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Abstract

Blood pressure (BP) is a crucial biomarker giving valuable information regarding cardiovas-

cular diseases but requires accurate continuous monitoring to maximize its value. In the

effort of developing non-invasive, non-occlusive and continuous BP monitoring devices,

photoplethysmography (PPG) has recently gained interest. Researchers have attempted to

estimate BP based on the analysis of PPG waveform morphology, with promising results,

yet often validated on a small number of subjects with moderate BP variations. This work

presents an accurate BP estimator based on PPG morphology features. The method first

uses a clinically-validated algorithm (oBPM®) to perform signal preprocessing and extrac-

tion of physiological features. A subset of features that best reflects BP changes is automati-

cally identified by Lasso regression, and a feature relevance analysis is conducted. Three

machine learning (ML) methods are then investigated to translate this subset of features

into systolic BP (SBP) and diastolic BP (DBP) estimates; namely Lasso regression, support

vector regression and Gaussian process regression. The accuracy of absolute BP esti-

mates and trending ability are evaluated. Such an approach considerably improves the per-

formance for SBP estimation over previous oBPM® technology, with a reduction in the

standard deviation of the error of over 20%. Furthermore, rapid BP changes assessed by

the PPG-based approach demonstrates concordance rate over 99% with the invasive refer-

ence. Altogether, the results confirm that PPG morphology features can be combined with

ML methods to accurately track BP variations generated during anesthesia induction. They

also reinforce the importance of adding a calibration measure to obtain an absolute BP

estimate.

Introduction

Cardiovascular diseases (CVDs) are the leading cause of death worldwide, accounting for 32%

of lives taken. Persistently high blood pressure (BP), also known as hypertension, is the major

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0279419 February 3, 2023 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Aguet C, Jorge J, Van Zaen J, Proença M,

Bonnier G, Frossard P, et al. (2023) Blood pressure

monitoring during anesthesia induction using PPG

morphology features and machine learning. PLoS

ONE 18(2): e0279419. https://doi.org/10.1371/

journal.pone.0279419

Editor: Humaira Nisar, Universiti Tunku Abdul

Rahman, MALAYSIA

Received: July 18, 2022

Accepted: December 6, 2022

Published: February 3, 2023

Copyright: © 2023 Aguet et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data and the

code necessary to the analysis performed in this

study can be found at https://doi.org/10.5281/

zenodo.7492294.

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0001-5455-9369
https://doi.org/10.1371/journal.pone.0279419
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0279419&domain=pdf&date_stamp=2023-02-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0279419&domain=pdf&date_stamp=2023-02-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0279419&domain=pdf&date_stamp=2023-02-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0279419&domain=pdf&date_stamp=2023-02-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0279419&domain=pdf&date_stamp=2023-02-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0279419&domain=pdf&date_stamp=2023-02-03
https://doi.org/10.1371/journal.pone.0279419
https://doi.org/10.1371/journal.pone.0279419
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.7492294
https://doi.org/10.5281/zenodo.7492294


risk factor for CVDs. In 2010, 31.1% of the adult population is estimated to be hypertensive,

and this number will continue to increase due to population aging, lack of exercise and

increased exposure to risk factors, such as overweight, unhealthy diet, tobacco and alcohol

consumption [1]. The high prevalence of hypertension is partly explained by its asymptomatic

aspect, as most individuals are not aware of the problem in early stages. Furthermore, BP can

be rapidly altered by multiple external factors, including emotions, physical activity or medica-

tion. Consequently, the development of robust continuous BP monitoring is of utmost impor-

tance for the identification of atypical BP fluctuations, as well as early detection and

management of hypertension and related CVDs. The gold standard method for BP monitoring

is a pressure-sensing catheter inserted in an artery. Despite allowing precise and continuous

monitoring, it is an invasive process with high risk of complications that cannot be deployed

outside of the clinical environment. Accordingly, sphygmomanometry is considered as the

conventional reference for non-invasive BP monitoring. Nevertheless, this approach measures

BP with an inflatable cuff. It is therefore obstructive, causes discomfort and only allows inter-

mittent measurements.

Motivated by these limitations, the focus has been shifted to the development of new non-

invasive and cuffless BP monitoring technologies suitable for continuous measurement. One

promising technique is based on photoplethysmography (PPG). PPG consists of a light-emit-

ting diode (LED) and a photodetector. Such simple and cost-effective optical sensors can be

easily integrated into wearable devices and are available in some smartphones. The PPG signal

is sensitive to blood volume variations in the microvascular bed of tissues, and thus captures

information related to cardiovascular parameters. Typically recorded with a pulse oximeter in

clinical setting, it is commonly used in healthcare to monitor heart rate and blood oxygen satu-

ration. Peripheral volumetric variations and BP are known to be correlated [2], which suggests

that some characteristics of the PPG signal can be exploited to estimate BP. However, no clear

mathematical formulation has been able to define the complex relationship between PPG sig-

nal and BP. Recent progresses in the study of PPG pulse morphology, also known as pulse

wave analysis (PWA), have nevertheless highlighted a set of features playing a key role in the

modeling of BP. The cardiac period, the systolic upstroke time and diastolic time, along with

pulse widths at various amplitudes, have been first considered as informative features [3, 4].

Some frequency domain features have also been introduced, where amplitude and phase fea-

tures are computed using the discrete Fourier transform method [5]. Moreover, characteristic

points related to the second derivative of the PPG waveform add valuable information and

have improved the BP estimation [6–8]. In this context, CSEM’s proprietary oBPM1 algo-

rithm [9] has achieved good performance for systolic and mean BP estimation in patients

undergoing general anesthesia [10], along with stability in its calibration [11]. This model is

based on PWA and how arterial distensibility affects the pulse morphology. By tracking fea-

tures related to arterial distensibility, it can indirectly track BP changes.

