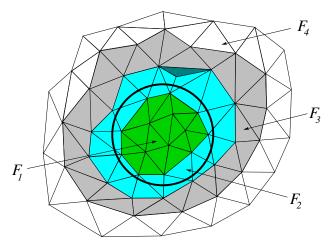
- E_h: space of approximations for the pressure in the (classical)
 Stokes problem
 - $E_h = \text{space of } \mathbb{P}_1 \text{ functions.}$
- W_h : space of approximations for the velocity in the (classical) Stokes problem
 - $W_h = \text{space of } \mathbb{P}_1\text{-bubble functions.}$

Conforming approximations:

$$\mathcal{M}_h^k = E_h \cap \mathcal{M}(t^k) \text{ where } \mathcal{M}(t^k) = \mathcal{M}(\xi_h^k, \theta_h^k)$$

 $\mathcal{K}_h^k = W_h \cap \mathcal{K}(t^k) \text{ where } \mathcal{K}(t^k) = \mathcal{K}(\xi_h^k, \theta_h^k)$

Let A_h^k be the union of all the triangles which intersect the solid body $S(\xi_h^k, \theta_h^k)$ (green and blue triangles)



Every function of \mathcal{M}_h^k is null in A_h^k . Every function of \mathcal{K}_h^k is rigid in A_h^k .

Convergence result ([San Martín-S. -Takahashi-Tucsnak, 2005])

Theorem . Let $C_0>0$ be a fixed constant. We suppose that Ω is polygonal convex and that the solution $(\mathbf{u},p,\boldsymbol{\xi},\theta)$ of the fluid-rigid system is regular. Assume that S is a *ball* and that $\mathrm{dist}(S,\partial\Omega)>0$ for all $t\in[0,T]$. We also assume that $\rho_s=\rho_f$. Then, there exist 2 constants C>0 and $\tau^*>0$ independents of h and Δt s.t. for all $0<\Delta t\leq \tau^*$ and for all $h\leq C_0\left(\Delta t\right)^2$, we have

$$\sup_{1\leq k\leq N}\left(|\boldsymbol{\xi}(t^k)-\boldsymbol{\xi}_h^k|+\|\mathbf{u}(t^k)-\mathbf{u}_h^k\|_{L^2(\Omega)}\right)\leq C\Delta t.$$

Remark. For the Navier-Stokes equations, alone without any rigid, the same type of result holds for $h \leq C_0 \Delta t$ ([Pironneau, 1982]) and for $h^2 \leq C_0 \Delta t \leq C_1 h^{\sigma}$ ($\sigma > 1/2$) ([Süli, 1988]).

Key ingredient for the proof:

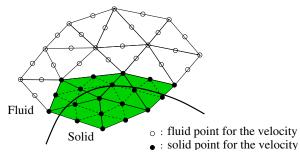
The velocity functions $\mathbf{u}(t^k)$ and \mathbf{u}_h^k are not rigids at the same place \Rightarrow difficult to compare them.

We transform

$$\mathbf{u}(t^k) \in \mathcal{K}(\boldsymbol{\xi}(t^k)) \longrightarrow \mathbf{U}^k \in \mathcal{K}(\boldsymbol{\xi}_h^k).$$

We are then able to compare \mathbf{U}^k with \mathbf{u}_h^k since they are both functions in $\mathcal{K}(\boldsymbol{\xi}_h^k)$ i.e. rigid velocities in $S(\boldsymbol{\xi}_h^k)$

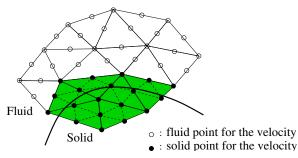
Practical aspects



Rigid basis functions :
$$\mathbf{I}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $\mathbf{I}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $\mathbf{I}_3 = (\mathbf{x} - \boldsymbol{\xi}_h^k)^{\perp}$.

Pressure and velocity basis functions on Ω : $\varphi_i \in \mathbb{P}_1$, $\phi_i \in \mathbb{P}_2$

Practical aspects



Rigid basis functions :
$$\mathbf{I}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $\mathbf{I}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $\mathbf{I}_3 = (\mathbf{x} - \boldsymbol{\xi}_h^k)^{\perp}$.

