Solving rank structured Sylvester and Lyapunov equations

Stefano Massei, Davide Palitta, Leonardo Robol
Abstract.
We consider the problem of efficiently solving Sylvester and Lyapunov equations of medium and large scale, in case of rank-structured data, i.e., when the coefficient matrices and the right-hand side have low-rank off-diagonal blocks. This comprises problems with banded data, recently studied in [22,32], which often arise in the discretization of elliptic PDEs.

We show that, under suitable assumptions, the quasiseparable structure is guaranteed to be numerically present in the solution, and explicit novel estimates of the numerical rank of the off-diagonal blocks are provided.

Efficient solution schemes that rely on the technology of hierarchical matrices are described, and several numerical experiments confirm the applicability and efficiency of the approaches. We develop a MATLAB toolbox that allows easy replication of the experiments and a ready-to-use interface for the solvers. The performances of the different approaches are compared, and we show that the new methods described are efficient on several classes of relevant problems.

Keywords: Sylvester equation, Lyapunov equation, banded matrices, quasiseparable matrices, off-diagonal singular values, \(\mathcal{H} \)-matrices.

AMS subject classifications: 15A06, 15A24, 65D32, 65F10, 93C20.

1. Introduction. We consider the problem of solving Sylvester equations of the form

\[AX + XB = C, \]

where \(A, B, C \in \mathbb{R}^{n \times n} \), and \(A, B \) are symmetric positive definite and rank-structured. More precisely, we assume that the matrices \(A, B \) and \(C \) are quasiseparable, i.e., their off-diagonal blocks have low rank. Sylvester equations arise in different settings, such as problems of control [1,8], discretization of PDEs [13,31], block-diagonalization [17, chapter 7.1.4], and many others. The Lyapunov equation, that is (1) with \(B = A \), is of particular interest due to its important role in control theory [1]. The symmetric and positive definite constraint is not strictly necessary in our analysis, and some relaxations involving the field of values will be presented.

Even in the case of sparse \(A, B \) and \(C \), the solution \(X \) to (1) is, in general, dense and it cannot be easily stored for large-scale problems. To overcome this numerical difficulty, the right-hand side is often supposed to be low rank, i.e., \(C = C_1C_2^T \) with \(C_1, C_2 \in \mathbb{R}^{n \times k} \), \(k \ll n \). In this case, under some suitable assumptions on the spectra of \(A \) and \(B \), it is possible to prove that the solution \(X \) is numerically low rank [4] so that it can be well-approximated by a low-rank matrix \(X \approx UV^T \). The low-rank property of \(X \) justifies the solution of this kind of equations by the so-called low-rank methods, which directly compute and store only the factors \(U, V \). A large amount of work in this direction has been carried out in the last years. See, e.g., [39] and the references therein. However, in many cases the known term \(C \) is not low rank. It is very easy to construct a simplified example to show that low-rank methods have no hope of being effective in this more general context. Consider equation (1) with \(A = B = I \) and \(C = 2I \) where \(I \) denotes the identity matrix. It is immediate to check that the solution is \(X = I \), and therefore every approximation \(UV^T \approx X \) which is not full rank needs to satisfy \(\| UV^T - X \|_2 \geq 1 \). Obviously, this example has no practical relevance from the computational point of view, since a Lyapunov equation with diagonal data needs to have a diagonal solution, which can be computed in \(O(n) \) time and represented in \(O(n) \) storage. Nevertheless, it shows that even if all the coefficients and
the solution X are full rank, they are indeed very structured: in fact, they are diagonal. One might wonder if also banded structures are preserved. This is not true, in general, since banded matrices are not an algebra (in contrast to what is true for diagonal ones), but approaches which exploit the banded properties of A, B, C and, to a certain extent, of the solution X, have been recently proposed by Haber and Verhaegen in [22] and by Palitta and Simoncini in [32]. The preservation of a banded structure in the solution is strictly connected with the conditioning of A and B. Unless they are both ill-conditioned, the solution X of (1) is well approximated by a banded matrix \tilde{X}. Otherwise, it has been shown that X can be represented by a couple (X_B, S_m), $X \approx X_B + S_m S_m^T$, where X_B is banded and S_m low-rank so that a low memory allocation is still required, see [32].

In this work, we consider a more general structure, the so-called quasiseparability, which is often numerically present in X when we have it in A, B and C, so that a low memory requirement is demanded for storing the solution. Informally, a matrix is said to be quasiseparable if its off-diagonal blocks are low-rank matrices, and the quasiseparable rank is defined as the maximum of the ranks of the off-diagonal blocks. We say that a matrix is numerically quasiseparable when the above property holds only up to a certain ϵ, i.e., only few singular values of each off-diagonal block are above a certain threshold.

A simple yet meaningful example arises from the context of PDEs: consider the differential equation

\begin{align}
-\Delta u &= \log (\tau + |x - y|), \quad (x, y) \in \Omega, \\
u(x, y) &\equiv 0, \quad (x, y) \in \partial \Omega,
\end{align}

where Ω is the rectangular domain $[0,1] \times [0,1]$ and $\tau > 0$. The discretization by centered finite differences of equation (2) with n nodes in each direction, $(x_i, y_j), \ i, j = 1, \ldots, n$, yields the following Lyapunov equation

$$AX + XA = C, \quad A, C \in \mathbb{R}^{n \times n},$$

$$C_{i,j} = \log (\tau + |x_i - y_j|), \quad A = \frac{1}{h^2} \begin{bmatrix}
2 & -1 & & \\
-1 & 2 & -1 & \\
& \ddots & \ddots & \ddots \\
& & -1 & 2 & -1 \\
& & & -1 & 2
\end{bmatrix}.$$
We will exploit the framework of H-matrices to store quasiseparable matrices and to perform matrix operations at an almost linear cost (up to logarithmic factors).

In this paper, we compare the use of Hierarchical matrices in the matrix sign iteration, and in the estimation of an integral formula for solving (1). In the latter approach, we evaluate the closed formula \[X = \int_0^{+\infty} e^{-At}Ce^{-Bt} dt, \] by combining a numerical integrating scheme and rational approximations for the matrix exponential. We employ (3) for our purpose but different closed forms of X are available in the literature. See, e.g., [39]. Starting with H-matrices representations of A, B and C, formula (3) can be efficiently approximated exploiting H-arithmetic. To the best of our knowledge, this technique has not been exploited for computing X in the H-matrix framework.

The representation (3) has been used in [18] as a theoretical tool to estimate the quasiseparable rank of the solution, but the derived bounds may be very pessimistic, and are linked with the convergence of the integral formula, which cannot be easily made explicit. We improve these estimates by developing a theoretical analysis which relies on some recent results [6], exploited also in [10], where the numerical rank of the solution X is determined by estimating the exponential decay in the singular values of its off-diagonal blocks.

The paper is organized as follows; in Section 2 we introduce the notion of quasiseparability and we deliver the technical tools for analyzing the preservation of the structure in the solution X. In particular, we provide bounds for the off-diagonal singular values of X and we show some numerical experiments in order to validate them. In Section 3, hierarchically off diagonal low-rank (HODLR) matrices are introduced describing their impact in the computational effort for handling matrix operations. The two algorithms for solving (1) are presented in Section 4. In particular, in Section 4.1 we recall the sign function method presented in [19], whereas the procedure used for the numerical approximation of (3) is illustrated in Section 4.2. Both the approaches are based on the use of HODLR arithmetic. We address the solution of certain generalized Lyapunov and Sylvester equations in Section 5.
In Section 6 we perform numerical tests on instances of (1) coming from both artificially crafted models and real-world problems where the quasiseparable structure is present. Finally, in Section 7 we draw some concluding remarks.

2. Quasiseparable structure in the solution. The main purpose of this section is to prove that, under some reasonable assumptions on the spectrum of A and B, the solution X to the matrix equation (1) needs to be quasiseparable if A, B and C are quasiseparable.

2.1. Quasiseparability structures. The literature on quasiseparable (or semiseparable) matrices is rather large, and the term is often used to denote slightly different objects. Therefore, also in the spirit of making this paper as self-contained as possible, we recall the definition of quasiseparable matrices that we will use throughout the paper. We refer to [16, 43–45] and the references therein for a complete survey about quasiseparable and semiseparable structures.

Definition 2.1. A matrix A is quasiseparable of order k if the maximum of the ranks of all its submatrices contained in the strictly upper or lower part is exactly k.

![Fig. 2. Pictorial description of the quasiseparable structure; the off-diagonal blocks can be represented as low-rank outer products.](image)

Example 2.2. A banded matrix with bandwidth k is quasiseparable of order (at most) k. In particular, diagonal matrices are quasiseparable of order 0, tridiagonal matrices are quasiseparable of order 1, and so on.

![Fig. 3. Graphic description of the quasiseparability of banded matrices; in grey, the non zero entries](image)

2.2. Zolotarev problems and off-diagonal singular values. We are interested in exploiting the quasiseparable rank in numerical computations. In many cases, the request of the exact preservation of a certain structure is too strong – and it can not be guaranteed. However, for computational purposes, we are satisfied if the property holds in an approximate way, i.e., if our data are well-approximated by structured ones. This can be rephrased by asking that the off-diagonal blocks of the solution X of (1) have a low numerical rank. More precisely, given a generic off-diagonal block of the sought solution X, we want to prove that only a limited number of its singular values are larger than $\epsilon \cdot \|X\|_2$, where ϵ is a given threshold. This kind of analysis has been already performed in [9, 10, 30] for studying the numerical preservation of quasiseparability when solving quadratic matrix equations and computing matrix functions. See also the Ph.D. thesis [29] for more details.