Despite these encouraging results, the main challenges in the application of PPG-based

approaches for BP estimation consist in achieving precision and robustness that meet consum-

ers’ and physicians’ expectations. This goal has not yet been fully achieved by previous works.

Driven by the increased availability of larger labeled datasets, supervised machine learning

(ML) seems to be a promising solution to learn a mapping between PWA-based features and

BP values. The benefits of ML methods for this task have been investigated by multiple groups,

with varying degrees of success. The choice of ML model typically depends on the amount of

data available and the complexity of the task. The approaches commonly explored for BP esti-

mation consist of linear and non-linear models. However, linear models might not be appro-

priate to represent the complex relationship between BP and PPG features. Their

performances have been improved with other classical ML methods, such as support vector
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regression (SVR) [7, 12, 13], regression trees [14, 15], Gaussian process regression [8, 16], Ada-

Boost [17, 18] and feedforward neural networks (NN) [4–6]. Nevertheless, the reported out-

comes should be interpreted with caution. First, some methods combine PPG and

electrocardiography (ECG) as input. This involves simultaneous recordings of both signals,

which can be inconvenient and might be less suitable for long-term wearable applications. The

use of multiple sensors also increases the necessary preprocessing work. Second, the heteroge-

neity in the metrics and dataset used makes comparison and interpretation among different

models difficult. The validation protocol is often based on datasets with low inter- and intra-

subject BP variations. Consequently, the model generalization capability and ability to track

significant BP changes are generally not verified. Another critical point is the calibration of the

model, which helps to cope with the inter-subject variability of the PPG waveform. Although

most published works did not mention a calibration procedure, they only divided samples

between training and test sets but not subjects. Therefore, data from the same subject is used

during both learning and evaluation of the model. Besides the increased risk of overfitting, this

methodology has limited potential applications, as some subject’s data are required prior to

the prediction. Finally, nearly all studies address mainly the estimation accuracy, without

investigating the importance of the different features for the model performance, which could

be highly insightful and contribute to a better understanding of the BP estimation problem

and the generalization capabilities of the ML model.

The present work further develops the approach proposed in [16], which focused only on

systolic BP (SBP) estimation and restricted the maximum time span since calibration to 2 min-

utes. We investigate the development of PPG-based ML models for BP monitoring with an in-

depth physiological understanding. To this end, a model is built to extend the oBPM1 tech-

nology with effective ML methods. oBPM1 is used to preprocess the PPG signals and extract

comprehensive physiological features. The first stage is the identification of important features

from the full feature set. This feature selection step aims to define a subset of features that best

reflects BP. In comparison with oBPM1 technology, the proposed approach comes from a

data-driven perspective, especially due to its expanded initial feature set derived from PWA

and automatic feature selection. The second stage defines a proper mapping of features into

SBP and diastolic BP (DBP) values. Therein, the reduced feature sets are used for the investiga-

tion of higher-accuracy estimation models applying three different ML techniques; including

Lasso regression, support vector regression and Gaussian process regression. Their perfor-

mance is assessed based on the model ability to track acute BP changes as well as absolute BP

estimates. All proposed models are compared to the clinically validated method of oBPM1 for

benchmarking purposes and evaluated against the arterial line in the context of anesthesia

induction. To investigate the importance of calibration information, which is one of the limita-

tions of currently proposed PPG-based BP estimation methods, both calibration-dependent

and calibration-free variants of the proposed algorithms are explored.

Beyond exploring different suitable ML methods to address the challenge of BP monitoring

from PPG signal, the main contributions of this work are to investigate the features being

essential in the modeling of BP and to provide an appropriate validation protocol, considering

both the agreement with invasive reference as well as the ability to track large BP variations

induced by anesthesia.

Materials and methods

The proposed approach applies ML techniques to PWA-derived features computed by the

oBPM1 technology. Some steps are particularly important in the development of a reliable

data-driven model. This includes the extraction and selection of features related to BP, as well
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as the identification of a proper predictor to track BP changes with good generalization capa-

bility. The overall framework is illustrated in Fig 1 and the details of each step are explained in

the following sub-sections. All analyses were performed using MATLAB R2020a (MathWorks,

Natick, USA).

Dataset

Training and testing data are from a clinical dataset collected in collaboration with the Lau-

sanne University Hospital (CHUV) under approval of the local ethics committee (CER-VD,

no. 327/15; NCT02651558 at ClinicalTrials.gov). It includes recordings of 40 adult patients

undergoing general anesthesia for various surgical reasons (ear-, nose-, throat- or neurosur-

gery). Written informed consent was obtained from all subjects and data was anonymized.

The patient demographics are summarized in Table 1. The raw PPG signals were obtained

Fig 1. Schematic description of the approach with a calibration PPG-BP measure. The model combines oBPM1

pre-processing and feature extraction with ML methods for feature selection and BP estimation. After preprocessing

and feature extraction, the model takes as inputs the features of the calibration and estimation segments with the

references of the calibration. The references of the estimation segment are used as ground truth for the learning phase.

https://doi.org/10.1371/journal.pone.0279419.g001

Table 1. Demographic and BP characteristics.

