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Abstract

Joint source and channel coding has proven benefits for efficient transmission of information with delay and complexity
constraints. In particular, Multiple Description Coding offers interesting solutions for error resilient multimedia communications
as well as for distributed streaming applications. We propose in this paper a scheme based on H.264/AVC for the encoding of
image sequences into multiple descriptions. The pictures are split into multiple coding threads, and redundant pictures are inserted
periodically to increase the resilience to loss and reduce the error propagation. We propose an end-to-end distortion model that
features the influence of the coding parameters for primary and redundant pictures and we derive the optimal coding strategy for
given transmission conditions. Extensive experiments demonstrate that the proposed scheme outperforms baseline solutions based
on loss- and content-adaptive intra coding. Finally, we show how the decoder can reduce the distortion by efficient combination
of primary and redundant pictures, if both are available at the decoder.

I. I NTRODUCTION

With the tremendous and continuous growth in size and capacity of packet networks such as the Internet on one side,
and the excellent performance of image/video compression techniques on the other side, there has been recently a rapid
development of multimedia services and applications such as video conferencing or Internet Protocol TV (IPTV). These
applications typically require a good media quality, even with varying transmission bandwidth and tight timing constraints that
prevent the retransmission of lost or late packets.

Joint source and channel coding (JSCC) as well as streaming strategies that exploit the network diversity have been shown to
provide elegant solutions to offer a sustained quality to the users in the absence of guarantee from the transmission channels. On
the one hand, JSCC targets the minimization of the end-to-end distortion, which consists of the source and channel distortion. It
efficiently splits the streaming rate into source rate that drives the source distortion, and channel rate that controlsthe resiliency
to transmission losses. On the other hand, distributed streaming tries to exploit the availability of multiple sourcesor peers,
or multiple transmission channels for increasing the mediaquality. In this case, the redundancy between the differentstreams
has to be controlled such that the end-to-end distortion is minimized without wasting bandwidth with packet replicates.

Multiple description coding (MDC) [1] can bring great benefits in such cases, as it permits to generate several representations
of the video information and ensures that they are all usefulfor increasing the quality at the decoder. It leaves an adaptive
amount of redundancy between the different descriptions, such that the most important information is duplicated in different
transmission packets or sent from different sources. The least important information is then distributed among the different
representations, such that they all contribute to decreasing the overall distortion. Multiple description coding hasemerged
recently as a promising alternative for video streaming, due to its improved performance compared to JSCC schemes based
on Forward Error Correction, particularly when the channelconditions are not accurately estimated [2]. In addition, it extends
naturally to solving the problem of streaming with network diversity, since the different descriptions can be sent on different
channels and improve the end-to-end performance of the streaming system.

In this paper, we propose a standard compatible MDC video scheme. We build on our previous work [3] and use H.264/AVC
redundant pictures to provide robustness to transmission errors. The video information is split into several encoding threads,
and redundant pictures are inserted to reduce the error drift in case of packet loss. We provide a rate-distortion analysis that
permits to control the stream redundancy with respect to theexpected transmission conditions by adapting the quantization
parameters in the redundant pictures. We finally show how thedecoding quality can be further improved by a proper handling
of the different versions of received pictures available atthe decoder. Extensive simulations demonstrate that the proposed
scheme outperforms state-of-the-art single- and two-description video coding schemes in terms of average quality, aswell as
quality variation and resiliency to incorrect estimation of the channel state.

This rest of the paper is organized as follows. We first provide an overview of MDC video coding in Section II. Section III
then describes the proposed scheme in details, while Section IV proposes a redundancy and rate-distortion analysis of the
MDC video encoder. We compare its performance with state-of-the-art techniques in section V. We finally discuss decoder
improvements in section VI.

This work has been partly supported by the Swiss National Science Foundation grant PP-002-68737.
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II. RELATED WORK

Multiple description coding techniques are generally based on four main families of methods, namely information spitting,
quantization, unequal error protection, and redundant expansions. We describe briefly the research work in the different
categories, with a special emphasis on video coding schemes.