Pressure and velocity basis functions on Ω : $\varphi_i \in \mathbb{P}_1$, $\phi_i \in \mathbb{P}_2$

- Approximate space for the pressure: $\mathcal{M}_h^k(\boldsymbol{\xi}_h^k) = \operatorname{span}\{(\varphi_i)_{i \in \mathsf{fluid}}\}$
- Approximate space for the velocity:

$$\mathcal{K}_h^k(\boldsymbol{\xi}_h^k) = \operatorname{span}\left\{(\phi_i)_{i \in \mathsf{fluid}}, \; (\sum_{i \in \mathsf{rigid}} \varphi_i \mathbf{I}_j)_{j=1,2,3}\right\} \subset \mathbb{P}_2 \cap \mathcal{K}(\boldsymbol{\xi}_h^k, \theta_h^k)$$

$$\begin{aligned} \mathbf{u}_h^k &=& \sum_{i \in \mathsf{fluid}} \mathbf{u}_i \phi_i + \sum_{j=1}^3 \eta_j \mathbf{l}_j^k \sum_{i \in \mathsf{rigid}} \varphi_i \\ p_h^k &=& \sum_{i \in \mathsf{fluid}} p_i \varphi_i \\ (\eta_1, \eta_2) &=& \mathbf{u}_h^k (\boldsymbol{\xi}_h^k) \simeq \boldsymbol{\xi}'(t^k) \text{ velocity of the mass center} \\ \eta_3 &\simeq \theta'(t^k) = \text{ angular velocity} \end{aligned}$$

$$\mathbf{u}_{h}^{k} = \sum_{i \in \mathsf{fluid}} \mathbf{u}_{i} \phi_{i} + \sum_{j=1}^{3} \eta_{j} \mathbf{l}_{j}^{k} \sum_{i \in \mathsf{rigid}} \varphi_{i}$$

$$p_{h}^{k} = \sum_{i \in \mathsf{fluid}} p_{i} \varphi_{i}$$

$$(\eta_1, \eta_2) = \mathbf{u}_h^k(\boldsymbol{\xi}_h^k) \simeq \boldsymbol{\xi}'(t^k)$$
 velocity of the mass center

$$\eta_3 \simeq \theta'(t^k) = \text{ angular velocity}$$

Linear system.
$$U = (\underbrace{\mathbf{u}_i}_{2N_f}, \eta_1, \eta_2, \eta_3)^T \in \mathbb{R}^{2N_f+3}, \quad P = (p_i) \in \mathbb{R}^{M_f}$$

Basis functions of the rigid space \mathcal{K}_h^k : $\psi_i \in \mathbb{P}_2 \Rightarrow \psi_i = \sum_j \mu_{ij} \phi_j$

$$\mathbf{u}_{h}^{k} = \sum_{i \in \text{fluid}} \mathbf{u}_{i} \phi_{i} + \sum_{j=1}^{3} \eta_{j} \mathbf{I}_{j}^{k} \sum_{i \in \text{rigid}} \varphi_{i}$$

$$p_{h}^{k} = \sum_{i \in \text{fluid}} p_{i} \varphi_{i}$$

$$(\eta_1,\eta_2)=\mathbf{u}_h^k(\boldsymbol{\xi}_h^k)\simeq \boldsymbol{\xi}'(t^k)$$
 velocity of the mass center

$$\eta_3 \simeq \theta'(t^k) = \text{ angular velocity}$$

$$\underline{\text{Linear system}}. \qquad U = (\underbrace{\mathbf{u}_i}_{2N_f}, \eta_1, \eta_2, \eta_3)^T \in \mathbb{R}^{2N_f + 3}, \quad P = (p_i) \in \mathbb{R}^{M_f}$$

Basis functions of the rigid space \mathcal{K}_h^k : $\psi_i \in \mathbb{P}_2 \Rightarrow \psi_i = \sum_j \mu_{ij} \phi_j$

Stokes matrix on
$$\Omega$$

$$\mathcal{M} \underbrace{\begin{pmatrix} A & B \\ B^T & 0 \end{pmatrix}}_{\text{Stokes matrix on } \Omega} \mathcal{M}^T \quad \begin{pmatrix} U \\ P \end{pmatrix} = \mathcal{M} \begin{pmatrix} L \\ 0 \end{pmatrix}$$

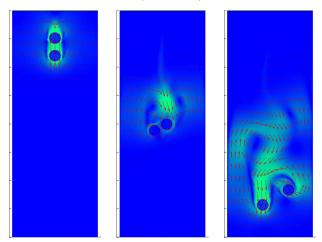
The transformation matrix \mathcal{M} is of size $(2N_f + 3 + M_f) \times (2N + M)$

 I_2 and I_1 are identity matrices of order N_f and M_f respectively and $(\alpha_1, \alpha_2) = (\mathbf{x}(P_i) - \boldsymbol{\xi}_h^k)^{\perp}$.