Characteristics Mean ± STD (Range) or count (%)

Age (y) 62.4 ± 12.7 (27–81)

Height (cm) 170.1 ± 9.89 (154–189)

Weight (kg) 72.6 ± 13.4 (46–102)

Gender, male 21 (52.5)

Hypertension 14 (35)

Per-subject SBP average (mmHg) 124.3 ± 24.8 (83.1–199.5)

Per-subject DBP average (mmHg) 63.0 ± 10.4 (42.1–86.4)

Per-subject MBP average (mmHg) 85.5 ± 15.5 (57.8–120.3)

Per-subject SBP std (mmHg) 18.7 ± 7.6 (4.8–33.4)

Per-subject DBP std (mmHg) 8.2 ± 3.0 (2.6–14.1)

Per-subject MBP std (mmHg) 12.3 ± 4.8 (3.2–22.1)

https://doi.org/10.1371/journal.pone.0279419.t001
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from a finger-clip sensor (NellcorTM, Medtronic) via a custom datalogger. BP was synchro-

nously monitored with an invasive catheter inserted in the radial artery.

The recording sessions took place at induction of general anesthesia and lasted between 9

and 19 minutes per patient. Due to varying doses of anesthesia, strong BP variations over time

were induced in this dataset. Within the study group, 14 patients had previously been diag-

nosed with hypertension. Overall, the per-patient average SBP varies between 83 and 200

mmHg, with a mean across patients of 124 mmHg. The per-patient average DBP is between 42

and 86 mmHg, with a mean of 63 mmHg.

To guarantee the reliability and robustness of the results, 80% of the dataset is used as learn-

ing data, while the remaining 20% is used for testing. Each subject is only assigned either to

the learning set or the test set. To obtain sets with comparably balanced BP profiles, the separa-

tion is stratified according to the mean and standard deviation SBP and DBP values of the

subjects.

Pre-processing

After alignment of the PPG signal and arterial line signal based on cross-correlation, the pre-

processing is done using oBPM1 technology. The raw PPG are filtered with two digital filters:

a low-pass 3rd-order Butterworth filter with cut-off frequency of 15 Hz to remove high fre-

quency noise, and a high-pass 3rd-order Butterworth filter with cut-off frequency of 0.5 Hz to

remove the baseline. The PPG signals are then divided into 20 seconds segments with 50%

overlap. After segmentation of cardiac cycles, PPG pulses are aggregated into an ensemble

average (EA) pulse computed over each 20-second window. This process results in pulses with

representative waveforms. A signal quality index of each individual pulse weights the averaging

process. This value is calculated based on similarities with typical PPG waveforms and the

neighbouring pulses [10]. The quality index (� 75%) as well as the reference variability (stan-

dard deviation/average� 10%) over the 20-second window serve as exclusion criteria to

remove unreliable pulses for further analysis. This results in a total of 2’741 EA pulses.

The reference SBP and DBP values are calculated from the invasive catheter signals as the

median over each 20-second window and are used as ground truth values.

Feature extraction

From the average pulses, domain knowledge can be used to create features that better repre-

sent the underlying problem. The PWA performed by the oBPM1 algorithm allows the extrac-

tion of time-related and amplitude-related features. The 1st, 2nd and 3rd PPG derivatives are

computed to help the interpretation and understanding of the PPG waveform [19]. The 1st

derivative is also known as velocity plethysmogram (VPG), the 2nd as acceleration plethysmo-

gram (APG) and the 3rd as Jerk plethysmogram (JPG) [20, 21]. This analysis follows from the

fact that PPG waveforms share physiological similarities with the radial pressure pulse [22].

Morphological features are extracted based on characteristic points present on the average

pulse and its derivatives. For the average pulse, it consists of mean arterial pressure (MAP),

mean systolic blood pressure (MSBP), mean diastolic blood pressure (MDBP), end-systolic

pressure (ESP), systolic pressure-time index (SPTI), diastolic pressure-time index (DPTI),

sub-endocardial variability ratio (SEVR), perfusion index (PI) and augmentation index cor-

rected for a heart rate of 75 bpm (AIx75). For the PPG derivatives, the time and the amplitude

of the characteristic points illustrated in Fig 2 are also considered. Further details on the PWA

and the extracted features are described in [10, 23].

PWA-derived features are combined with some personal information of the patients,

including age, weight, height and gender (Table 1). These are important confounding factors,
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known to affect BP, as well as the PPG waveform. Due to inter-subject variability of the pulse

morphology, adding prior information regarding personal details might improve the model

performance and help to adjust to different subjects.

Calibration approach

The BP estimation model usually depends on some initial calibration process, either between

individuals or over time. This can correct possible baseline drifts, and significantly reduce the

bias of the estimation. Therefore, the first learning strategy includes an initial calibration

PPG-BP measure to correct this offset. For ambulatory BP monitoring, a cuff measurement at

the doctor’s office can be used to perform the calibration. As the present study took place in

the operating room, an invasive reference measure is used instead. The flow chart of the

approach is illustrated in Fig 1. For each sample, the calibration PPG segment is always taken

along the same recording as, and preceding, the estimation segment. For each recording, we

Fig 2. PPG derivatives with characteristic points. Illustration of a typical PPG waveform with its 1st, 2nd and 3rd

derivatives, which are respectively known as velocity plethysmogram (VPG), acceleration plethysmogram (APG) and Jerk

plethysmogram (JPG). The fiducial points of each derivative are also shown.

https://doi.org/10.1371/journal.pone.0279419.g002
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start by taking the first PPG segment as calibration segment and consider all the subsequent

segments as estimation segment. We iteratively move the calibration segment along the

recording and repeat the pairing process. By considering all combinations, we increase the

number of samples to a total of 95’833. After preprocessing the PPG signal, features are

extracted from each segment, as further described in previous section. Each datapoint com-

bines the PWA-derived features extracted from the calibration segment with the correspond-

ing reference BP values (SBP, DBP and mean BP), the PWA-derived features of the estimation

segment and the demographics. The reference BP values of the estimation segment serves as

ground truth during the model training. The time span between the calibration and estimation

segments is between 10s and 1119s, with an average of 255s (Table 2).