One of the most popular algorithms based on information splitting is the so-called multiple state video coding (MSVC) [4],
which is similar to video redundancy coding proposed in [5].The input video sequence is split into subsequences of odd
and even frames and each subsequence is independently coded, with its own prediction process and state. With this solution,
even if one description is completely lost, another one can be independently decoded and reconstructed at half of the frame
rate. Moreover, lost frames in one description can be reconstructed by interpolation from the neighboring frames in another
description. Numerous other multiple description video coding schemes are based on information splitting in the temporal (
[6]–[11]), spatial ( [12], [13]) and the frequency domain ( [14]–[16]). As the performance of a splitting technique is highly
dependent on the sequence content and network characteristics, several works have proposed to combine the different splitting
techniques for improved performance ( [17], [18]). Finally, a combination of MDC with multiresolution representations and
layered coding has been addressed in [19]–[23].

Successful solutions have also been implemented by unequalerror protection and channel coding. The most important parts
of the information streams are therefore replicated in several descriptions, while the least important information isdistributed
in different packets, without strong channel protection [24], [25]. The works of Chou et al. ( [26], [27]) and Taal et al. (
[28], [29]) further consider the combination of scalable video coding in combination with unequal error protection. Unequal
error protection usually permits to generate a fairly largenumber of descriptions, possibly at the expense of low granularity
or decoding delay.

Furthermore, MDC principles can be efficiently combined with redundant signal expansions. In [30], [31], Zakhor et al. use
the matching pursuit algorithm to generate two descriptions of video sequences, where the redundancy between the descriptions
is controlled with a number of atoms repeated in both descriptions. The same principle, combined with Multiple Description
Scalar Quantization, can be found in [32] and [33]. In [34], [35] a scheme for multiple description scalable video codingbased
on a motion-compensated redundant analysis has been proposed.

A few other techniques have also been proposed for Multiple Description video coding. Multiple description scalar
quantization has been applied in [36], [37] to jointly quantize the DCT coefficients or coefficients in a motion-compensated
temporal filtering based encoder. Correlating transforms have been used in [19], [38]. Finally, coset codes can be used for the
generation of multiple descriptions when the prediction inmultiple description video coding is considered as a variant of the
Wyner-Ziv coding problem [39].

Overall, information splitting methods are probably a goodchoice for applications that favor compliance with video coding
standard for easier deployment. In particular, extensionsof the MSVC scheme [4] may provide standard bitstreams for each
description. In this paper, we propose to use redundant pictures in H.264/AVC since they typically offer an interestingsolution
to extend and improve the MSVC scheme with increased resiliency to error propagation. Parallel work of Tillo et al. [10]
also proposes an MDC video coding scheme based on redundant pictures, where descriptions are however not completely
independent. Our work proposes an extended rate-distortion analysis for independent descriptions, as well as an improved
decoding solution that tries to exploit efficiently all the information available at the decoder.

III. MDC WITH REDUNDANT PICTURES

A. Redundant pictures in H.264/AVC

Redundant pictures (RP) are one error resilient tool included in H.264/AVC. According to the standard, each picture may
be associated with one or more (up to 127) RPs, which a decodercan reconstruct in case a primary picture (or parts thereof)
is missing. If a primary picture is correctly received, it issuggested by the standard that RPs are discarded by the decoder.

The standard is very flexible regarding the design of RPs. Forexample, it permits a redundant picture to be of the same size
as the corresponding primary picture, but also does not exclude the possibility to encode only its most important parts (such as
region of interest). Moreover, H.264/AVC does not definehow to generate redundant pictures, as long as a decoded redundant
picture is visually similar to the corresponding decoded primary picture. One prominent scenario is to use the same coding
mode decisions for producing redundant pictures compared to the primary ones, except that the redundant picture is more
coarsely quantized. Quantization is driven by the quantization scale factorsQp andQr for the primary and redundant pictures,
respectively. These factors have to be smaller than51 and the quantization step-size is typically doubled when the factors
increase by 6. Usually, if a primary picture is encoded with the parameterQp, the quantizer scale factor for the redundant
picture can take any value betweenQp and 51. This is a widely accepted approach in literature [40], [41] and we will also
consider it in our work.