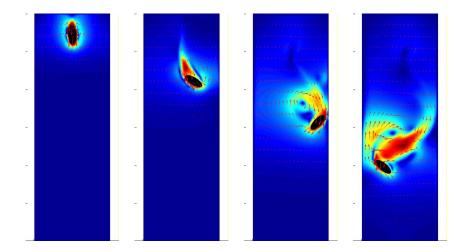
Numerical simulations ($\rho_f = \rho_s$)

Several bodies are easily handled $\mathbf{f} = \mathbf{0}$ into the fluid, $\mathbf{f} = (0, -g)^{\top}$ into the solid.

• free fall of rigid balls in a fluid (tumbling)



• Freely falling ellipse (unstable vs 'more stable')



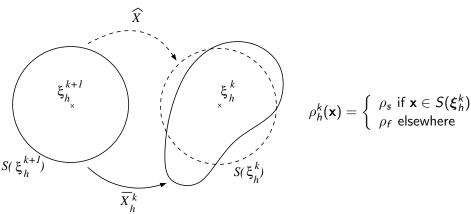
3 - The case of a discontinuous density function

Now, we assume that $\rho_f \neq \rho_s$.

First idea : extend the previous scheme (for $\rho_f = \rho_s$) by approximating the inertial term in the Navier-Stokes equations (material derivative) as:

$$\rho_h^{k+1} \frac{(\mathbf{u}_h^{k+1} - \mathbf{u}_h^k \circ \overline{\mathbf{X}}_h^k)}{\Delta t} \quad \text{with } \rho_h^{k+1}(\mathbf{x}) = \left\{ \begin{array}{l} \rho_s \text{ if } \mathbf{x} \in \mathcal{S}(\boldsymbol{\xi}_h^{k+1}) \\ \rho_f \text{ elsewhere} \end{array} \right.$$

 $\overline{\mathbf{X}}_h^k$ is the approximate characteristics function for the case $\rho_f = \rho_s$.



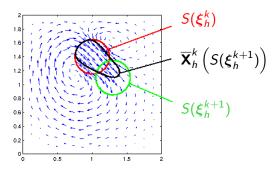
Difficulties :

ullet The error estimate $\| \mathbf{u}(t^k) - \mathbf{u}_h^k \|_{L^2(\Omega)}$ involves the term

$$\|\rho_h^{k+1} - \rho_h^k \circ \overline{\mathbf{X}}_h^k\|_{L^2(\Omega)}$$
 (with $\rho_h^{k+1} = \rho_h^k \circ \widehat{\mathbf{X}}$)

• Generally $\overline{\mathbf{X}}_h^k\left(S(\boldsymbol{\xi}_h^{k+1})\right) \nsubseteq S(\boldsymbol{\xi}_h^k)$ and $\rho_h^{k+1} \neq \rho_h^k \circ \overline{\mathbf{X}}_h^k$.

Numerical example of $\overline{\mathbf{X}}_h^k \left(S(\boldsymbol{\xi}_h^{k+1}) \right) \nsubseteq S(\boldsymbol{\xi}_h^k)$



 \Rightarrow we do not know how to estimate the term $\|
ho_h^{k+1} -
ho_h^k \circ \overline{f X}_h^k\|_{L^2(\Omega)} \dots$

The modified characteristics function

 $\bullet \ \ \mathsf{We \ define} \ \overline{\mathbf{X}}^k_h = \overline{\psi}(t^k; t^{k+1}, \cdot) \simeq \psi(t^k, t^{k+1}, \cdot)$

$$\begin{cases} \frac{d}{dt}\overline{\psi}(t;t^{k+1},\mathbf{x}) &= P(\boldsymbol{\xi}_h^k)\left(\mathbf{u}_h^k(\overline{\psi}(t;t^{k+1},\mathbf{x})) - \mathbf{u}_h^k(\boldsymbol{\xi}_h^k)\right), \\ \overline{\psi}(t^{k+1};t^{k+1},\mathbf{x}) &= \mathbf{x} - \mathbf{u}_h^k(\boldsymbol{\xi}_h^k)\Delta t \end{cases}$$