Calibration is one of the main limitations of most PPG-based BP estimation methods, as

requiring a measure with an approved standard complicates real-world applications. There-

fore, we also carry out experiments without calibration procedure, with a model taking the

PWA-derived features from the estimation segment together with patient demographics as

input. This results in 2’741 samples available. This step assesses whether a calibration-free

model allows prediction of relatively accurate BP and evaluates to which extent calibration is

necessary.

Feature selection and feature relevance analysis

No explicit set of PPG features has been defined to be directly related to BP, and research is

still ongoing. As described in the feature extraction subsection, numerous features characteriz-

ing the morphology of a PPG pulse can be extracted. A large feature set increases the model

complexity and therefore makes it less interpretable. Understanding the decision process

could help to gain new insights on the relationship between PPG and BP signals. Therefore, it

is necessary to remove irrelevant and redundant features to obtain an optimal feature subset

that best describes the output variable. In addition to reducing the model complexity, this pro-

cess also decreases the training time and the risk of overfitting.

In this study, Lasso (least absolute shrinkage and selection operator) regression [24] is

applied to define a subset of relevant features. This embedded method has a feature selection

integrated as part of the model learning process. This linear model simultaneously achieves

feature selection and regression to improve the prediction accuracy and model interpretability.

By regularization with an L1 norm, it imposes sparsity constraints on the regression coeffi-

cients. In more details, we start by training Lasso on the full feature set, including PWA-

derived features and personal information. A relevance score of the selected features is com-

puted based on the permutation feature importance method [25]. This metric shows how

much the estimation error is increased when a given feature is randomized. It ranks features

according to their effect on the model prediction. In addition to being model agnostic, this

method does not require complex mathematical computation or model retraining. Further-

more, it considers both individual feature effect as well as their interaction on the model per-

formance. The relevance score is obtained with the procedure described below.

Table 2. Characteristics of calibration.

Characteristics Mean ± STD Range

ΔT (s) 254.8 ± 187.2 (10.0–1119.0)

ΔSBP (mmHg) -9.7 ± 26.4 (-116.3–110.8)

ΔDBP (mmHg) -3.1 ± 11.7 (-50.4–53.6)

|ΔSBP| (mmHg) 20.5 ± 19.2 (0–116.3)

|ΔDBP| (mmHg) 9.0 ± 8.1 (0–53.6)

https://doi.org/10.1371/journal.pone.0279419.t002
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1. The values of a given feature across all samples in the test set are randomly permuted,

resulting in a modified version of the test set.

2. The model estimates the SBP and DBP taking as inputs the modified test set.

3. The relevance of the disrupted feature is computed as the relative increase in the standard

deviation of the error (STDE) between the permuted and the original test set.

4. The process is repeated 100 times per feature to compute an average relevance over random

permutations.

This analysis helps to understand the importance of the calibration measure. Different

aspects are investigated. The calibration and estimation segments might not have the same

impact on the estimation. As their features are concatenated and not subtracted before the

selection process, the most relevant features of the estimation segment might not be similar to

those of the calibration segment. Furthermore, the feature selection procedure is repeated for

the calibration-free variant. Therefore, the calibration-dependent and calibration-free variants

might have a different selection of features.

Regression models

The second objective of this work focuses on the ability of various ML methods to provide

absolute BP estimation. Due to the continuous nature of the data, we use regression-based ML

approaches to translate the selected features into the corresponding SBP and DBP values. The

different regression models are then trained and optimized taking as input those selected fea-

tures. Choosing a suitable ML model is always a trade-off between multiple characteristics,

including memory usage, speed, prediction accuracy, model complexity and interpretability.

This last point is particularly important in healthcare applications and has led to the following

choice of ML models:

1. Lasso regression (Lasso) [24]. Linear models are generally a good first approach as being

easily interpretable and well-understood. Lasso is of particular interest as its regularization

term helps to prevent overfitting. Hyperparameter: weight of sparsity-imposing term λ.

Optimized using a 10-fold cross-validation. Folds are stratified by subjects.

2. Support vector regression (SVR) [26]. This method is worth considering as it gives the flexi-

bility to define the model error tolerance. Hyperparameters: kernel scale, box constraint of

α coefficients, width of ε-insensitive band. Optimized using 10-fold cross-validation and

Bayesian methods [27].

3. Gaussian process regression (GPR) [28]. This method adds a probabilistic perspective and

can capture the model uncertainty. Hyperparameter: noise standard deviation of the Gauss-

ian process model σ. Optimized using 10-fold cross-validation and LBFGS algorithm (Lim-

ited-memory Broyden-Fletcher-Goldfarb-Shanno) [29].

Evaluation method

The accuracy and precision of the proposed algorithms in providing absolute BP are evaluated

by comparing the estimates from the non-invasive method to the invasive reference. Many

studies follow the guidelines of ISO 81060–2:2018 norm [30]. This criterion requires a mean

error between estimated and reference BP values (ME) not greater than ±5 mmHg, as well as a

STDE not greater than 8 mmHg. Although developed as a universal standard for sphygmoma-

nometers with strict recording protocols, in absence of applicable norms, it is commonly taken
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as point of comparison for non-invasive cuffless BP estimators as well, but should not be con-

sidered to assess model accuracy. The proposed models are evaluated against the invasive ref-

erence in terms of ME and STDE in mmHg. Comparing such metrics between train and test

samples provides insight regarding the generalization capability. The model should not overfit

the train data and generalize well to unseen data, meaning achieving a comparable STDE in

the test set. This allows the model to adapt to different subjects and slightly different recording

protocols.