Naturally, the quality of redundant pictures should be chosen by taking the network loss rate into account. If the loss rate is
very low, the probability that a primary picture is lost and has to be replaced by the corresponding RP is also low, and therefore
it does not make much sense to waste a lot of bits for encoding the RPs. This is why RPs should be quantized coarsely for
low loss rates. On the other hand, as the loss rate increases,better quality of RPs becomes more advisable. Clearly, at the
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fixed total rate, this comes at a price of reducing the qualityof primary pictures. However, in the average sense, having better
quality RPs is more beneficial, since now the probability that a primary picture is lost and a RP is used is higher. This will
be discussed more in detail later, after we establish the rate-distortion model.

B. Proposed scheme: MSVC-RP

We extend the MSVC scheme [4] and increase the resiliency to temporal propagation of errors by the addition of redundant
pictures. The proposed coding scheme (MSVC-RP) is illustrated in Figure 1. The input video sequence is split into sequences
of odd and even source pictures. When encoding, each primarypicture in the even/odd description is predicted only from other
pictures of the same description, typically the previous picture. In addition, redundant pictures are included in the bitstream
of each description. These RPs carry the information from the alternate description. In the time domain, they are placedsuch
that they can replace a lost primary picture. Unlike the primary pictures, which use the previous primary frames from thesame
thread as a reference, redundant pictures are predicted from the previous frame in the input sequence. Redundant pictures are
coded as P pictures and each primary frame has its redundant version. Redundant pictures are not used as a reference for any
subsequent picture. The descriptions are sent possibly over two different lossy links, or over one link in an interleaved fashion.
We can see that the resulting streams are independent, and therefore a reconstruction at a full frame rate is possible even with
one of them only.

   0                     1                      2                      3                      4                      5  …   Frame number     
 
 
 
  I                    RP1                             P                               RP3                    P                   RP5 …  Description 1    
 

 

 
 
RP0                   I                               RP2                     P                   RP4                       P  …   Description 2 

Fig. 1. The proposed scheme for MDC video.

At the receiver, if primary pictures are received error-free, the standard suggests that the RPs should be discarded. Inour
work, we will first follow this approach and we will treat the RPs as pure redundancy in case a primary picture is received. In
this way we will also keep the decoding process as simple as possible, which can be of great importance for delay-sensitive
applications. In Section VI, we will eventually improve thedecoding process with efficient handling of all the receivedpictures.

If a primary picture (or parts thereof) has been lost, the corresponding redundant picture is reconstructed and used to replace
its missing parts. Typically, replacing the lost parts of a primary picture with the same content, but more coarsely quantized,
creates much smaller artifacts than if the missing parts areconcealed with the information from the neighboring macroblocks
from the same and/or subsequent frames. Finally, if both primary and redundant parts of a picture are lost, the missing
information is reconstructed using an error concealment algorithm, e.g. by coping the closest available previous frame from
either description. After the necessary discarding/replacement/concealment, the two descriptions are subsequently interleaved
to produce the final reconstruction.

Obviously, the quantization parameters of primary and redundant pictures have to be properly selected in the MSVC-RP
encoder, so that the reconstructed video at the receiver hasthe best possible quality. The optimal ratio betweenQp and Qr

depends on the expected network loss rate. We analyze the rate-distortion performance of MSVC-RP in the next section, and
we formulate an end-to-end distortion minimization problem whose solution leads to the optimal choice ofQp andQr under
given bitrate constraints.

IV. RATE-DISTORTION ANALYSIS

In this section, we study the redundancy that is introduced by MSVC-RP, and we present a model for the end-to-end
distortion that will permit to select the coding parametersas a function of the channel conditions. We extract the parameters
for our model from pre-encoded sequences. We further assumethat the average distortionDav in the presence of losses can
be written as the sum of the source rate distortionDS (the distortion due to quantization), and the average distortion due to
losses,∆, i.e., Dav = DS + ∆ [42]. We present below a source rate-distortion analysis ofthe MSVC-RP and we eventually
compute the distortion due to missing information parts.