In order to formalize this approach, we extend a result that provides bounds for the singular values of the solution of (1) when the right hand-side has low-rank. The latter is based on an
old problem considered by Zolotarev at the end of the 19th century [46], which concerns rational approximation in the complex plane. The following version can be found, along with the proof, in [6, Theorem 2.1] or in a similar form in [10, Theorem 4.2].

Theorem 2.3. Let X be an $n \times n$ matrix that satisfies the relation $AX + XB = C$, where C is of rank k and A, B are normal matrices. Let E, F be two disjoint sets containing the spectra of A and $-B$, respectively. Then, the following upper bound on the singular values of X holds,

$$\frac{\sigma_{1+k\ell}(X)}{\sigma_1(X)} \leq Z_{\ell}(E,F) := \inf_{r \in \mathcal{R}_{\ell,\ell}} \frac{\max_{x \in E} |r(x)|}{\min_{y \in F} |r(y)|}, \quad \ell \geq 1,$$

where $\mathcal{R}_{\ell,\ell}$ is the set of rational functions of degree at most (ℓ, ℓ).

Theorem 2.3 provides useful information only if one manages to choose the sets E and F well separated.

In general it is difficult to explicitly bound $Z_{\ell}(E,F)$, but some results exist for specific choices of domains, especially when E and F are real intervals, see for instance [6, 20]. The combination of these results with Theorem 2.3 proves the well-known fact that a Sylvester equation with positive definite coefficients and with a low rank right-hand side has a numerically low-rank solution.

Lemma 2.4. Let A, B be symmetric positive definite matrices with spectrum contained in $[a, b]$, $0 < a < b$. Consider the Sylvester equation $AX + XB = C$, with C of rank k. Then the solution X satisfies

$$\frac{\sigma_{1+k\ell}(X)}{\sigma_1(X)} \leq 4\rho^{-2\ell},$$

where $\rho = \exp \left(\frac{\pi^2}{2\mu(\frac{\pi}{2})} \right)$ and $\mu(\cdot)$ is the Grötzsch ring function

$$\mu(\lambda) := \frac{\pi}{2} K\left(\sqrt{1 - \lambda^2} \right), \quad K(\lambda) := \int_0^1 \frac{1}{(1 - t^2)(1 - \lambda^2 t^2)} dt.$$

Proof. Applying Theorem 2.3 with $E = [a, b]$ and $F = [-b, -a]$ we get

$$\frac{\sigma_{1+k\ell}(X)}{\sigma_1(X)} \leq Z_{\ell}(E,F).$$

Using Corollary 3.2 in [6] for bounding $Z_{\ell}(E,F)$ we get the claim. \[\square\]

Remark 2.5. A slightly weaker bound which does not involve elliptic functions is the following [6]

$$Z_{\ell}([a, b], [-b, -a]) \leq 4\rho^{-2\ell}, \quad \rho = \exp \left(\frac{\pi^2}{2 \log(4\frac{\pi}{2})} \right), \quad 0 < a < b < \infty.$$

It is easy to see that in case of Lyapunov equations with symmetric positive definite coefficients we can replace the quantity $\frac{b}{a}$ with the condition number of A.

Corollary 2.6. Let A be a symmetric positive definite matrix with condition number κ_A, and consider the Lyapunov equation $AX + XA = C$, with C of rank k. Then the solution X satisfies

$$\frac{\sigma_{1+k\ell}(X)}{\sigma_1(X)} \leq 4\rho^{-2\ell},$$

where $\rho = \exp \left(\frac{\pi^2}{2\mu(\kappa_A)} \right)$ and $\mu(\cdot)$ is defined as in Lemma 2.4.
We are now interested in proving that the solution of a Sylvester equation with low-order quasiseparable data is numerically quasiseparable. An analogous task had been addressed in [18]. The approach developed by the authors can be used for estimating either the rank of X in the case of a low-rank right-hand side or the rank of the off-diagonal blocks of X when the coefficients are hierarchical matrices. In particular, it has been shown that if the coefficients are efficiently represented by means of the hierarchical format then also the solution shares this property. The estimates provided in [18] exploit the convergence of a numerical integrating scheme for evaluating the closed integral formula (3). These bounds are however quite implicit, and are more pessimistic than the estimates provided in [33], and in [40] for the case of a low-rank right-hand side (which is the setting where all the previous results are applicable).

Here, we directly characterize the off-diagonal singular values of the solution applying Theorem 2.3 block-wise.

Theorem 2.7. Let A and B be symmetric positive definite matrices of quasiseparable rank k_A and k_B, respectively, and suppose that the spectra of A and B are both contained in the interval $[a,b]$. Then, if X solves the Sylvester equation $AX + XB = C$, with C of quasiseparable rank k_C, a generic off-diagonal block Y of X satisfies

$$\frac{\sigma_{1+k\ell}(Y)}{\sigma_1(Y)} \leq 4\rho^{-2\ell},$$

where $k := k_A + k_B + k_C$, $\rho = \exp\left(\frac{\pi^2}{2n(\pi)}\right)$ and $\mu(\cdot)$ is defined as in Lemma 2.4.

Proof. Consider the following block partitioning for the Lyapunov equation

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix} + \begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix},$$

where the off-diagonal blocks — in each matrix — do not involve any elements of the main diagonal and all the dimensions are compatible. Without loss of generality we can consider the case $Y = X_{21}$. Observe that, writing the above system block-wise we get the following relation

$$A_{21}X_{11} + A_{22}X_{21} + X_{21}B_{11} + X_{22}B_{21} = C_{21}.$$

In particular the block X_{21} solves the Sylvester equation

$$A_{22}X_{21} + X_{21}B_{11} = C_{21} - A_{21}X_{11} - X_{22}B_{21},$$

in which the right-hand side has (standard) rank bounded by k. Since A_{22} and B_{11} are principal submatrices of symmetric positive definite matrices, they are again symmetric positive definite and such that $\kappa_2(A_{22}) \leq \frac{\rho}{\pi}$ and $\kappa_2(B_{11}) \leq \frac{\rho}{\pi}$. Therefore, using Lemma 2.4 we get the claim. \qed

Remark 2.8. In the case where A, B and C are banded with bandwidth k_A, k_B and k_C, respectively, one can refine the bound given in Theorem 2.7 by using $k := \max\{k_A + k_B, k_C\}$. In fact, in this situation the matrix

$$C_{21} - A_{21}X_{11} - X_{22}B_{21}$$

has non zero elements only on the first k_A rows, on the last k_B columns and on the k_C diagonals located in the upper right corner. This provides the upper bound $\max\{k_A + k_B, k_C\}$ for its rank.

In Figure 4 we compare the bound given in Theorem 2.7 with the off-diagonal singular values of the solution. In this experiment the matrix $C \in \mathbb{R}^{n \times n}$, $n = 300$, is diagonal with random entries and $A = B = MM^T$ where $M \in \mathbb{R}^{n \times n}$ is bidiagonal with ones on the main diagonal.
and random elements – chosen in \((0, 1)\) – in the subdiagonal. The theoretical bound manages to describe the superlinear decay of the off-diagonal singular values. On the other hand, there is a significant gap between this estimate and the real behavior of the singular values. This is due to the fact that we are bounding the quantity \(Z_{\ell}(E, F)\) where \(E\) and \(F\) are the convex hull of the spectra of \(A\) and \(-B\) respectively, instead of considering the Zolotarev problem directly on the discrete spectra. This is done in order to find explicit bounds but it can cause an overestimation as outlined in [5].

A key property in the proof of Theorem 2.7 is the fact that submatrices of positive definite matrices are better conditioned than the original ones. This is an instance of a more general situation, which we can use to characterize the solution of Sylvester equations with non-normal coefficients.

Definition 2.9. Given an \(n \times n\) square matrix \(A\) we say that its field of values is the subset of the complex plane defined as follows:

\[
W(A) := \left\{ \frac{x^H Ax}{x^H x} \mid x \in \mathbb{C}^n \setminus \{0\} \right\}.
\]

One can easily check that for a normal matrix, being unitarily diagonalizable, the field of values is just the convex hull of the eigenvalues. For a general matrix, we know that the spectrum is contained in \(W(A)\), but the latter can be strictly larger than the convex hull of the former.

Lemma 2.10. Let \(P\) be an orthogonal projection, i.e., a \(n \times k\) matrix, \(k < n\), with orthonormal columns. Then, for any matrix \(A\), \(W(P^HA) \subseteq W(A)\). In particular, the field of values of any principal submatrix of \(A\) is contained in \(W(A)\).