For benchmarking purposes, we also optimize the model parameters of the clinically-vali-

dated oBPM1 algorithm [9] on the training set and test it alongside all proposed models. As

control case, a “flat model” is also included in this study [31]. By assuming no BP variation

over time, this simple model estimates the BP to be equal to the calibration reference. In the

experiments without calibration, this model outputs the average BP values over the training

set. In addition to a baseline performance, its STDE provides helpful information regarding

the BP variations in the dataset.

However, the standard norm does not allow a proper evaluation of the accuracy in tracking

short or long-term BP variations within an individual [31]. Therefore, another objective of the

present study is to evaluate the trending ability of the best proposed PPG-based algorithm

against the invasive reference. The dataset used includes rapid and large BP variations over

time due to administration of anesthetic and vasoactive drugs. It is therefore of particular

interest to study this performance aspect. The trending ability of the selected ML model in pro-

viding absolute BP changes is evaluated using four-quadrant plots [32] and polar plots [33].

All possible BP changes of at least 20% [34] are identified from the reference (ΔSBPinv and

ΔDBPinv), along with the corresponding BP changes assessed by the PPG-based method

(ΔSBPPPG and ΔDBPPPG). Such changes are considered acute by clinicians and require an

action on their part. Based on the four-quadrant plots, the concordance rate and the Pearson

correlation coefficient between invasive and non-invasive approaches are computed. The con-

cordance rate (CR) represents the proportion of (ΔBPinv, ΔBPPPG) paired values with similar

direction of change. Whereas the four-quadrant plots focus on the direction of BP change, the

polar plots add information relative to the amplitude of BP change. In such plots, the polar

radius reflects the average amplitude of change of invasive and PPG-based methods

((ΔBPinv+ΔBPPPG)/2) and the polar angle represents the drift from the identity line. The angu-

lar concordance rate at ±30˚ is then calculated. It reflects the amount of data lying within the

upper radial limits of ±30˚, as defined in [33]. The angular bias and standard deviation of the

polar angle are also assessed.

Results

Feature relevance analysis

During the feature selection process and when learning requires a calibration measure, Lasso

picked 35 and 24 features for SBP and DBP, respectively, while only 19 features are selected for

the cases without calibration for both SBP and DBP. There are some similarities in the feature

sets of the different BP estimators, with slight variations in their order of importance. There-

fore, the results of the feature relevance analysis are only displayed for SBP in Figs 3 and 4. For

BP estimation with a calibration measure, the reference value of the calibration segment is

detected as the most important feature. The following features with high relevance are mainly

PWA-derived features, including: features from the PPG, such as perfusion index (PI) and

heart rate-corrected augmentation index (AIx75), or characteristic points of its first (VPG),

second (APG) and third (JPG) derivatives. As predicted, the features selected from the calibra-

tion and estimation segments are related, but not identical. Furthermore, features from the
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estimation segment generally come first. Highly important features from the estimation seg-

ment are also present with a high relevance score in the calibration-free variant. Personal

information obtains a low feature relevance score in calibration mode. The first one is the sub-

ject’s weight appearing in 17th rank (Fig 3). However, when no calibration PPG-BP measure is

given, personal information gets a higher relevance score, with the subject’s weight in 5th rank

(Fig 4).

BP estimation

Tables 3 and 4 summarize the performance of the different ML models for SBP and DBP esti-

mation with a calibration measure in terms of ME and STDE in mmHg. The first observations

are drawn for SBP estimation in calibration mode, with a particular focus on the STDE in the

test set. All the regression models implemented outperform the control case (flat model). The

reduction in STDE is approximately 60%. Furthermore, the three proposed ML models are

superior to the oBPM1 algorithm, with a reduction in STDE of 24–29%. The STDE of Lasso

Fig 3. Feature relevance scores for SBP estimation model with a calibration PPG-BP measure. Features from the

calibration segment are indicated by the prefix cal. The reference value obtained the highest relevance. The following

were PWA-derived features from the PPG waveform, as well as time (t) and amplitude (a) of characteristic points from

its derivatives (VPG, APG and JPG). Personal information, such as weight, obtained a low relevance score. The results

were alike for DBP.

https://doi.org/10.1371/journal.pone.0279419.g003

Fig 4. Feature relevance scores for SBP estimation model without a calibration measure. PWA-derived feature

from the PPG waveform, as well as time (t) and amplitude (a) of characteristic points of its derivatives (VPG, APG and

JPG) were of high relevance. Personal information had more weight than for the model with a calibration measure.

https://doi.org/10.1371/journal.pone.0279419.g004

PLOS ONE Blood pressure monitoring during anesthesia induction using PPG morphology features and machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0279419 February 3, 2023 10 / 20

https://doi.org/10.1371/journal.pone.0279419.g003
https://doi.org/10.1371/journal.pone.0279419.g004
https://doi.org/10.1371/journal.pone.0279419


and SVR models on the train set is slightly smaller than on the test set, suggesting a low overfit-

ting. On the contrary, even with hyperparameter optimization and a restricted feature set,

GPR demonstrates a stronger overfitting effect. The observations are quite similar for DBP

estimation with calibration. All proposed models are about 40% better than the flat model

according to the STDE. However, they perform similarly to the oBPM1 algorithm, with a

reduction in STDE of maximum 5%. By comparing the STDE of the train and test sets, we

observe a larger overfitting effect with the three proposed ML models and oBPM1 for DBP

than achieved for SBP.