A. Redundancy in MSVC-RP

MSVC-RP obviously introduces redundancy for increased robustness compared to single description coding scheme. We
can distinguish between the two sources of redundancy. First, there is the redundancy due to the fact that the frames in each
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description are now temporarily further apart, which clearly requires more bits for encoding the same content with the same
quality. The same kind of redundancy is introduced in MSVC scheme [4]. In addition, encoding of redundant pictures requires
additional bitrate, which clearly depends on how fine (or coarse) they are quantized. The redundancy can therefore be expressed
as:

ρ =
R

RSD

− 1 =
RMD + Rr

RSD

− 1 (1)

whereRMD denotes the necessary rate for encoding even and odd threadsof frames,Rr represents the redundant picture rate,
while theRSD denotes the single description coding rate (prediction based on the previous frame and no redundant picture
included).

Figure 2 shows the introduced redundancy for the Foreman QCIF sequence, compared to both single description coding and
MSVC. In this case, we fixQp = 20 (which corresponds to the total single description rate of 222.6 kbits/s), and we varyQr

from Qp to 50. We can see that, compared to MSVC, the amount of redundancy varies from2.85%, whenQr = 50, up to
80.34%, whenQp = Qr = 20. Compared to the single description case, the redundancy varies from37.46% to 140.5%. As
we will see later, this redundancy however serves as an efficient error resilience tool on lossy channels.
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Fig. 2. Relative rate redundancy introduced in our scheme, compared to MSVC [4] and the single description case. Sequence: Foreman QCIF, 7.5 fps.

B. Source rate-distortion model

We derive now a model for the source rate-distortion characteristics. Suppose that we are given the total rate ofR bits. A
part of this rate,Rp, is used to encode primary pictures, while the remainingRr = R − Rp is used for encoding redundant
pictures. To express the source distortions as functions ofthe bit rate, we use the model given in [42], according to which we
can write the following expression for the distortion corresponding to primary pictures only:

Dp = χp Rξp

p , (2)

In an analog way, we can write the distortion for redundant pictures asDr = χr Rξr
r . Dp and Dr respectively denote the

source distortions averaged over entire sequences, whileχp, χr, ξp andξr are directly related to the encoding scheme and the
video sequence content, and are extracted from the corresponding bitstreams. Figure 3 illustrates this model for theForeman
andNews QCIF sequences, where we use the mean square error (MSE) as a distortion measure.

Next, we model the peak signal-to-noise ratio (PSNRp) for the primary pictures as a function of the quantization parameter
Qp. We again use a widely accepted linear model [43]:

PSNRp = αp Qp + βp (3)

and its validation for theForeman QCIF andNews QCIF sequences is given on Figure 4. As the PSNR is given by10 log10
2552

Dp
,

we obtain from Eq. (2):

Qp =
10 log10

2552

χp
+ 10 ξp log10Rp − βp

αp

, (4)

which indicates that the quantizer scale factor can be approximated as a logarithmic function of the source rate. Finally, a
similar relation holds for the redundant pictures.
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Fig. 3. Verification of the model given by Eq. (2). Sequences:Foreman QCIF and News QCIF.
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Fig. 4. Verification of the model given by Eq. (3). Sequences:Foreman QCIF and News QCIF.

C. Channel distortion

The degradation due to missing packets is driven by the loss probability p, the size of the area damaged by one loss (it
corresponds to one slice in our scenario), and the temporal loss propagation factorη, which depends on the content of the
video sequence and quantization parameters.

To establish our channel distortion model, we distinguish between three cases: 1) primary picture (or a slice, if a picture
contains more slices) is received, 2) primary picture is lost but the corresponding redundant picture is received and 3)both
primary and redundant pictures are lost. We assume that the average distortion in the presence of losses can be written asa
weighted sum of the three distortions corresponding to the cases explained above:

Dav = (1 − p) Dp + p(1 − p) η1Dr + p2η2D0

= (1 − p)χpR
ξp

p + p(1 − p)η1χrR
ξr

r + p2η2D0 (5)

HereD0 represents the average distortion when a complete frame is missing and is replaced by the previous decoded frame,
while η1 and η2 are the temporal error propagation factors that reflect the increase in distortion if a lost primary picture is
replaced by its redundant version or copied from the previous frame respectively. Consequently, our model assumes thata
correctly received primary picture, although with possible erroneous references, does not induce any error propagation for later
frames. Typically,η1 depends on the ratio betweenQp andQr and the sequence activity, whileη2 can be approximated as a
function of sequence activity andQp. Modeling η1 as a polynomial of second degree ofQp

Qr
can provide a reasonably good

approximation, as can be seen on Figure 5, which shows the results for theForeman andNews QCIF sequences. Furthermore,
we modelη2 as a quadratic function ofQp, as illustrated on Figure 6.
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Fig. 5. Approximation of the parameterη1 as a second degree polynomial ofQp
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Fig. 6. Approximation of the parameterη2 as a quadratic function ofQp. Sequences: Foreman QCIF and News QCIF.