Proof. The result directly comes by observing that

\[
\max_{y \in \mathbb{C}^k} \frac{y^H P^H A P y}{y^H y} = \max_{y \in \mathbb{C}^k} \frac{y^H P^H A P y}{y^H P P y} \overset{z=Py}{=} \max_{x \in \mathbb{C}^n} \frac{x^H Ax}{x^H x}.
\]
Lemma 2.11 (Crouzeix [15]). Let A be any $n \times n$ matrix, and $f(z)$ an holomorphic function defined on $\mathcal{W}(A)$. Then,
$$
\|f(A)\|_2 \leq C \max_{z \in \mathcal{W}(A)} |f(z)|,
$$
where C is a universal constant smaller or equal than $1 + \sqrt{2}$.

The above result is conjectured to be true with $C = 2$, and in this form is often referred to as the Crouzeix conjecture [14]. Lemma 2.10-2.11 can be exploited to obtain a generalization of Theorem 2.7.

Theorem 2.12. Let A, B be matrices of quasiseparable rank k_A and k_B respectively and such that $\mathcal{W}(A) \subseteq E$ and $\mathcal{W}(-B) \subseteq F$. Consider the Sylvester equation $AX + XB = C$, with C of quasiseparable rank k_C. Then a generic off-diagonal block Y of the solution X satisfies
$$
\frac{\sigma_{1+kl}(Y)}{\sigma_1(Y)} \leq C^2 \cdot Z_k(E, F), \quad k := k_A + k_B + k_C.
$$

Other similar extensions of this result can be obtained using the theory of K-spectral sets [2].

2.3. Quasiseparable approximability. In the previous section we shown that, when the coefficients of the Sylvester equation are quasiseparable, the off-diagonal blocks of the solution X have quickly decaying singular values. We want to show that this property implies the existence of a quasiseparable approximant.

In order to do that, we first introduce the definition of ϵ-quasiseparable matrix.

Definition 2.13. We say that A has ϵ-quasiseparable rank k if, for every off-diagonal block Y, $\sigma_{k+1}(Y) \leq \epsilon$. If the property holds for the lower (resp. upper) offdiagonal blocks, we say that A has lower (resp. upper) ϵ-quasiseparable rank k.

Remark 2.14. Notice that, if a matrix A has ϵ-quasiseparable rank k, then the same property is true for any of its principal submatrix A'. In fact, any off-diagonal block Y of A' is also an off-diagonal block of A, and therefore $\sigma_{k+1}(Y) \leq \epsilon$.

The next step is showing that an ϵ-quasiseparable matrix admits a quasiseparable approximant. First, we need the following technical Lemma where \oplus denotes the direct sum.

Lemma 2.15. Let A be a matrix with ϵ-quasiseparable rank k, Q any $(k+1) \times (k+1)$ unitary matrix. Then, $(I_n - k\ominus Q)A$ also has ϵ-quasiseparable rank k.

Proof. We prove the result for the lower off-diagonal blocks; the proof for the upper part follows the same lines. Observe that we can verify the property for every maximal subdiagonal block Y, that is Y involves the first sub-diagonal and the lower-left corner. If Y is contained in the last k rows, its rank is at most k. Otherwise, if Y includes elements from the last $j > k$ rows, we can write $Y = (I_{j-k-1} \oplus Q)\tilde{Y}$, where \tilde{Y} is the corresponding subblock of A (these two situations are depicted in Figure 5). Therefore, $\sigma_{k+1}(Y) = \sigma_{k+1}(\tilde{Y}) \leq \epsilon$.

Theorem 2.16. Let A be of ϵ-quasiseparable rank k, for $\epsilon > 0$. Then, there exists a matrix δA of norm bounded by $\|\delta A\|_2 \leq 2\sqrt{n} \cdot \epsilon$ so that $A + \delta A$ is k-quasiseparable.

Proof. We first show that there exists a perturbation δA_ℓ of norm bounded by $\sqrt{n} \cdot \epsilon$ that makes every lower off-diagonal block of A of rank k.

We prove the result by induction on the dimension of A. If $n \leq 2k + 1$ there is nothing to prove, since A has all the off-diagonal blocks of rank at most k. If $n \geq 2k + 2$, consider the following block partitioning of A:

$$
A = \begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}, \quad A_{11} \in \mathbb{C}^{(n-k-1) \times (n-k-1)}, \quad A_{22} \in \mathbb{C}^{(k+1) \times (k+1)}.
$$
Notice that $\parallel \delta A \parallel_{\infty}$ by a matrix with exact quasiseparable rank k.

By the induction step, there exists $\delta \tilde{A}_{\ell,1}$ such that $\tilde{A}_1 + \delta \tilde{A}_{\ell,1}$ has lower quasiseparable rank k and $\|\delta \tilde{A}_{\ell,1}\|_2 \leq \sqrt{n-1} \cdot \epsilon$.

Define δA_ℓ and $\delta \tilde{A}_\ell$ as follows:

$$\delta A_\ell := (I_{n-k-1} \oplus Q) \begin{bmatrix} \delta \tilde{A}_{\ell,1} \\ 0 \\ -z^T \end{bmatrix}$$

$$z = \begin{bmatrix} w_1 \\ 0 \end{bmatrix}.$$

Notice that $\|\delta A_\ell\|_2 \leq \sqrt{\|\delta \tilde{A}_{\ell,1}\|_2^2 + \|z\|_2^2} \leq \sqrt{n} \epsilon$. We claim that $A + \delta A_\ell$ is lower k-quasiseparable. With a direct computation we get

$$A + \delta A_\ell = (I_{n-k-1} \oplus Q) \begin{bmatrix} \tilde{A}_1 + \delta \tilde{A}_{\ell,1} \\ w^T - z^T \end{bmatrix}.$$

The matrix \tilde{A} is lower k-quasiseparable. In fact, every subdiagonal block of \tilde{A} is equal to a subblock of $\tilde{A}_1 + \delta \tilde{A}_{\ell,1}$, possibly with an additional last row. If the subblock does not involve the last $k+1$ columns, the additional row is zero, and so the rank does not increase. Otherwise, the smallest dimension of the block is less or equal than k, so its rank is at most k. Applying Lemma 2.15 once more with $\epsilon = 0$ we get that $A + \delta A_\ell$ is lower k-quasiseparable. Notice that, it is not restrictive to assume δA_ℓ lower triangular. In fact, if this is not the case one can consider $\text{tril}(\delta A_\ell)$ that still has the same property and has a smaller norm.

Repeating the process with A^T, we obtain an upper triangular matrix δA_u, of norm bounded by $\sqrt{n} \cdot \epsilon$, such that $A + \delta A_u$ is upper k-quasiseparable. Therefore, we have that $A + \delta A$ with $\delta A := \delta A_\ell + \delta A_u$ is k-quasiseparable, and $\|\delta A\|_2 \leq \|\delta A_\ell\|_2 + \|\delta A_u\|_2 \leq 2\sqrt{n} \cdot \epsilon$. \hfill \Box

Remark 2.17. Notice that, for $n \leq 2k + 1$, the claim of Theorem 2.16 holds by choosing $\delta A = 0$. This means that the constant $2\sqrt{n}$ can be replaced with $2\sqrt{\max\{n-2k-1,0\}}$.

The above result shows that a matrix with ϵ-quasiseparable rank of k can be well-approximated by a matrix with exact quasiseparable rank k.

Fig. 5. Off-diagonal blocks in the matrix $(I_{n-k-1} \oplus Q)A$. From the picture one sees that the Q acts on the tall block without changing its singular values, and that the small one has small rank thanks to the small number of rows.
We compute $X_i \in \mathbb{R}^{n \times n}$, $n = 300$, as the solution of $AX_i + X_i A = C_i$ for $i = 1, 2$ respectively. A is symmetric and tridiagonal with eigenvalues in $[0, 2, +\infty)$ (positive definite and well-conditioned). C_1 is tridiagonal symmetric while C_2 is a dense random symmetric quasiseparable matrix of rank 1.

2.4. Preservation of the quasiseparable and banded structures. The results of the previous section guarantee the presence of a numerical quasiseparable structure in the solution X to (1) when the spectra of A and $-B$ are well separated in the sense of the Zolotarev problem.

The preservation of a banded pattern in the solution has already been treated in [22, 32] in case of Lyapunov equations with banded data and well-conditioned coefficient matrix. Moreover, in [32], it has been shown that if A is ill-conditioned, the solution X can be written as the sum of a banded matrix and a low-rank one, so that X is quasiseparable.

It is worth noticing that the results concerning the preservation of the banded and the banded plus low-rank structures do not require the separation property on the spectra of the coefficient matrices. This means that there are cases —not covered by the results of Section 2.2— where the quasiseparability is still preserved.

In order to validate this consideration we set up some experiments concerning the solution to (1) varying the structure of the coefficients and of the right-hand side. In particular, the features of the solution we are interested in are: the distribution of the singular values σ_ℓ of the off-diagonal block $X(n_2 + 1 : n, 1 : n_2)$ and the decay in the magnitude of the elements getting far from the main diagonal. The latter quantity is represented with the distribution of the maximum magnitude along the subdiagonal ℓ as ℓ varies from 1 to n. In all the performed tests we set $n = 300$ and the solution X is computed by the Bartels-Stewart algorithm [3].

Test 1 We compute X_i as the solution of $AX_i + X_i A = C_i$ for $i = 1, 2$. The matrix A is chosen symmetric tridiagonal with eigenvalues in $[0.2, +\infty)$, in particular A is positive definite and well-conditioned. The right-hand side C_1 is taken tridiagonal symmetric with random entries while C_2 is a random dense symmetric matrix with quasiseparable rank 1.