Additionally, Figs 5 and 6 allow a better visualization of the STDEs and a comparison

between calibration and calibration-free models for SBP and DBP, respectively. Once more,

the performance is comparable between the different ML methods in calibration-free mode.

For SBP estimation, the proposed ML models are superior to the control case, with a reduction

in STDE between 40% and 55%. The addition of a calibration PPG-BP measure to the model

reduces the STDE on the test set by more than 10%. For its simplicity, reduced overfitting

effect and comparable performance, Lasso regression model with a calibration PPG-BP mea-

sure is chosen for the remaining part of the study. To better understand the BP dynamic dur-

ing anesthesia induction, Fig 7 shows an example of the temporal evolution of the invasive

reference and BP estimation with this model in a patient. In addition to the cohort-wise per-

formance given in Tables 3 and 4, we also provide subject-wise results of this model on the test

set in Table 5. Furthermore, we compare the performance of this model to related works in

Table 6. Since it is a challenging task due to the heterogeneity in validation protocol, BP vari-

ability and calibration procedure, we only select works using the same evaluation metrics, i.e.

ME and STDE. In particular, this comparison shows that the proposed work is based on a

dataset including a larger BP variability. Our approach also has the most suitable calibration

Table 3. SBP estimation performance in mmHg.

Train Test

Model ME STDE ME STDE

Lasso -0.03 9.01 -0.87 10.77

SVR -0.37 9.11 -2.27 9.99

GPR -0.18 7.95 -2.46 10.28

oBPM (a) 0.05 14.59 -2.16 14.24

Flat model (b) 9.33 26.30 10.60 26.46

(a) Conventional oBPM1 model, with parameters optimized on training set.

(b) Naïve model, with calibration value as BP estimate.

https://doi.org/10.1371/journal.pone.0279419.t003

Table 4. DBP estimation performance in mmHg.

Train Test

Model ME STDE ME STDE

Lasso 0.00 4.41 -1.31 7.62

SVR -0.22 4.49 -1.68 7.24

GPR -0.03 3.73 -0.84 6.88

oBPMa 0.02 5.42 -0.60 7.21

Flat modelb 2.78 11.34 3.79 12.58

aConventional oBPM1 model, with parameters optimized on training set.
bNaïve model, with calibration value as BP estimate.

https://doi.org/10.1371/journal.pone.0279419.t004
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procedure for potential applications. Among the works mentioned, it is the only model which

does not require to be retrained with new subject data and only depends upon a single spot

PPG-BP measurement.

The trending ability of the PPG-based method against the invasive reference is assessed

from the four-quadrant plots and polar plots. The results illustrated in Fig 8 are for rapid SBP

and DBP changes occurring over a time span of 3 minutes with Lasso regression model. The

greatest number of the (ΔBPinv, ΔBPPPG) paired values lies within the two concordant quadrants

of the four-quadrant plots, located in the lower left and upper right positions. This results in a

concordance rate of 99.47% for SBP and 99.89% for DBP. The Pearson correlation coefficient

indicates a strong correlation between the invasive and non-invasive changes (0.95 for SBP and

0.97 for DBP). Similar observations are made for slower changes occurring over a time span

greater than 3 minutes. In such conditions, the concordance rate is of 94.68% for SBP and

97.63% for DBP, and the Pearson correlation coefficient was 0.93 for SBP and 0.95 for DBP. The

polar plot adds information regarding the amplitude of the BP changes. The angular concor-

dance rate at ±30˚ computed for rapid changes is 97.97% for SBP and 99.35% for DBP. 95%

radial limits of agreements of [-26.77˚, 16.07˚] for SBP and [-29.73˚, 14.02˚] for DBP are

obtained. And the angular error (mean ± std) is -5.35±10.91˚ for SBP and -7.85±11.14˚ for DBP.

Fig 5. Performance of different ML models in term of STDE in mmHg for SBP estimation with and without

calibration.

https://doi.org/10.1371/journal.pone.0279419.g005

Fig 6. Performance of different ML models in term of STDE in mmHg for DBP estimation with and without

calibration.

https://doi.org/10.1371/journal.pone.0279419.g006
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Discussion

In this study, we have investigated the potential of data-driven models to address the challenge

of BP estimation from PPG signal in the context of general anesthesia induction. Beyond

exploring different suitable ML methods, we have examined the features being essential in the

modeling of BP and evaluated the model ability to track large BP changes.

Feature relevance analysis

In the literature, PPG-PWA has mainly been used to assess cardiovascular parameters, such as

arterial stiffness or vascular tone. Both are relevant predictor of cardiovascular events and

related to BP [23, 35]. Part of this work investigates which features derived from such

PPG-PWA strongly contribute to the task of BP estimation. The results show the complexity

of this task, with the selected features being related to phenomena indirectly related to BP.

Whether in calibration or calibration-free mode (Figs 3 and 4), the main PWA-derived fea-

tures are similar. The feature relevance analysis reveals the importance of characteristic points

from the original PPG, as well as from the first (VPG), second (AGP) and third (JPG) deriva-

tives. The features based on the original PPG waveform that particularly stand out from this

analysis are the augmentation index and the perfusion index. The augmentation index and its

value corrected for a heart rate of 75 bpm (AIx75) are based on the onset of the backward

reflected wave. This index is related to pulse wave velocity and arterial stiffness [23, 36]. Older

patients have stiffened arteries and therefore a faster pulse velocity. This results in an early

return of the reflected wave and raised SBP. The perfusion index (PI) represents the ratio of

pulsatile to non-pulsatile blood flow in peripheral tissue and is known to correlate relatively

well with the vascular tone. Hypertension is associated with an impaired endothelial function

Fig 7. Temporal evolution of invasive reference and PPG-based BP estimation in a patient. Orange corresponds to SBP, while blue to DBP. The PPG-based

BP estimations are shown by the solid lines. The invasive reference measurements are represented by the dashed lines.

https://doi.org/10.1371/journal.pone.0279419.g007

Table 5. Subject-wise BP estimation performance on the test set in mmHg.