 $P(\xi)$ is the orthogonal projector on the finite elements space

$$\mathcal{R}_h(\boldsymbol{\xi}) = \{ \mathbf{rot} \, \varphi_h, \ \varphi_h \in \mathcal{E}_h, \ \varphi_h = 0 \ \text{on} \ \partial \Omega \} \cap \mathcal{K}(\boldsymbol{\xi})$$

The modified characteristics function

• We define $\overline{\mathbf{X}}_h^k = \overline{\psi}(t^k; t^{k+1}, \cdot) \simeq \psi(t^k, t^{k+1}, \cdot)$

$$\begin{cases} \frac{d}{dt}\overline{\psi}(t;t^{k+1},\mathbf{x}) &= P(\boldsymbol{\xi}_h^k)\left(\mathbf{u}_h^k(\overline{\psi}(t;t^{k+1},\mathbf{x})) - \mathbf{u}_h^k(\boldsymbol{\xi}_h^k)\right), \\ \overline{\psi}(t^{k+1};t^{k+1},\mathbf{x}) &= \mathbf{x} - \mathbf{u}_h^k(\boldsymbol{\xi}_h^k)\Delta t \end{cases}$$

 $P(\xi)$ is the orthogonal projector on the finite elements space

$$\mathcal{R}_h(\boldsymbol{\xi}) = \{ \mathbf{rot} \, \varphi_h, \ \varphi_h \in E_h, \ \varphi_h = 0 \ \text{on} \ \partial \Omega \} \cap \mathcal{K}(\boldsymbol{\xi})$$

The inertial term in Navier-Stokes equations is approximated by

$$\rho_h^{k+1} \frac{(\mathbf{u}_h^{k+1} - \mathbf{u}_h^k \circ \overline{\mathbf{X}}_h^k)}{\Delta t} \quad \text{with } \rho_h^{k+1}(\mathbf{x}) = \left\{ \begin{array}{l} \rho_s \text{ if } \mathbf{x} \in S(\boldsymbol{\xi}_h^{k+1}) \\ \rho_f \text{ elsewhere} \end{array} \right.$$

Properties of the modified characteristics function

- ② If the density function ρ_h^k is extended to ρ_f outside Ω , then $\rho_h^{k+1} = \rho_h^k \circ \overline{\mathbf{X}}_h^k$.

From 2), we have $\|\rho_h^{k+1} - \rho_h^k \circ \overline{\mathbf{X}}_h^k\|_{L^2(\Omega)} = 0$!!!

Convergence result for the modified characteristics with $\rho_f \neq \rho_s$ ([San Martín-S.-Smaranda, 2011])

Theorem. We suppose that Ω is polygonal, convex and that $(\mathbf{u}, p, \xi, \theta)$ is a regular (exact) solution to the fluid-rigid system. We assume that S is a ball and that $\mathrm{dist}(S,\partial\Omega)>0$ for all $t\in[0,T]$. Let $C_0>0$ and $0<\alpha\leq 1$ be fixed constants. Then, there exist 2 constants C>0 and $\tau^*>0$ independents of h and Δt s.t. for all $0<\Delta t\leq \tau^*$ and for all $h\leq C_0\left(\Delta t\right)^{1+\alpha}$, we have

$$\sup_{1\leq k\leq N}\left(|\boldsymbol{\xi}(t^k)-\boldsymbol{\xi}_h^k|+\|\mathbf{u}(t^k)-\mathbf{u}_h^k\|_{L^2(\Omega)}\right)\leq C\Delta t^{\alpha}.$$

Remark. For $\alpha=1$, we get the convergence order of the scheme for the case $\rho_f=\rho_s$.