In the first case, results from [22, 32] ensure that —numerically— the banded structure

\[\sigma_\ell \quad \text{(banded RHS)}\]

\[\text{decay in the band (banded RHS)}\]

\[\text{(dense quasisep. RHS)}\]

\[\text{decay in the band (dense quasisep. RHS)}\]

Fig. 6. We compute $X_i \in \mathbb{R}^{n \times n}$, $n = 300$, as the solution of $AX_i + X_i A = C_i$ for $i = 1, 2$ respectively. A is symmetric and tridiagonal with eigenvalues in $[0, 2, +\infty)$ (positive definite and well-conditioned). C_1 is tridiagonal symmetric while C_2 is a dense random symmetric quasiseparable matrix of rank 1.

1Notice that, in order to obtain a good hierarchical representation of the given matrices, the same structure needs to be present also in the upper off-diagonal block, and in the smaller off-diagonal blocks obtained in the recursion. Here we check just the larger off-diagonal block for simplicity; in the generic case, one may expect the quasiseparable rank to be given by the rank of this block.
SOLVING RANK STRUCTURED SYLVESTER AND LYAPUNOV EQUATIONS

Fig. 7. We compute the solution X of $AX +XA = C$ and we analyze the off-diagonal block $X(n+1:n, 1:n)$. $A = \text{trid}(-1,2,1) - 1.99 \cdot I$ (indefinite and ill-conditioned) while C is a random diagonal matrix.

Fig. 8. We compute $X_i \in \mathbb{R}^{n \times n}$, $n = 300$, as the solution of $AX_i - X_iB = C_i$ for $i = 1, 2$, respectively. A and B are symmetric and tridiagonal with eigenvalues in $[0.2, 14]$ and $[0.5, 14]$ (well conditioned but without separation of the spectra). C_1 is tridiagonal symmetric while C_2 is a dense random symmetric quasiseparable matrix of rank 1.

is maintained in the solution and this is shown in Figure 6. Notice that the decay in the off-diagonal singular values is much stronger than the decay in the bandwidth so that, in this example, it is more advantageous to look at the solution as a quasiseparable matrix instead of a banded one. Theorem 2.7 guarantees the solution to be quasiseparable also in the second case whereas the banded structure is completely lost.

Test 2 We compute the solution X of $AX +XA = C$. We consider $A = \text{trid}(-1,2,1) - 1.99 \cdot I$, so that it is indefinite and ill-conditioned, and we set C equal to a random diagonal matrix. As highlighted in Figure 7, both the quasiseparable and the band structure are
We compute the solution \(X \in \mathbb{R}^{n \times n} \), \(n = 300 \), of \(AX +XA = C \). \(A = \text{trid}(-1, 2, 1) \) (positive definite and ill-conditioned) while \(C \) is a random diagonal matrix.

Test 3 We compute \(X_1 \) as the solution of \(AX_1 +X_1B = C_1 \) for \(i = 1, 2 \). The matrix \(A \) and \(-B \) are chosen symmetric and tridiagonal with eigenvalues in \([0.2, 14]\) and \([0.5, 14]\), so both well conditioned but with interlaced spectra. The right-hand side \(C_1 \) is chosen tridiagonal symmetric while \(C_2 \) is set equal to a random dense symmetric matrix with quasiseparable rank 1. The results in Figure 8 suggest that both the structures are preserved in the first case and lost in the second case. Once again, in the case of preservation, the decay in the off-diagonal singular values is stronger than the decay in the bandwidth. Notice that, when present, the quasiseparability of the solution cannot be predicted by means of Theorem 2.7, but results from [22,32] can be employed to estimate the banded structure of the solution. This test shows how the banded structure is a very particular instance of the more general quasiseparable one.

Test 4 We compute the solution \(X \) of \(AX +XA = C \). We chose \(A = \text{trid}(-1, 2, 1) \), so it is positive definite and ill-conditioned, and we set \(C \) equal to a random diagonal matrix. Figure 9 clearly shows that quasiseparability is preserved while the banded structure is not present in the solution \(X \). In this case, the quasiseparability of the solution can be shown by Theorem 2.7. Equivalently, one can exploits arguments in [32] where it has been shown that the solution can be represented as the sum of a banded matrix and a low-rank one so that \(X \) is quasiseparable.

To summarize, the situations where we know that the quasiseparable structure is present in the solution of (1) are:

(i) \(A, B \) and \(C \) quasiseparable and spectra of \(A \) and \(-B \) well separated

(ii) \(A, B \) and \(C \) banded and well-conditioned.

On the other hand, for using the computational approach of Section 4 we need the spectra of \(A \) and \(-B \) to be separated by a line.

2We consider the spectra to be well separated if Theorem 2.7 can be used to prove the quasiseparability. As we have seen, this also includes cases where the spectra are close, such as when they are separated by a line.
3. HODLR-matrices. An efficient way to store and operate on matrices with an off-diagonal data-sparse structure is to use hierarchical formats. There is a vast literature on this topic. See, e.g., [11, 23, 25] and the references therein. In this work, we rely on a particular subclass of the set of Hierarchical representations sometimes called Hierarchically off-diagonal low-rank (HODLR), which can be described as follows; let $A \in \mathbb{C}^{n \times n}$ be a k-quasiseparable matrix, we consider the 2×2 block partitioning

$$A = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix}, \quad A_{11} \in \mathbb{C}^{n_1 \times n_1}, \quad A_{22} \in \mathbb{C}^{n_2 \times n_2}$$

where $n_1 := \lfloor \frac{n}{2} \rfloor$ and $n_2 := \lceil \frac{n}{2} \rceil$. Since the antidiagonal blocks A_{12} and A_{21} do not involve any element of the main diagonal of A, they have rank at most k, so they are represented as low-rank outer products. Then, the strategy is applied recursively on the diagonal blocks A_{11} and A_{22}. The process stops when the diagonal blocks reach a minimal dimension n_{min}, at which they are stored as full matrices. The procedure is graphically described in Figure 10. If n_{min} and k are negligible with respect to n then the storage cost is linear-polylogarithmic with respect to the size of the matrix.

It is natural to compare the storage required by the HODLR representation and the truncation of banded structures, when they are both present in the solution. Consider the following test: we compute the solution X of a Lyapunov equation with a tridiagonal well-conditioned coefficient matrix A and a diagonal right hand-side with random entries. As discussed in the previous section, the solution has a fast decay in the magnitude of the entries as we get far from the main diagonal. We compare the accuracy obtained when the solution X is stored in the HODLR format with different thresholds in the low-rank truncation of the off-diagonal blocks, and when a fixed number of diagonals are memorized. In particular, the accuracy achieved keeping $5k$ diagonals and truncating the SVD of the off-diagonal blocks using thresholds 10^{-k}, for $k = 0, \ldots, 16$, is illustrated in Figure 11. We can see that the two approaches have comparable performances for this example. The experiment is repeated using $A = \text{trid}(-1, 2, -1)$ highlighting the non feasibility of the sparse format in this case as the banded structure is not preserved in the solution.

![Fig. 10. The behavior of the block partitioning in the HODLR-matrix representation. The blocks filled with grey are low rank matrices represented in a compressed form, and the diagonal blocks in the last step are stored as dense matrices.](image-url)
We show the accuracy obtained approximating the solution \(X \) to a Lyapunov equation keeping a certain number of diagonals and by truncating the HODLR representations with \(n_{\min} = 50 \). The plot reports the accuracy obtained with respect to the memory consumption when \(A \) is banded and well conditioned (left), and for \(A = \text{tridiag}(-1, 2, -1) \) (right). The matrices have dimension \(n = 2048 \), the storage cost for the dense matrix \(X \) is 32678 KB.

![Graph showing the accuracy obtained approximating the solution X to a Lyapunov equation with memory consumption](image)

<table>
<thead>
<tr>
<th>Operation</th>
<th>Computational complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix-vector multiplication</td>
<td>(O(kn \log(n)))</td>
</tr>
<tr>
<td>Matrix-matrix addition</td>
<td>(O(k^2n \log(n)))</td>
</tr>
<tr>
<td>Matrix-matrix multiplication</td>
<td>(O(k^2n \log^2(n)))</td>
</tr>
<tr>
<td>Matrix-inversion</td>
<td>(O(k^2n \log^2(n)))</td>
</tr>
<tr>
<td>Solve linear system</td>
<td>(O(k^2n \log^2(n)))</td>
</tr>
</tbody>
</table>

Table 1

Computational complexity of the HODLR-matrix arithmetic. The integer \(k \) is the maximum of the quasiseparable ranks of the inputs while \(n \) is the size of the matrices.

available at https://github.com/numpi/hm-toolbox. The basic linear algebra operations (sum, product and inversion, as well as LU factorization) are implemented by means of block-wise operations. The off-diagonal blocks are represented as low-rank outer products, and after each arithmetic operation the representation is updated using an economy size SVD which has a linear cost in the size of the matrix. This guarantees that we use an optimal representation at each step. For a complete description of the employed algorithms we refer to [24, 29]. The computational costs of these procedures are reported in Table 1.