Mean ± STD

SBP DBP

Subject ME -0.67 ± 7.21 -0.82 ± 7.32

Subject STDE 9.06 ± 3.41 4.23 ± 1.33

https://doi.org/10.1371/journal.pone.0279419.t005
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Table 6. Table of comparison with related works in mmHg.

BP SBP DBP

Model Mean ± STD or (Range) ME STDE ME STDE

Xing and Sun [5] (2016) NN 80� SBP� 180 0.06 7.08 0.01 4.66

DBP� 20

Gaurav et al. [6] (2016) NN - 0.16 6.85 0.03 4.72

Khalid et al. [14] (2018) Regression tree SBP: 109 ± 17 -0.1 6.5 -0.6 5.2

DBP: 59 ± 9

Hasanzadeh et al. [18] (2020) AdaBoost SBP (90–180) 0.09 10.38 0.23 4.22

DBP (50–90)

This work Lasso SBP (63–228) -0.87 10.77 -1.31 7.62

DBP (35–121)

https://doi.org/10.1371/journal.pone.0279419.t006

Fig 8. Trending ability. Four-quadrant plots (on the left) and polar plots (on the right) demonstrating the trending

ability of PPG-based approach with Lasso regression against the invasive reference for rapid changes in SBP (top) and

DBP (bottom) occurring over a time span of 3 min. The solid lines correspond to the ±30˚ upper radial limits and

define the area in which more the 95% of the data points should lie. The angular bias is represented by the dashed-

dotted line. And the 95% confidence interval by the dashed lines.

https://doi.org/10.1371/journal.pone.0279419.g008

PLOS ONE Blood pressure monitoring during anesthesia induction using PPG morphology features and machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0279419 February 3, 2023 14 / 20

https://doi.org/10.1371/journal.pone.0279419.t006
https://doi.org/10.1371/journal.pone.0279419.g008
https://doi.org/10.1371/journal.pone.0279419


and an increased vascular tone [37]. The derivatives of the PPG waveform are computed to

facilitate the detection of inflection points and to help the interpretation of the PPG waveform

[19]. The first derivative of the PPG is rarely used in literature. However, features such as the

maximum slope of upstroke can be derived from it and appear in the relevance analysis. In

contrast, the second derivative has been used more broadly. The different waves of the second

derivative pulse were defined in [19, 38], and computing the ratios of each wave to the first one

results in indicators of arterial stiffness. Therefore, the presence of features derived from the

second derivative in the relevance analysis was expected and is consistent with other studies

[7]. To the best of our knowledge, only the work in [39] mentioned the use of features from

the third derivative of the PPG waveform. Nevertheless, its approach combined ECG and PPG

signals to achieve BP estimation. A novelty of the proposed approach is to incorporate the

third derivative of the PPG and such features appear to obtain a good relevance score.

Overall, the relatively large number of selected features further demonstrates the complexity

of the biophysical mechanisms underlying the measure of BP. It might also reflect the limited

quantity of data available. Lasso regression is a linear approach and thus might be insufficient

to fit the optimal, potentially simplest relationship between the features and the reference BP

values. However, few non-linear features selection methods such as GPR were previously con-

sidered and did not perform substantially better than Lasso [16].

Calibration

The results of the feature relevance analysis also confirm the importance of the calibration to

obtain an absolute BP estimate. Each individual physiology impacts the relation between PPG

waveform and BP. In the calibration approach, this aspect is minimized through the initial

PPG-BP measure. This is notably revealed with the reference BP value receiving the highest

relevance score. Additionally, some PWA-based features from the calibration segment are

selected, although typically getting a lower relevance score than those from the estimation seg-

ment. Nevertheless, different features are selected from the calibration and estimation seg-

ments. This indicates that simply subtracting their features before the feature selection process

would not be sufficient for an accurate BP estimation and thus supports the choice of the pro-

posed architecture. When comparing the calibration and calibration-free approaches in Figs 5

and 6, the results show that, as expected, the initial PPG-BP measure helps to improve the algo-

rithm performance in providing absolute BP. For instance, it allows for a reduction in STDE

in the test set of approximately 10% for SBP estimation with Lasso and SVR models. The cali-

bration-free approach might be too limited to fully characterize the inter-subject variability.

Personal information, such as weight or gender might not be sufficient to reduce the impact of

individual physiology.

Validation of selected features

Although the selected features are shown to have a physiological consistency with cardiovascu-

lar parameters related to BP changes, the chosen set needs to be further validated by examining

the model accuracy in providing absolute BP. Whether with or without a calibration PPG-BP

measure, the performance of the three ML methods is comparable and gets closer to the com-

monly used standard (5±8 mmHg), although not applicable to cuffless BP estimators. As previ-

ously mentioned, their STDE on the test set is consistently lower than for the flat model, and

mostly below the oBPM1model, which pointed out that the expanded feature set of oBPM1

technology could improve performance. Overall, the results are promising and validate that

the chosen feature set plays a key role in the modeling of BP.
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Model selection

Choosing a ML method for a particular task is always a question of trade-off between multiple

characteristics, including memory usage, speed, predictive accuracy and interpretability. The

limited overfitting effects observed for Lasso and SVR suggests that these methods might have

a better generalization capability on new data than GPR. However, due to its higher complex-

ity, GPR might suffer from the limited amount of data available here. Furthermore, even

though GPR adds a probabilistic perspective, it is the method of the list with the highest

computational cost, which could cause trouble for embedding into wearables. The interpret-

ability of a model is inversely proportional to its complexity. Being a linear regression model,

Lasso is more interpretable than SVR and GPR. This particularity might help to understand

the decision process and some aspects of the underlying relationship between PPG morphol-

ogy and BP values. For its interpretability and limited overfitting effect, the calibration

approach using Lasso regression is used for the rest of the analysis. Its performance on the test

set is of -0.87±10.77 mmHg for SBP and -1.31±7.62 mmHg for DBP.