4 - Link with the fictitious domain method

For every $\varphi \in \mathcal{K}(\boldsymbol{\xi})$

$$\int_{\Omega} \rho \frac{d\mathbf{u}}{dt} \cdot \boldsymbol{\varphi} \, d\mathbf{x} = \rho_f \int_{\Omega} \frac{d\mathbf{u}}{dt} \cdot \boldsymbol{\varphi} \, d\mathbf{x} + \left(1 - \frac{\rho_f}{\rho_s}\right) \rho_s \int_{S(t)} \frac{d\mathbf{u}}{dt} \cdot \boldsymbol{\varphi} \, d\mathbf{x}$$

Any rigid function $\varphi \in \mathcal{K}(\xi)$ can be decomposed as $\varphi(\mathbf{x}) = \mathbf{I}_{\varphi} + \omega_{\varphi}(\mathbf{x} - \xi)^{\perp}$. This implies

$$\int_{\Omega} \rho \frac{d\mathbf{u}}{dt} \cdot \boldsymbol{\varphi} \, d\mathbf{x} = \rho_f \int_{\Omega} \frac{d\mathbf{u}}{dt} \cdot \boldsymbol{\varphi} \, d\mathbf{x} + \left(1 - \frac{\rho_f}{\rho_s}\right) \left(m\boldsymbol{\xi}''(t) \cdot \mathbf{I}_{\boldsymbol{\varphi}} + I\boldsymbol{\theta}''(t)\boldsymbol{\omega}_{\boldsymbol{\varphi}}\right)$$

4 - Link with the fictitious domain method

For every $\varphi \in \mathcal{K}(\boldsymbol{\xi})$

$$\int_{\Omega} \rho \frac{d\mathbf{u}}{dt} \cdot \boldsymbol{\varphi} \, d\mathbf{x} = \rho_f \int_{\Omega} \frac{d\mathbf{u}}{dt} \cdot \boldsymbol{\varphi} \, d\mathbf{x} + \left(1 - \frac{\rho_f}{\rho_s}\right) \rho_s \int_{S(t)} \frac{d\mathbf{u}}{dt} \cdot \boldsymbol{\varphi} \, d\mathbf{x}$$

Any rigid function $\varphi \in \mathcal{K}(\xi)$ can be decomposed as $\varphi(\mathbf{x}) = \mathbf{I}_{\omega} + \omega_{\omega}(\mathbf{x} - \xi)^{\perp}$. This implies

$$\int_{\Omega} \rho \frac{d\mathbf{u}}{dt} \cdot \boldsymbol{\varphi} \, d\mathbf{x} = \rho_f \int_{\Omega} \frac{d\mathbf{u}}{dt} \cdot \boldsymbol{\varphi} \, d\mathbf{x} + \left(1 - \frac{\rho_f}{\rho_s}\right) \left(m \boldsymbol{\xi}''(t) \cdot \mathbf{I}_{\boldsymbol{\varphi}} + I \theta''(t) \omega_{\boldsymbol{\varphi}}\right)$$

Fictitious domain formulation

For all t, find $\mathbf{u}(t) \in \mathcal{K}(\boldsymbol{\xi}), \ p(t) \in \mathcal{M}(\boldsymbol{\xi}), \ \boldsymbol{\xi}(t)$ such that

$$\rho_f(\frac{d\mathbf{u}}{dt},\varphi) + \left(1 - \frac{\rho_f}{\rho_s}\right) \left(m\xi''(t) \cdot \mathbf{I}_{\varphi} + I\theta''(t)\omega_{\varphi}\right) + a(\mathbf{u},\varphi) + b(\varphi,p) = (\rho \mathbf{f},\varphi)$$

$$b(\mathbf{u},q) = 0$$

for all $\varphi \in \mathcal{K}(\boldsymbol{\xi})$ and $q \in \mathcal{M}(\boldsymbol{\xi})$.

Rewriting the modified characteristics method

Find $\mathbf{u}_h^{k+1} \in \mathcal{K}_h^{k+1}$, $p_h^{k+1} \in \mathcal{M}_h^{k+1}$ s.t.

$$\left(\rho_h^{k+1} \frac{(\mathbf{u}_h^{k+1} - \mathbf{u}_h^k \circ \overline{\mathbf{X}}_h^k)}{\Delta t}, \phi\right) + a(\mathbf{u}_h^{k+1}, \phi) + b(\phi, \rho_h^{k+1}) = (\rho_h^{k+1} \mathbf{f}_h^{k+1}, \phi)$$

$$b(\mathbf{u}_h^{k+1}, q) = 0$$

for all
$$\phi \in \mathcal{K}_h^{k+1}$$
 and $q \in \mathcal{M}_h^{k+1}$ with $\rho_h^k(\mathbf{x}) = \begin{cases} \rho_s \text{ if } \mathbf{x} \in S(\boldsymbol{\xi}_h^k) \\ \rho_f \text{ elsewhere} \end{cases}$