Even if the model is relatively simple, Eq. (5) provides a very good approximation of the end-to-end distortion, which is
helpful for selecting the encoding parameters of primary and redundant pictures. We validate the model first with theForeman
QCIF sequence encoded at 7.5 fps and 144 kbits/s. For this sequence, the following combinations of encoding parameters give
the desired bitrate:{(Qp = 25, Qr = 42), (Qp = 26, Qr = 34), (Qp = 27, Qr = 31), (Qp = 28, Qr = 29), (Qp = 29, Qr =
29)}. All the bitstreams are affected by losses taken from loss patterns given in [44] that correspond to loss rates of3%,
5%, 10% and20% respectively. Average distortions for multiple combinations and the corresponding models are depicted on
Figure 7. We can see that the proposed model fits very well the actual distortion values.

We further test the model on the News QCIF sequence encoded at10 fps and 48 kbits/s. The following combinations of
encoding parameters lead to the desired bitrate:{(Qp = 33, Qr = 51), (Qp = 34, Qr = 44), (Qp = 35, Qr = 40), (Qp =
36, Qr = 38), (Qp = 37, Qr = 38)}. Again, we measure the average distortion when all the bitstreams are subject to losses
taken from loss patterns corresponding to loss rates of3%, 5%, 10% and 20% respectively. Average distortions of several
combinations as well as the corresponding models are depicted on Figure 8 and confirm the validity of the end-to-end distortion
model.

D. Rate allocation problem

The above rate-distortion model estimates the end-to-end distortion, as a function of the encoding parametersQp andQr,
and the expected loss probability. We can therefore formulate the following distortion minimization problem. Given the total
available rateR and the packet loss ratio on the network,p, find the coding rates of primary and redundant picturesR∗

p and
R∗

r , respectively, such thatR∗
p + R∗

r ≤ R andDav given by Eq. (5) is minimized. We can write
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(R∗
p, R

∗
r) = argmin

Rp≥0,Rr≥0,Rp+Rr≤R

{(1 − p) χp Rξp

p

+p(1 − p) η1 χr Rξr

r + p2η2 D0}. (6)

Note that the choice of optimal source rates is equivalent tothe selection of the optimal quantizer scale factorsQp andQr

due to the relation of Eq. (4). Due to the nature of Eq. (6) thatis actually the sum of two concave functions, the optimal choice
of the encoding parameters based on the end-to-end distortion model is straightforward. It can even be reduced to solving the
optimization problem for one single variable since the optimal solution is to fully use the available rateR. For example, one
can solve the above problem for the variableRp by settingRr = R − Rp and by differentiating Eq. (6) and taking its first
derivative as an optimal solution forRp. We compare this solution to the optimal solution obtained by full search over the
space of(Qp, Qr) in the next section.

V. PERFORMANCE EVALUATION

In this section, we compare our scheme with three solutions proposed in the literature. We start by describing the testing
conditions. Then, we compare the average performance as a function of packet loss ratio on the network. Further on, we
investigate how the PSNRs evolve on a frame-by-frame basis,by applying the same random sequence of packet losses on the
different error resilient solutions. Finally, we examine the robustness of the schemes to erroneous estimation of the channel
loss probability.
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p Q
opt
p − model Q

opt
r − model Q

opt
p − real Q

opt
r − real Dreal

av − Dmodel
av

3% 25 35 25 42 0.72
5% 26 34 26 34 -1.98
10% 27 32 28 29 -2.47
20% 28 30 28 29 2.13

TABLE I
OPTIMAL QUANTIZATION PARAMETERS THAT MINIMIZE THE AVERAGE D ISTORTION, AS A FUNCTION OFp. SEQUENCE: FOREMAN QCIF AT 7.5 FPS AND

144KBITS/S.