4. Solving the Sylvester equation. In this section we show how to deal with the issue of solving (1) taking advantage of the quasiseparable structure of the data. We first discuss the matrix sign iteration and then we show how to efficiently evaluate the integral formula (3). Both these algorithms are implemented in the \texttt{hm-toolbox}.

4.1. Matrix Sign Function. In [19] Grasedyck, Hackbusch and Khoromskij first showed how to efficiently solve Sylvester equations whose coefficients are representable as hierarchical matrices with low-rank off-diagonal blocks. The procedure consists in plugging the hierarchical matrix arithmetic into the algorithm proposed by Roberts in [36], which requires the computation of the matrix sign function. More precisely, Roberts’ algorithm relies on the following result.
Theorem 4.1. Let $A, B \in \mathbb{C}^{n \times n}$ be positive definite, then the solution X of (1) verifies

\[X = \frac{1}{2}N_{12}, \]

where

\[
\begin{bmatrix}
N_{11} & N_{12} \\
0 & N_{22}
\end{bmatrix} := \text{sign}\left(\begin{bmatrix}
A & C \\
0 & -B
\end{bmatrix}\right),
\]

and — given a square matrix M — we define $\text{sign}(M) := \frac{1}{2\pi i} \int_{\gamma} \left(zI - M \right)^{-1} dz$ with γ a path of index 1 around the eigenvalues of M with positive real part.

The sign function of a square matrix $S := \text{sign}(M)$ can be approximated applying the Newton’s method to the equation $X^2 - I = 0$ with starting point $S_0 = M$. This requires to compute the sequence

\[S_0 = M, \quad S_{i+1} = \frac{1}{2}(S_i + S_i^{-1}), \]

which converges to S, provided that M has no eigenvalues on the imaginary axis [19]. Rewriting (5) block-wise, applied to $M := \begin{bmatrix} A & C \\ 0 & -B \end{bmatrix}$, yields

\[A_{i+1} = \frac{1}{2}(A_i + A_i^{-1}), \quad B_{i+1} = \frac{1}{2}(B_i + B_i^{-1}), \quad C_{i+1} = \frac{1}{2}(A_i^{-1}C_iB_i^{-1} + C_i), \]

where $A_0 = A, B_0 = B, C_0 = C$ and $C_{i+1} \to 2X$. As stopping criterion we used the condition

\[\|A_{i+1} - A_i\|_F + \|B_{i+1} - B_i\|_F + \|C_{i+1} - C_i\|_F \leq \sqrt{\epsilon}, \]

where ϵ is the selected accuracy. This can be heuristically justified saying that since Newton is quadratically convergent, if the above quantity is a good estimate of the error of the previous step then we have already obtained the solution at the required precision.

In [19] the computation of (6) is performed using the hierarchical matrix arithmetic. When an appropriate scaling is performed during the iteration, convergence is reached in few steps [27]. The scaling strategy is crucial to keep the number of iterations of the Newton scheme low and it consists in applying the iteration steps to the matrix

\[M_\alpha := \begin{bmatrix} \alpha A & C \\ 0 & -\alpha^{-1}B \end{bmatrix}. \]

The scaling parameter $\alpha > 0$ can be optimally chosen at every iteration, as shown in [27]. When the spectra of A and B are real, the optimal choice is $\alpha_i = \sqrt{\|S_i^{-1}\|_F / \|S_i\|_F}$. However, if hierarchical matrix arithmetic is employed, the scaling strategy may introduce a non-negligible error propagation as outlined in [19].

A good trade-off is to scale only in the first iteration. This does not affect the accuracy of the iterative steps if the matrix S_0 can be exactly represented in the hierarchical format [19, Remark 5.3], and allows to keep the number of iterations proportional to $\log(\max\{\kappa(A), \kappa(B)\})$ [19]. For instance, in the case of $A = B$ being the discrete Laplacian operator, which has a condition number that grows as $O(n^2)$, the latter choice makes the computational cost of the approach $O(n \log^3(n))$.

4.2. Solution by means of the integral formula. We now propose to apply a quadrature scheme for evaluating the semi-infinite integral in (3). We perform the change of variable \(x = f(\theta) := L \cdot \cot^2(\frac{\theta}{2}) \) where \(\theta \) is the new variable and \(L \) is a parameter chosen to optimize the convergence. This is a very common strategy for the approximation of integral over infinite domain, which is discussed in detail by Boyd in [12]. We transform (3) into

\[
X = 2L \int_0^\pi \frac{\sin(\theta)}{(1 - \cos(\theta))^2} e^{-Af(\theta)}Ce^{-Bf(\theta)}d\theta,
\]

which can be approximated by a Gauss-Legendre quadrature scheme. Other quadrature formulas, as Clenshaw-Curtis rules, can be employed. However, as discussed by Trefethen in [42], the difference between Gauss-Legendre and Clenshaw-Curtis formulas is small. Moreover, in most of our tests, Gauss-Legendre schemes showed some slight computational advantages over Clenshaw-Curtis rules as the cost of computing the integration points is negligible.

The quadrature scheme yields an approximation of (7) of the form

\[
X \approx \sum_{j=1}^{m} \omega_j \cdot e^{-Af(\theta_j)}Ce^{-Bf(\theta_j)},
\]

where \(\theta_j \) are the Legendre points, \(\omega_j = 2Lw_j \cdot \frac{\sin(\theta_j)}{(1 - \cos(\theta_j))^2} \) and \(w_j \) are the Legendre weights.

Finally, we numerically approximate the quantities \(e^{-Af(\theta_j)} \) and \(e^{-Bf(\theta_j)} \), which represents the dominant cost of the algorithm. For this task, we have investigated two rational approximations, which have been implemented in our toolbox.

Padé The matrix exponential \(e^A \) can be well approximated by a diagonal Padé approximant of degree \((d,d)\) if \(\|A\| \) is small enough\(^3\). We thus satisfy this condition by using the relation \(e^A = (e^{2^{-k}A})^{2^{k}} \), a technique typically called “scaling and squaring”. The Padé approximant is known explicitly for all \(d \). See, e.g., [27, Chapter 10]. In this case the evaluation of the matrix exponential requires \(2d + 3 + k \) matrix multiplication and one inversion where \(k = \lceil \log_2 \|A\| \rceil \). This strategy is also implemented in the MATLAB function \texttt{expm}.

Chebyshev Since \(A \) is supposed to be positive definite, the matrix exponential \(e^{-tA} \) can be approximated by a rational Chebyshev function that is uniformly accurate for every positive value of \(t \), as described by Popolizio and Simoncini in [34]. The rational function is of the form

\[
e^{-tA} \approx \frac{r_1}{x - s_1} + \ldots + \frac{r_d}{x - s_d}.
\]

Given the poles and the weights in the above expansion, this strategy requires \(d \) inversions and additions. See, e.g., [32] for a numerical procedure to compute the poles and weights \(s_1, r_1 \).

Remark 4.2. In our tests, evaluating the matrix exponential \(e^{-f(\theta)A} \) by means of the Padé approximant performs better when \(f(\theta)A \) has a moderate norm. When \(f(\theta)\|A\|_2 \) is large the squaring phase becomes the bottleneck of the computation. In this case we rely on the rational Chebyshev expansion, which has a cost independent of \(\|A\|_2 \).

The procedure is summarized in Algorithm 1. The evaluations of the matrix exponentials \texttt{EXPM}(-\(f \cdot A \)), \texttt{EXPM}(-\(f \cdot B \)) are performed according to the strategy outlined in Remark 4.2.

\(^3\)In practice we have precomputed the points for the usual cases, so that an explicit computation of them is never carried out in the numerical experiments.

\(^4\)The exact choice of the ball where Padé is accurate enough depends on the desired accuracy and the value of \(d \).
Algorithm 1 Solution of a Sylvester equation by means of the integral formula

1: procedure lyap_integral(A,B,C,m) \triangleright Solves $AX + XB = C$ with m integration points
2: $L \leftarrow 100$ \quad \triangleright This can be tuned to optimize the accuracy
3: $[w,\theta] \leftarrow \text{GAUSSLEGENDRE_PTS}(m)$ \quad \triangleright Integration points and weights on $[0,\pi]$
4: $X \leftarrow 0_{n \times n}$
5: for $i = 1, \ldots, m$ do
6: $f \leftarrow L \cdot \cot\left(\frac{\theta_i}{2}\right)$
7: $X \leftarrow X + w_i \cdot \sin\left(\frac{\theta_i}{2}\right) \cdot \expm(-f \cdot A) \cdot C \cdot \expm(-f \cdot B)$
8: end for
9: $X \leftarrow 2L \cdot X$
10: end procedure

5. Solving certain generalized equations. The solution of certain generalized Sylvester equations can be recast in terms of standard Sylvester ones. The results in Section 2 thus suggest the presence of a quasiseparable structure also in the solution of this kind of equations. For the sake of simplicity, we focus on generalized Lyapunov equations, but the approach we are going to present can be easily extended to the Sylvester case as well. We consider equations of the form

\begin{equation}
AX +XA + \sum_{j=1}^{s} M_j XM_j^T = C, \quad A, X, C, M_j \in \mathbb{R}^{n \times n},
\end{equation}

where A is symmetric positive definite, both A and C are quasiseparable and M_j is low rank for $j = 1, \ldots, s$. We generalize Theorem 2.7 to this framework.