Trending ability

The trending ability analysis conducted helps to assess the model ability to track acute BP

changes. The four-quadrant plot and polar plot are used for this purpose. By analogy with the

work on non-invasive cardiac output monitoring in [33], a good trending ability can be

claimed when the concordance rate and the angular concordance rate at ±30˚ are greater than

90–95%. With a dataset recorded during surgical interventions with general anesthesia induc-

tion, this analysis is mainly focused on rapid (� 3 minutes) and acute (� 20%) BP changes

that might be undetected by the cuff and lead to neglected hypo- or hypertension. In this

study, more than 99% of the fast BP changes assessed with the PPG-based method have a direc-

tion of change consistent with the reference invasive method. The aforementioned criterion

has also been fulfilled for slower BP fluctuations, occurring over a time span greater than 3

minutes (CR > 94%). Significant BP changes from the PPG-based method are also strongly

correlated with those measured with the arterial line (Pearson correlation coefficient� 0.95

for rapid changes and� 0.93 otherwise). Whereas the four-quadrant plot mainly provides

information on the agreement of invasive and PPG-based methods in terms of direction of

change, the polar plot adds insights about the amplitude of the changes. The angular concor-

dance rate at ±30˚ for rapid BP changes is above the criterion expected for good trending abil-

ity (> 97%). The 95% radial limits of agreement help to quantitatively assess the precision. For

SBP and DBP rapid changes, the results end up within the suggested ±30˚ upper radial limits

[33]. Altogether, the previous observations confirm the good trending ability of the proposed

PPG-based method and suggest that it is a particularly promising tool for tracking significant

BP changes, which are known to be problematic in the clinical environment.

Potential applications and limitations

Although the present study was conducted in a well-defined clinical setting, the low require-

ments for PPG signal acquisition broaden the potential application of the proposed PPG-

based BP estimation method to diverse contexts, both inside and outside of operating room.

The finger-clip sensor used for the recording of PPG signal is already part of the equipment in

the operating room for monitoring vital parameters, such as oxygen saturation and heart rate.

For patients without an arterial line, the proposed model might help the anesthesiologists to

quickly detect unexpected BP changes between intermittent cuff inflations and to stabilize the

patient. This approach could also be used as a solution trigger oscillometric cuff measurements

automatically when significant BP fluctuations occur (� 20%). However, PPG sensors are
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increasingly integrated into wearable devices, such as smartwatches. This opens up the possi-

bilities of ambulatory BP monitoring using a PPG-based method, an application that should

be further investigated.

Furthermore, this study confirms that the dependence on calibration remains a key point

in the development of non-invasive, cuffless and continuous BP monitoring solutions. The

choice of calibration process will also have an impact on the performance. Our model is

designed to correct the offset with an initial PPG-BP measure. This process is well representa-

tive of a possible application, where a calibration measure with an acceptable standard, such as

the cuff, is typically taken at the doctor’s office. However, the frequent requirement of this

event might grow the complexity of the use case. In comparison with previous results in [16],

no restriction of timespan between calibration and estimation is imposed in post-processing.

However, the dataset only includes relatively short recordings, with an average of 12 min per

patient. This only allows to evaluate relatively small timespans. A long-term analysis should be

conducted to quantify the stability of the performance with longer calibration delays.

As previously mentioned, the data used in this study comes from a controlled and restricted

environment. ML methods are built based on the data available during the training of the

model. Inevitably, this leads to the important question of generalization capability. This term

describes the model’s ability to properly adapt to previously unseen data. A deeper study

should be conducted to confirm the generalization capability, the robustness and potential

applicability of the proposed ML methods and feature set to other related contexts. One limita-

tion of this study is the small amount of data available. The model should be tested on different

datasets, with typically larger sample size and different target populations. The PPG signals

were recorded using a finger-clip sensor in transmission mode and consequently signals of

good quality are obtained. It would be interesting to further investigate such an approach on

signals collected at various measurement sites, such as wrist, upper arm or earlobe, and there-

fore to vary the sensors between transmission or reflection modes.

Conclusion

Our study confirmed that features derived from the PPG morphology can be combined with ML

methods to accurately track BP variations generated during anesthesia induction. The feature rel-

evance analysis showed the importance of adding a calibration PPG-BP measure and highlighted

the key role of features derived from the PPG 1st, 2nd and 3rd derivatives. The evaluation carried

out showed a good agreement of the estimate with the invasive reference, as well as the model’s

ability to track acute BP changes induced by anesthesia. Future work will investigate BP varia-

tions resulting from different physiological mechanisms. It will also determine how well the

model adapts to other use cases of interest, such as the ambulatory monitoring of people with

hypertension. Overall, the results highlighted the potential of ML models based on PPG-PWA

features to help overcoming the current limitations of non-invasive BP monitoring–an impor-

tant step towards more effective detection and management of hypertension in the future.
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