A. Testbed

Our testbed corresponds to the common error resilience testing conditions specified in JVT-P206 [45], which specifies the
required testing sequences, together with the corresponding bitrates and frame rates, as well as the bitstream packetization.
The NAL unit size is limited to 1400 bytes, and the maximal size of each slice is chosen such that it can be fit in one NAL
unit. Therefore, depending on the bitrate and the sequence format, there may be more slices per frame. Finally, an overhead
of 40 bytes for the RTP/UDP/IPv4 headers is also taken into account when calculating the total bitrates.

We compare our MSVC-RP with three state-of-the-art schemes:

• MSVC scheme: the author in [4] consider several error concealment strategies when an entire frame is lost. In our work
we only consider the simple scheme, where a lost frame is replaced with the closest possible received frame from either
description, similarly to [17].

• Adaptive intra refresh (AIR) scheme [6], which takes into account both the source distortion and the expected channel
distortion (due to losses) and chooses an optimal mode for each macroblock based on Lagrange optimization. Therefore,
it is likely to place intra macroblocks in more ”active” areas.

• Random intra refresh (RIR) scheme, which increases the robustness to losses by randomly inserting macroblocks whose
number is proportional to a packet loss rate [46].

To have a fair comparison, we fix the total bit rates for all theschemes to be equal. In case of loss, parts or entirely lost
pictures are replaced with their redundant versions taken from the alternate description in our MSVC-RP implementation. If
both primary and redundant picture are lost, we copy the temporally closest decoded picture from either description. For the
other schemes, in case of partial frame losses, the missing pieces are copied from the corresponding places in the previous
pictures. If an entire picture is lost, we copy the entire previous picture, as it is implemented in the MSVC-RP scheme. In
addition, only the first frames in all the video sequences areencoded asI pictures.

To simulate losses on the network, we used four lossy patterns, included in the ITU-T VCEG Q15-I-16 [44], that correspond
to average packet losses of 3%, 5%, 10% and 20%. The pattern files were obtained from the real-world experiments on the
Internet backbone between one sender and three reflector sites. We have tested all the sequences specified in JVT-P206 and
at all the loss rates. To obtain statistically meaningful results, all the bitstreams are concatenated and tested with the entire
loss patterns containing 10000 characters, for all the packet loss rates. We show here only the results for the three sequences:
News QCIF, Foreman QCIF and Stefan CIF. Similar results havebeen obtained for other sequences, and can be found in [47].

B. Optimal solution vs model-based

We first evaluate the performance of the model-based optimization strategy, relying on the Eq. (6), and we compare it
to the one given by an optimal selection of the coding parameters. The optimal values are obtained by full search over all
combinations of quantization parameters that satisfy the total bitrate constraint.

Table I shows the optimal quantization parametersQp andQr, obtained by the model-based optimization or by full search
and real measurements, for theForeman QCIF sequence encoded at 7.5 fps and 144 kbits/s. In addition, the last column in this
Table shows the difference between the actual distortion obtained by measurements and the one obtained with the distortion
model. Similarly, Table I shows the same results for theNews QCIF sequence at 10 fps and 48 kbits/s. We can see that the
optimal quantization parameters obtained from the model generally match the real optimal parameters very well. In addition,
we can see that the difference between the real and modeled values for distortions is very small, which confirms that an
effective choice of the coding parameters can be found by thedistortion model.

We can observe that the values of the quantizer scale factor of the redundant pictures,Qr, decreases when the loss rate
increases, as expected. When the losses are very high (20%), the primary and redundant pictures are even coded with very
similar quantization parameters. The increase in quality of redundant pictures comes clearly at the expense of decreasing the
quality of primary pictures when the overall bit rate is constrained. This however improves the average distortion, since the
probability of using the redundant pictures becomes significant. On the other hand, when the loss rate is low, the optimal
allocation tends to give as much rate as possible to primary pictures, while the redundant pictures are made very coarse.In
this case, the system avoids wasting bits on the redundant pictures that are unlikely to be used in the decoding process.
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p Q
opt
p − model Q

opt
r − model Q

opt
p − real Q

opt
r − real Dreal

av − Dmodel
av

3% 33 51 34 43 -2.45
5% 34 44 35 41 1.23
10% 35 40 36 39 2.49
20% 36 38 37 38 2.7