Corollary 5.1. Let A be a symmetric positive definite matrix of quasiseparable rank k_A and let κ_A be its condition number. Moreover, consider the generalized Lyapunov equation $AX +XA + \sum_{j=1}^{s} M_j XM_j^T = C$, with M_j of rank r_j, $j = 1, \ldots, s$, and C of quasiseparable rank k_C. Then a generic off-diagonal block Y of the solution X satisfies

\[
\frac{\sigma_1 + k \ell(Y)}{\sigma_1(Y)} \leq 4 \rho^{-2\ell},
\]

where $k := 2k_A + k_C + \sum_{j=1}^{s} r_j$, $\rho = \exp\left(\frac{\pi^2}{4\mu(\kappa_A)}\right)$ and $\mu(\cdot)$ is defined as in Lemma 2.4.

Proof. The solution X satisfies $AX +XA = C - \sum_{j=1}^{s} M_j XM_j^T$ where the right hand side has quasiseparable rank $k_C + \sum_{j=1}^{s} r_j$. By applying Theorem 2.7 to the latter we get the claim. \qed

Equation (9) can be rephrased as a $n^2 \times n^2$ linear system by Kronecker transformations

\[
(\mathcal{L} + \mathcal{M}) \text{vec}(X) = \text{vec}(C), \quad \mathcal{L} := I \otimes A + A \otimes I, \quad \mathcal{M} := \sum_{j=1}^{s} M_j \otimes M_j.
\]

We assume that \mathcal{L} is invertible, and such that $M_j = U_j V_j^T$ with $U_j, V_j \in \mathbb{R}^{n \times r_j}$, $j = 1, \ldots, s$. In particular, the matrix $\mathcal{M} \in \mathbb{R}^{n^2 \times n^2}$ is of rank $r := \sum_{j=1}^{s} r_j^2$ and it can be factorized as

\[
\mathcal{M} = UV^T = \left[U_1 \otimes U_1 \quad \ldots \quad U_s \otimes U_s \right] \cdot \left[V_1 \otimes V_1 \quad \ldots \quad V_s \otimes V_s \right]^T.
\]
Plugging this factorization into the Sherman-Morrison-Woodbury formula we get
\[(10) \quad \text{vec}(X) = \mathcal{L}^{-1}\text{vec}(C) - \mathcal{L}^{-1}U (I_r + V^T \mathcal{L}^{-1} U)^{-1} V^T \mathcal{L}^{-1}\text{vec}(C).\]

See, e.g., [7]. As shown in [35, Section 4], the solution of (9) by (10) requires the inversion of a $r \times r$ linear system and the solution of $r + 1$ Lyapunov equations of the form
\[AZ +ZA = C, \quad AZ_{ij} + Z_{ij}A = \tilde{U}_{ij}, \quad \text{for } i = 1, \ldots, s, j = 1, \ldots, r^2,\]
where $\tilde{U}_{ij} = \text{vec}^{-1}((U_i \otimes U_j)(;j))$ has rank 1. Since A and C are quasiseparable, the matrix Z can be computed by one of the method presented in the previous sections, whereas well-established low-rank methods can be employed in computing Z_{ij}'s. In our tests we have used the method based on extended Krylov subspaces discussed in [38]. The procedure is illustrated in Algorithm 2.

Algorithm 2 Solution of a generalized Lyapunov equation (low-rank \mathcal{M}) by (10)

1: procedure SMW_GENLYAP(A,C,U,V)
2: $\hat{X} \leftarrow A\hat{X} + \hat{X}A = C$
3: for $h = 1 : s$
4: $\hat{X}_h \leftarrow V_h^T \hat{X} V_h$
5: end for
6: for $h = 1 : s$, $i, j = 1 : r_h$
7: $U_{ij}^h \leftarrow U_h(;;i)U_h(;;j)^T$
8: $Z_k \leftarrow AZ_k + Z_kA = U_{ij}^h$
9: for $m = 1 : s$
10: $W_{mk} \leftarrow V_m^T Z_k V_m$
11: end for
12: $[Z_{1+\sum_{i=1}^{h-1} r_i^2} \ldots, Z_{\sum_{i=1}^{h} r_i^2}] = Z_h^{(u)} Z_h^{(v)^T}$
13: end for
14: $R \leftarrow \left(I_r + \left[\text{vec}(W_{mk}) \right]_{m=1,\ldots,s} \right)^{-1}$
15: $\tilde{Z} \leftarrow R \cdot \left[\text{vec}(\hat{X}_1) ; \ldots ; \text{vec}(\hat{X}_s) \right]$
16: $S \leftarrow \sum_{h=1}^{s} Z_h^{(u)} \cdot \tilde{Z}_{rh} \cdot Z_h^{(v)^T}$ \> $\tilde{Z}_{rh} := \text{reshape}(\tilde{Z}(1 + \sum_{i=1}^{h-1} r_i^2 : \sum_{i=1}^{h} r_i^2), r_h, r_k)$
17: $X \leftarrow \hat{X} - S$
18: return X
19: end procedure

Another interesting class of generalized Lyapunov equations consists of equation (9) with $\rho(\mathcal{L}^{-1} \mathcal{M}) < 1$, where $\rho(\cdot)$ denotes the spectral radius. For this kind of problems, the matrices M_j do not need to be low-rank, but we suppose they all have a small quasiseparable rank. In this case, one can consider the Neumann series expansion of $(\mathcal{L} + \mathcal{M})^{-1}$ as done in [28]. More precisely, it holds
\[(\mathcal{L} + \mathcal{M})^{-1} = (I + \mathcal{L}^{-1} \mathcal{M})^{-1} \mathcal{L}^{-1} = \sum_{j=0}^{\infty} (-1)^j (\mathcal{L}^{-1} \mathcal{M})^j \mathcal{L}^{-1},\]
so that the solution X to (9) verifies
\[(11) \quad X = \sum_{i=0}^{\infty} \hat{Z}_i, \quad \begin{cases} AZ_0 + Z_0A = C, \\ AZ_{i+1} + Z_{i+1}A = -\sum_{j=1}^{i} M_j Z_i M_j^T. \end{cases} \]
A numerical solution can thus be computed truncating the series in (11), that is $X \approx X_\ell := \sum_{i=0}^{\ell} Z_i$ where the number of terms ℓ is related to the accuracy of the computed solution. If ℓ is moderate, that is $\rho(L^{-1}M) \ll 1$, X_ℓ is the sum of few quasiseparable matrices Z_i and it is thus quasiseparable. Notice that the quasiseparability of M_j is necessary to maintain a quasiseparable structure in the right-hand sides $-\sum_{j=1}^{s} M_j Z_i M_j^T$, $i = 0, \ldots, \ell - 1$.

6. Numerical Experiments. An extensive computational comparison among different approaches for quasiseparable Sylvester equations – as well as their implementation – is still lacking in the literature, and in this section we perform some numerical experiments trying to fill this gap. To this end, we employ the MATLAB `hm-toolbox` that we have developed while writing this paper. The toolbox — which includes all the tested algorithms — is now freely available at https://github.com/numpi/hm-toolbox. All the timings reported are relative to MATLAB 2016a run on a machine with a CPU running at 3066 MHz, 12 cores\(^5\), and 192GB of RAM.

Each of the following sections contains a specific example. Some of these are artificially constructed to describe particular cases; others present real or realistic applications, arising from PDEs. We start by describing the classical Laplacian case, and then proceed comparing our results with a 2D heat equation arising from practical applications. Eventually, we show how to solve some partial integro-differential equations.

To test the accuracy of our approach we report the relative residual on the linearized system of the computed solution. If S is the coefficient matrix of the linearized system we measure the relative residual, $r(S, X) := \frac{\|S \cdot x - c\|_2}{\|S\|_F \cdot \|x\|_2}$, $x = \text{vec}(X)$, $c = \text{vec}(C)$, which can be easily shown to be the relative backward error in the Frobenius norm [26]. When we deal with (standard) Sylvester problems, we have $S = I \otimes A + B \otimes I$ with A and B symmetric. This allows to use the — easier to compute — bound $\|S\|_F^2 \geq n(\|A\|_F^2 + \|B\|_F^2)$, so that

$$r(S, X) = \frac{\|S \cdot x - c\|_2}{\|S\|_F \cdot \|x\|_2} \leq \frac{\|AX + XB - C\|_F}{\|I \otimes A + B \otimes I\|_F \cdot \|X\|_F} \leq \frac{\|AX + XB - C\|_F}{\sqrt{n(\|A\|_F^2 + \|B\|_F^2) \cdot \|X\|_F}},$$

and we actually compute and check the right-hand side in the above expression.

In case of a generalized Lyapunov equation, the system matrix is of the form $S := I \otimes A + B \otimes I + M \otimes M$ and the relative residual norm is bounded using the inequality $\|S\|_F \geq \|I \otimes A + B \otimes I\|_F - \|M\|_F^2$. Notice that this never requires to form the large system matrix S, and can be evaluated using the arithmetic of hierarchical matrices when considering large scale problems.