Rewriting the modified characteristics method

Find $\mathbf{u}_{h}^{k+1} \in \mathcal{K}_{h}^{k+1}$, $p_{h}^{k+1} \in \mathcal{M}_{h}^{k+1}$ s.t.

$$\left(\rho_h^{k+1} \frac{(\mathbf{u}_h^{k+1} - \mathbf{u}_h^k \circ \overline{\mathbf{X}}_h^k)}{\Delta t}, \phi\right) + a(\mathbf{u}_h^{k+1}, \phi) + b(\phi, \rho_h^{k+1}) = (\rho_h^{k+1} \mathbf{f}_h^{k+1}, \phi)$$

$$b(\mathbf{u}_h^{k+1}, q) = 0$$

for all $\phi \in \mathcal{K}_h^{k+1}$ and $q \in \mathcal{M}_h^{k+1}$ with $\rho_h^k(\mathbf{x}) = \begin{cases} \rho_s \text{ if } \mathbf{x} \in S(\boldsymbol{\xi}_h^k) \\ \rho_f \text{ elsewhere} \end{cases}$

We have
$$\left(\rho_h^{k+1} \frac{(\mathbf{u}_h^{k+1} - \mathbf{u}_h^k \circ \overline{\mathbf{X}}_h^k)}{\Delta t}, \phi \right) =$$

$$\left(\rho_f \frac{(\mathbf{u}_h^{k+1} - \mathbf{u}_h^k \circ \overline{\mathbf{X}}_h^k)}{\Delta t}, \phi \right) + \left(1 - \frac{\rho_f}{\rho_s} \right) \rho_s \int_{S(\boldsymbol{\xi}_h^{k+1})} \frac{(\mathbf{u}_h^{k+1} - \mathbf{u}_h^k \circ \overline{\mathbf{X}}_h^k)}{\Delta t} \cdot \phi \, d\mathbf{x}$$

$$\begin{split} \left(\rho_{h}^{k+1} \frac{(\mathbf{u}_{h}^{k+1} - \mathbf{u}_{h}^{k} \circ \overline{\mathbf{X}}_{h}^{k})}{\Delta t}, \phi\right) &= \left(\rho_{f} \frac{(\mathbf{u}_{h}^{k+1} - \mathbf{u}_{h}^{k} \circ \overline{\mathbf{X}}_{h}^{k})}{\Delta t}, \phi\right) \\ &+ \left(1 - \frac{\rho_{f}}{\rho_{s}}\right) \left(m \frac{\mathbf{u}_{h}^{k+1}(\boldsymbol{\xi}_{h}^{k+1}) - \mathbf{u}_{h}^{k}(\boldsymbol{\xi}_{h}^{k})}{\Delta t} \cdot \mathbf{I}_{\phi} + I \frac{\omega_{\mathbf{u}_{h}^{k+1}} - \omega_{\mathbf{u}_{h}^{k}} \cos(\theta_{k})}{\Delta t} \omega_{\phi}\right) \end{split}$$

with $\theta_k = -\omega_{P\mathbf{u}_h^k} \Delta t$.

$$\begin{split} \left(\rho_h^{k+1} \frac{(\mathbf{u}_h^{k+1} - \mathbf{u}_h^k \circ \overline{\mathbf{X}}_h^k)}{\Delta t}, \phi\right) &= \left(\rho_f \frac{(\mathbf{u}_h^{k+1} - \mathbf{u}_h^k \circ \overline{\mathbf{X}}_h^k)}{\Delta t}, \phi\right) \\ &+ \left(1 - \frac{\rho_f}{\rho_s}\right) \left(m \frac{\mathbf{u}_h^{k+1}(\boldsymbol{\xi}_h^{k+1}) - \mathbf{u}_h^k(\boldsymbol{\xi}_h^k)}{\Delta t} \cdot \mathbf{I}_\phi + I \frac{\omega_{\mathbf{u}_h^{k+1}} - \omega_{\mathbf{u}_h^k} \cos(\theta_k)}{\Delta t} \omega_\phi\right) \\ \text{with } \theta_k &= -\omega_{P\mathbf{u}_h^k} \Delta t. \end{split}$$