TABLE II
OPTIMAL QUANTIZATION PARAMETERS THAT MINIMIZE THE AVERAGE D ISTORTION, AS A FUNCTION OFp. SEQUENCE: NEWS QCIF AT 10 FPS AND48

KBITS/S

C. End-to-end distortion analysis
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Fig. 9. Average PSNR, for four schemes and four loss patterns. Sequence: News QCIF, 10 fps, 48 kbits/s.
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Fig. 10. Average PSNR, for four schemes and four loss patterns. Sequence: Foreman QCIF, 7.5 fps, 144 kbits/s.

We analyze here the performance of the different error resilient coding solutions in terms of average distortion, for different
loss ratios. The average PSNR is illustrated in Figures 9, 10and 11 for different test sequences (i.e.,News QCIF at 10 fps
and 48 kbits/s, Foreman QCIF at 7.5 fps and 144 kbits/s, and Stefan CIF at 512 kbits/s respectively). We compare our optimal
MSVC-RP solution, with the MSVC, RIR and AIR schemes, as wellas with MSVC-RP with maximal redundancy (i.e.,
Qp = Qr). It can be seen that the MSVC-RP scheme performs generally the best at all packet loss rates, and that the AIR
scheme also provides an efficient solution at either low or high packet loss rate, depending on the activity in the vide sequence.
At 10% loss probability, the MSVC-RP scheme outperforms the AIR and MSVC schemes by approximately 2.2 and 2.7 dB
for the News sequence, and the gain reaches 3 dB and 8 dB respectively for the Foreman sequence. The quality gain due
to MSVC-RP generally increases with the loss rate, since theredundancy offered by the design of two descriptions is really
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Fig. 11. Average PSNR, for four schemes and four loss patterns. Sequence: Stefan CIF, 30 fps, 512 kbits/s.

beneficial in this case, compared to joint coding with only one coding thread. For the complex sequences like Stefan encoded
at medium bitrate, we can see that the performance of the MSVC-RP stays close to the AIR scheme, due to the limitations of
the simple error concealment method that is unable to provide a sustainable quality when the loss of one description becomes
frequent. On the contrary, the coding of Intra blocks in areas of high activity helps to improve the quality for the AIR scheme
at high loss rate.
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Fig. 12. Average PSNR, as a function of encoding rate, when PLR = 5%. Sequence:News QCIF, 10 fps.

We analyze the performance of the proposed scheme on a wider range of rate constraints, and we compare it to the AIR
scheme. Figures 12 and 13 shows the average PSNR as a functionof the rate constraintR, for theNews andForeman sequences
respectively, when the loss rate is equal top = 5%. We can see that our approach gives the best performance in the whole
range of bitrates, from 0.4 dB at 48 kbits/s to 5.3 dB at 240 kbits/s for theNews sequence, and from 0.6 dB at 32 kbit/s up to
2.7 dB at 192 kbits/s for theForeman sequence. Moreover, the gain increases as the bitrate increases. We have obtained very
similar results for all the other loss rates.

Finally, Figure 14 presents the temporal evolution of the PSNR for the different encoding schemes, for the same loss trace.
The error pattern is taken from a random entry in the error pattern file. The MSVC-RP scheme generally gives the best decoding
quality. We can also notice that the AIR succeeds to catch up with our scheme, but with big variations in quality and with the
performance similar to MSVC-RP in short intervals. The MSVCscheme performs very bad before the scene change in the last
frames. Then it recovers, thanks to inserted intra macroblocks after the scene change, but the frame-by-frame quality varies
in significant amounts, up to 12 dB between two consecutive frames. Overall, it can be observed that the variations of quality
for the MSVC-RP scheme are much smaller than for the other schemes. This illustrates the benefits of the design of two
descriptions that can decoded independently. Similar results have been observed for other loss rates, and other sequences [47].
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Fig. 13. Average PSNR, as a function of encoding rate, when PLR = 5%. Sequence:Foreman QCIF, 7.5 fps.
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Fig. 14. Reconstructed video quality, on a frame basis, whenPLR = 10%. Sequence: Foreman QCIF, 7.5 fps, 144 kbits/s.
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D. Incorrect loss rate estimation