6.1. The Laplace equation. We consider the 2-dimensional (2D) Laplace equation on the unit square $\Omega = [0, 1]^2$

$$\begin{cases} -\Delta u = f(x, y) & (x, y) \in \Omega, \\ u(x, y) = 0 & (x, y) \in \partial \Omega. \end{cases} \quad \Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}. \quad \text{\cite{All available cores have only been used to run the parallel implementation of the solver based on the integral formula. All the other solvers did not exploit the parallelism in the machine.}
We construct the matrix A representing the finite difference discretization of the second-order derivative in the above equation on a $n \times n$ grid using centred differences, so that we obtain the equation $AX + XA = C$, with

$$A = \frac{1}{h^2} \begin{bmatrix} 2 & -1 & & & \\ -1 & \ddots & \ddots & & \\ & \ddots & \ddots & -1 & \\ & & -1 & 2 \end{bmatrix}, \quad h = \frac{1}{n-1},$$

and C contains the samplings of the function $f(x,y)$ on our grid. We consider the case where $f(x,y) = \log(1 + |x - y|)$. As already discussed, the latter choice provides a right hand-side which is numerically quasiseparable. This is due to the fact that in the sub-domains corresponding to the off-diagonal blocks, f is analytic and it is well approximated by a sum of few separable functions. One can also exploit this property in order to retrieve the HODLR representation of C; the sampling of a separable function $g(x) \cdot h(y)$ on a square grid provides a matrix of rank 1 and the sampling of g and h yield its generating factors. The computation of the expansion of f in the sub-domains has been performed by means of Chebfun2 [41].

Using hm-toolbox, the equation can be solved with a few MATLAB instructions, as shown in Figure 12 for the case $n = 2048$. The function hmoption can be used to set some options for the toolbox. In this case we set the relative threshold for the off-diagonal truncation to 10^{-12}, and the minimum size of the blocks to 256. The class hm implements the hierarchical structure, and here we initialize it using a sparse tridiagonal matrix. Invoking lyap function uses our implementation specialized for H-matrices. In this example, we used the sign iteration, which is the default method for the implementation of lyap. The quasiseparable rank of the solution (obtained using the function qsrank) is 13, which is reasonably small compared to the size of the problem.

In Table 2 and Figure 13 we show the timings for the solution of this problem for different grid sizes. We stress that, since full matrices are never represented, a large amount of RAM is not needed to run the solver. Nevertheless, this is needed when using lyap from the Matlab Control Toolbox, so we have comparisons with the latter only for $n \leq 4096$.

The results in Table 2 show that the timings are just a little more than linear in the size of the problem. Figure 13 illustrates that the complexity is in fact $O(n \log^2 n)$, for the methods
SOLVING RANK STRUCTURED SYLVESTER AND LYAPUNOV EQUATIONS

Table 2

<table>
<thead>
<tr>
<th>n</th>
<th>T_{Sign}</th>
<th>T_{Exp}</th>
<th>T_{ParExp}</th>
<th>R_{Exp}</th>
<th>R_{ParExp}</th>
<th>T_{lyap}</th>
<th>T_{lyap}</th>
</tr>
</thead>
<tbody>
<tr>
<td>512</td>
<td>0.71</td>
<td>3.69</td>
<td>1.52</td>
<td>3.92 x 10^{-9}</td>
<td>13</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>1,024</td>
<td>1.73</td>
<td>9.37</td>
<td>3.21</td>
<td>8.71 x 10^{-10}</td>
<td>14</td>
<td>7.52</td>
<td></td>
</tr>
<tr>
<td>2,048</td>
<td>4.76</td>
<td>22.78</td>
<td>6.34</td>
<td>7.21 x 10^{-10}</td>
<td>14</td>
<td>80.15</td>
<td></td>
</tr>
<tr>
<td>4,096</td>
<td>13.33</td>
<td>57.15</td>
<td>14.51</td>
<td>5.73 x 10^{-11}</td>
<td>12</td>
<td>523.16</td>
<td></td>
</tr>
<tr>
<td>8,192</td>
<td>35.93</td>
<td>136.42</td>
<td>31.82</td>
<td>9.23 x 10^{-12}</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16,384</td>
<td>92.83</td>
<td>334.75</td>
<td>70.28</td>
<td>3.14 x 10^{-12}</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32,768</td>
<td>245.82</td>
<td>790.28</td>
<td>154.65</td>
<td>1.42 x 10^{-12}</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65,536</td>
<td>609.86</td>
<td>1,825.2</td>
<td>351.82</td>
<td>8.86 x 10^{-13}</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.31 x 10^{5}</td>
<td>1,474.56</td>
<td>4,122.17</td>
<td>763.05</td>
<td>2.03 x 10^{-12}</td>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Timings and features of the solution of the Laplacian equation for different grid sizes. For the methods based on the HODLR arithmetic the minimum block size is set to 256 and the relative threshold in truncation is $\epsilon = 10^{-12}$. For small problems we also report the timings of the lyap function included in the Control Toolbox in MATLAB. The relative residuals of the Lyapunov equation are reported as well for the different methods. The residuals for the parallel version of the method based on the exponential have been omitted since they coincide with the ones of the sequential one. In fact, the two algorithms perform exactly the same computations.

Fig. 13. Timings for the solution of the Laplacian equation for different grid sizes. The performances of the different algorithms are reported. The dashed line reports the theoretical complexity of $O(n \log^2 n)$.

that evaluate the integral formula (3).

The approach based on the sign iteration is faster than the one that exploits the integral formula. Nevertheless the latter has a slightly better asymptotic cost since it requires $O(n \log^2(n))$ flops instead of $O(n \log^3(n))$. Another advantage of the integral formula is the easy parallelization. In fact, the evaluation of the integrand at the nodes can be carried out in a parallel fashion on different machines or cores. In our tests we used 32 integration nodes so the maximum gain in the performances can be obtained using 32 cores. The results reported in Table 2 confirm the acceleration of the parallel implementation when using 12 cores.

6.2. The 2D heat equation. We consider now a case of more practical interest, which has been described and studied by Haber and Verhaegen in [21, 22]. They study a particular discretization for the 2D heat equation that gives rise to a Lyapunov equation with banded matrices. Let $S_m = \text{trid}(1, 0, 1)$ be the $m \times m$ matrix with 1 on the super and subdiagonal and zeros elsewhere, and let $1_m \in \mathbb{C}^m$ be the vector with all the entries equal to 1. The resulting
and on the integral formula, so we have only reported it once. In this example the quasiseparable rank of the solution coincides for the implementation based on the sign function and the HODLR arithmetic the minimum block size is set to each \(m \).

For the details on how these matrices are obtained from the discretization phase we refer to \([21]\).

Lyapunov equation involves the coefficient matrices

\[
A = I_m \otimes (aI_6 + eS_6) + eS_m \otimes I, \quad C = I_m \otimes (0.2 \cdot 1_6 1_6^T + 0.8I) + 0.1S_m \otimes (1_6 1_6^T).
\]

For the details on how these matrices are obtained from the discretization phase we refer to \([21]\).

The parameters \(a \) and \(e \) are set to \(a = 1.36 \) and \(e = -0.34 \). These two matrices are banded, with bandwidth 6 and 11, respectively. However, a careful look shows that the quasiseparable rank of \(A \) is 6, but the one of \(C \) is 1: the quasiseparable representation can exploit more structure than the banded one in this problem. We have solved this problem for different values of \(m \), from \(m = 128 \) to \(m = 32768 \).

For each \(m \), the size of the associated matrices \(A \) and \(P \) is \(6m \times 6m \).

We have also compared our implementation to the (sparse) conjugate gradient implemented in matrix form, as proposed in \([32]\). One can see that, at the \(k \)-th iteration of the CG method the solution in matrix form has a bandwidth proportional to \(k \); when the method converges in a few steps, this can provide an accurate banded approximation to the solution in linear time. In fact, this problem is well-conditioned independently of \(n \), and therefore is the ideal candidate for the

<table>
<thead>
<tr>
<th>(n)</th>
<th>(T_{\text{Sign}})</th>
<th>(R_{\text{Sign}})</th>
<th>(T_{\text{ParExp}})</th>
<th>(R_{\text{ParExp}})</th>
<th>(\text{QS rk})</th>
<th>(T_{\text{SparseCG}})</th>
<th>(R_{\text{SparseCG}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>768</td>
<td>1.06</td>
<td>8.95 \cdot 10^{-13}</td>
<td>1.96</td>
<td>9.44 \cdot 10^{-12}</td>
<td>13</td>
<td>1.18</td>
<td>2.96 \cdot 10^{-11}</td>
</tr>
<tr>
<td>1,536</td>
<td>2.74</td>
<td>1.42 \cdot 10^{-12}</td>
<td>4.99</td>
<td>4.92 \cdot 10^{-12}</td>
<td>12</td>
<td>2.49</td>
<td>2.81 \cdot 10^{-11}</td>
</tr>
<tr>
<td>3,072</td>
<td>8.29</td>
<td>9.73 \cdot 10^{-12}</td>
<td>13.12</td>
<td>1.53 \cdot 10^{-11}</td>
<td>12</td>
<td>4.79</td>
<td>2.67 \cdot 10^{-11}</td>
</tr>
<tr>
<td>12,288</td>
<td>19.3</td>
<td>4.94 \cdot 10^{-12}</td>
<td>32.21</td>
<td>1.08 \cdot 10^{-11}</td>
<td>10</td>
<td>9.23</td>
<td>2.57 \cdot 10^{-11}</td>
</tr>
<tr>
<td>24,576</td>
<td>277.8</td>
<td>1.09 \cdot 10^{-11}</td>
<td>445.03</td>
<td>1.62 \cdot 10^{-11}</td>
<td>10</td>
<td>67.18</td>
<td>3.03 \cdot 10^{-11}</td>
</tr>
<tr>
<td>49,152</td>
<td>589.51</td>
<td>3.87 \cdot 10^{-11}</td>
<td>1,092.1</td>
<td>2.69 \cdot 10^{-11}</td>
<td>10</td>
<td>121.31</td>
<td>2.87 \cdot 10^{-11}</td>
</tr>
<tr>
<td>98,304</td>
<td>1,312.6</td>
<td>1.05 \cdot 10^{-10}</td>
<td>2,677.1</td>
<td>8.16 \cdot 10^{-11}</td>
<td>9</td>
<td>213.08</td>
<td>2.75 \cdot 10^{-11}</td>
</tr>
</tbody>
</table>

Table 3

Timings and features of the solution of the heat equation for different grid sizes. For the methods based on the HODLR arithmetic the minimum block size is set to 256 and the relative threshold in truncation is \(\epsilon = 10^{-12} \). In this example the quasiseparable rank of the solution coincides for the implementation based on the sign function and on the integral formula, so we have only reported it once.