This is a discretisation of the fictitious domain formulation

$$\begin{split} \rho_f (\frac{d\mathbf{u}}{dt}, \varphi) + \left(1 - \frac{\rho_f}{\rho_s}\right) \left(m \xi''(t) \cdot \mathbf{I}_{\varphi} + I \theta''(t) \omega_{\varphi}\right) \\ + a(\mathbf{u}, \varphi) + b(\varphi, p) &= (\rho \mathbf{f}, \varphi) \end{split}$$

B. An extended model for deformable bodies

Self-propulsion by shape changes = ability for a body to move into a fluid by changing its shape (deformation)

The self-propulsion is the result of the interaction between the deformation and the fluid

Main hypothesis: The deformation is given once for all and can't be modified by the fluid flow

1- A kinetic model for the deformation (2D)

 S_0 : reference body.

The transformation X of S_0 is regular



 X^* : deformation of the body (known)

X^R: rigid displacement (unknown)

Hypothesis for the deformation X^* :

- The total volume and the total mass of the body are conserved.
- The deformation X^* does not modify the linear and angular momenta of the body. In particular, the mass center of the deformed body S^* does not change.

The <u>unknowns</u>:

- $\xi(t)$: mass center of the deformable body.
- $\theta(t)$: orientation angle (R_{θ} : rotation matrix)

The eulerian velocity field of the body $\mathcal{S}(t)$ is:

$$\mathbf{u}_{S}(\mathbf{x},t) = \underbrace{\xi'(t) + \theta'(t)(\mathbf{x} - \xi(t))^{\perp}}_{\text{rigid displacement}} + \underbrace{\mathbf{w}(\mathbf{x},t)}_{\text{deformation}}$$

where

$$\mathbf{w}(\mathbf{x},t) = R_{\theta(t)}\mathbf{w}^*(\mathbf{x}^*,t), \quad \mathbf{x} = X^R(\mathbf{x}^*,t)$$

and $\mathbf{w}^*(\mathbf{x}^*, t) = \frac{\partial X^*}{\partial t}(\mathbf{y}, t)$ is the deformation velocity (known).

2- The full system fluid/deformation

$$\rho_{f}\left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u}\right) - \nu \Delta \mathbf{u} + \nabla p = \rho_{f}\mathbf{f} \quad \text{in } F(t)$$

$$\operatorname{div} \mathbf{u} = 0 \quad \text{in } F(t)$$

$$\mathbf{u} = \boldsymbol{\xi}' + \theta' (\mathbf{x} - \boldsymbol{\xi})^{\perp} + \mathbf{w} \quad \text{on } \partial S(t)$$

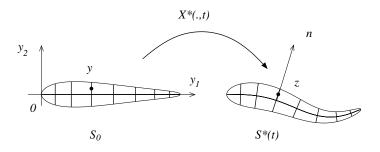
$$m\boldsymbol{\xi}'' = -\int_{\partial S(t)} \sigma(\mathbf{u}, p)\mathbf{n} \, d\Gamma + \int_{S(t)} \rho_{s}\mathbf{f}(\mathbf{x}, t) \, d\mathbf{x}$$

$$(I\theta')' = -\int_{\partial S(t)} (\mathbf{x} - \boldsymbol{\xi})^{\perp} \cdot \sigma(\mathbf{u}, p)\mathbf{n} \, d\Gamma + \int_{S(t)} \rho_{s}(\mathbf{x} - \boldsymbol{\xi})^{\perp} \cdot \mathbf{f}(\mathbf{x}, t) \, d\mathbf{x}$$

 \Rightarrow same global formulation as in the rigid body case.

3 - Fish-like swimming simulations

A geometric beam model for X^* : during the deformation, the cross-sections remain perpendicular to the middle line (Kirchhoff's model)



The mean curvature of the middle line is prescribed (carangiform swimming) :

$$K(y_1, t) = (a_2y_1^2 + a_1y_1 + a_0)\sin 2\pi(y_1/\lambda - t/T) + a_3$$

Numerical simulations