![Fig. 14](image)

On the left, the memory consumption in storing the solution of the heat equation computed with \(\text{ParExp} \) and \(\text{SparseCG} \), respectively. The first exploit the HODLR representation while the second one makes use of the sparse format. The numerical values reported are in KB (Kilobytes). On the right, timings for the solution of the heat equation.

\(n \) is 6, but the one of \(\text{bandwidth} \ 6 \) and 11, respectively. However, a careful look shows that the quasiseparable rank of \(A \) is 6, but the one of \(C \) is 1; the quasiseparable representation can exploit more structure than the banded one in this problem. We have solved this problem for different values of \(m \), from \(m = 128 \) to \(m = 32768 \).

We have also compared our implementation to the (sparse) conjugate gradient implemented in matrix form, as proposed in \([32]\). One can see that, at the \(k \)-th iteration of the CG method the solution in matrix form has a bandwidth proportional to \(k \); when the method converges in a few steps, this can provide an accurate banded approximation to the solution in linear time. In fact, this problem is well-conditioned independently of \(n \), and therefore is the ideal candidate for the
application of this method (as shown in [32]). Additionally, the sparse arithmetic implemented in MATLAB is very efficient, and the computational cost is linear without any logarithmic factor. Figure 14 confirms the predicted $O(n \log^2 n)$ complexity for the methods that we propose. The timings of the conjugate gradient are comparable to the sign iteration for small dimensions, but then the absence of the $\log^2(n)$ factor in the complexity is a big advantage for the former method.

All the proposed approaches seems to work better in terms of CPU time than the one reported by Haber and Verhaegen in [22], which use a comparable (although slightly older) CPU. Moreover, their approach is delivering only about two digits of accuracy with the selected parameter, while we get solutions with a relative error of about 10^{-10} in the Frobenius norm.

The table in Figure 14 reports the memory usage when the solution is stored in the HODLR and in the sparse formats. We can see that the method using HODLR matrices, although slower, is more memory efficient compared to the SparseCore of a factor of about 2.

6.3. Partial Integro-Differential equation. Here, we consider the generalized Sylvester equation that arises from the discretization of the following partial differential equation

\[
-\Delta u(x, y) + q(x, y) \int_{[0,1]^2} r(x, y) u(x, y) \, dx \, dy = f(x, y) \quad (x, y) \in (0, 1)^2,
\]

where $q(x, y) = q_1(x)q_2(y)$ and $r(x, y) = r_1(x)r_2(y)$ are separable functions, and we assume zero Dirichlet boundary conditions. The discrete operator can be expressed in terms of the matrix equation $AX +XA + M_1XM_2^T = C$ where $A = (n-1)^2 \cdot \text{tridiag}(-1, 2, -1)$, C is the sampling of f over the uniform grid $x_j = y_j = \frac{j-1}{n-1}$, $j = 1 \ldots, n$, and

\[
M_1 = \frac{1}{n-1} \begin{bmatrix} q_1(x_1) & r_2(x_1) \\ q_1(x_2) & r_2(x_2) \\ \vdots & \vdots \\ q_1(x_{n-1}) & r_2(x_{n-1}) \\ q_1(x_n) & r_2(x_n) \end{bmatrix}, \quad M_2 = \frac{1}{n-1} \begin{bmatrix} q_2(x_1) & \frac{1}{2}r_1(x_1) \\ q_2(x_2) & \frac{1}{2}r_1(x_2) \\ \vdots & \vdots \\ q_2(x_{n-1}) & \frac{1}{2}r_1(x_{n-1}) \\ q_2(x_n) & \frac{1}{2}r_1(x_n) \end{bmatrix}.
\]

In this experiment we consider $f(x, y) = \log(1 + |x - y|)$, and $q_j(x) = r_j(x) \equiv \sin(3x)$ $j = 1, 2$ so that $M_1 = M_2$. We test Algorithm 2 and the results are reported in Figure 15. The results report the timings of Algorithm 2 using the sign iteration for solving the first quasiseparable Lyapunov equation and one can see that the timings of the overall procedure are just slightly larger than the ones reported for Example 6.1. Indeed, step 2 of Algorithm 2 is the dominating cost of the whole computation.

7. Final remarks. We have compared and analyzed two different strategies for the solution of some linear matrix equations with rank structured data. We have presented some theoretical results that justify the feasibility of the approaches relying on tools from rational approximation. The techniques that we developed can be applied to treat the case of banded matrix coefficients in a natural way, thus, providing an alternative approach to the ones presented in [22,32]. Moreover, our methods still perform well when the conditioning of the coefficients increases. This allows to cover a wider set of problems related to PDEs, such as the ones including the Laplacian operator.

Numerical tests confirm the scalability of the approach in treating large scale instances. Our experiments show that the sign iteration is usually the fastest and most accurate method, although the procedure based on the integral formula can be more effective in parallel environments.

In the case of the asymptotically ill-conditioned coefficients in the matrix equation (such as for the 2D Laplacian), the complexity of the sign iteration is slightly worse than the one of the integration formula ($O(n \log^3 n)$ instead of $O(n \log^2 n)$). This can make the latter method the most attractive choice for really large scale problems.
8. Acknowledgments. We thank Daniel Kressner for useful discussions and suggestions. This work has been supported by the GNCS/INdAM project “Metodi numerici avanzati per equazioni e funzioni di matrici con struttura”, by the Region of Tuscany (PAR-FAS 2007 – 2013) and by MIUR, the Italian Ministry of Education, Universities and Research (FAR) within the Call FAR – FAS 2014 (MOSCARDO Project: ICT technologies for structural monitoring of age-old constructions based on wireless sensor networks and drones, 2016 – 2018). Their support is gratefully acknowledged.

REFERENCES

Recent publications:

INSTITUTE of MATHEMATICS
MATHICSE Group
Ecole Polytechnique Fédérale (EPFL)
CH-1015 Lausanne

2017

14.2017 Niccolo Dal Santo, Simone Deparis, Andrea Manzoni:
A numerical investigation of multi space reduced basis preconditioners for parametrized elliptic advection-diffusion

15.2017 Assyr Abdulle, Timothée Pouchon:
Effective models for long time wave propagation in locally periodic media

16.2017 Assyr Abdulle, Marcus J. Grote, Orane Jecker:
FE-HMM for elastic waves in heterogeneous media

17.2017 John A. Evans, Michael A. Scott, Kendrick Shepherd, Derek Thomas, Rafael Vázquez:
Hierarchical B-spline complexes of discrete differential forms

18.2017 Eleonora Musharbash, Fabio Nobile:
Symplectic dynamical low rank approximation of wave equations with random parameters

19.2017 Assyr Abdulle, Ibrahim Almuslimani, Gilles Vilmart:
Optimal explicit stabilized integrator of weak order one for stiff and ergodic stochastic differential equations

20.2017 Abdul-Lateef Haji-Alli, Fabio Nobile, Raúl Tempone, Sören Wolfers:
Multilevel weighted least squares polynomial approximation

21.2017 Niccolo Dal Santo, Simone Deparis, Andrea Manzoni, Alfio Quarteroni:
An algebraic least squares reduced basis method for the solution of parametrized Stokes equations

22.2017 Alexey Chernoy, Hakon Hoel, Kody J. H. Law, Fabio Nobile, Raul Tempone:
Multilevel ensemble Kalman filtering for patio-temporal processes

23.2017 Michele Pisaroni, Sebastian Krum scheid, Fabio Nobile:
Quantifying uncertain system outputs via the multilevel Monte Carlo method – Part I: Central moment estimation

24.2017 Diane Guignard, Fabio Nobile:
A posteriori error estimation for the stochastic collocation finite element method

25.2017 Stefano Pagani, Andrea Manzoni, Alfio Quarteroni:
Numerical approximation of parametrized problems in cardiac electrophysiology by a local reduced basis method

26.2017 Stefano Massei, Davide Palitta, Leonardo Robol:
Solving rank structured Sylvester and Lyapunov equations