We analyze here the robustness of the encoding schemes to incorrect loss rate estimation. We compare the MSVC-RP and
the AIR approaches that are optimized for a given loss ratiop, but where the actual loss rate is different from the expected one.
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This is actually a common situation in practical scenarios.Figure 15 presents the end-to-end quality for theForeman sequence
at 7.5 fps and 144 kbits/s, when all the schemes are optimizedfor p = 5%, but when the actual loss ratio varies from3% to
20%. For the sake of completeness we also plot the best performance of MSVC-RP and AIR at each loss ratio. The difference
between the optimized and actual performance for both schemes are 0.39 dB and 0.14 dB respectively, whenp = 3%. Not
surprisingly, the gap between the optimized and actual performance increases as the actual loss ratio moves away from5%. At
p = 10% these gaps for both schemes are 0.9 dB and 1.33 dB respectively, while atp = 20% the corresponding gaps are 1.32
and 2.78 dB. Therefore, we can conclude that MSVC-RP is more robust to unknown network conditions. This can be a very
desirable property, especially if the sender cannot changethe encoding parameters as fast as the network conditions change.
A similar behavior is observed for the other sequences, witheven a larger gain for the MSVC-RP scheme when the sequence
has low complexity, like theNews sequence.

VI. I MPROVED FRAME RECONSTRUCTION

A. Combination of pictures

In the first part of this paper, we used to discard redundant pictures if the corresponding primary pictures are availableat
the decoder. This solution has an advantage of simplicity, but it is clearly suboptimal. Although a primary picture is correctly
received, it may happen that its reference frames are affected by losses, which causes error propagation that also affects the
primary picture. At the same time, it may happen that the thread from which a redundant picture is decoded is error-free or
less affected by transmission errors. In these scenarios, choosing a redundant instead of a primary picture may be beneficial.
This especially makes sense if the quantization parametersfor primary and redundant pictures of the same original picture are
very similar, which further induces similar visual qualities for both frames. Since primary and redundant pictures aredecoded
from different threads, the transmission error propagatesonly in one thread or description. We can therefore choose touse
either frame in case of loss in the reference frames, depending on the which coding thread is less affected.

 

m 
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Fig. 16. Macroblock rate-distortion modeling: primary andredundant pictures from framei are decoded from different threads. We can model the average
distortion on each macroblock by tracking the losses that occurred in the corresponding threads.

We propose in this section to improve the decoding quality bycombining the primary and redundant pictures at the decoder.
We propose a rate-distortion model, which estimates the distortion of each macroblock, by tracking the state of reference areas
in previous frames. In more details, let us consider a time instant i and suppose that both primary and redundant pictures
are received, as depicted in Figure 16. We can determine the state of the macroblocks in primary and redundant pictures
with coordinates(k, l) (wherek is the height andl is the width of a macroblock), by tracking the motion from thereference
frame along the corresponding coding threads. That means that we can track which reference frames are affected by losses
and at which time instance that happened. The decoding stateof a spatial area in a reference frame can be either (i) correctly
received, (ii) taken from a redundant picture, or (iii) copied from the previous frame. In the last two cases, we can modelthe
resulting error propagation, and decide for each macroblock of a frame if we should choose a primary or a redundant picture
for the final reconstruction, in the case where both descriptions are received. The performance of the MSVC-RP scheme can
be improved by more than 1 dB at high loss rates by adaptive decoding.

B. Macroblock distortion model

We now propose simple rate-distortion models for capturingthe impact of loss propagation. We can distinguish two typesof
distortions due to error propagation,∆Dr and∆Dc, which correspond to using a redundant picture and temporalconcealment,
respectively, for decoding reference frames. Generally, both distortions are decreasing along time, when the decodermoves
further away from the affected frame. We illustrate the behavior of the distortion due to temporal error propagation in Figure 17
that shows the impact of replacing the primary frame15 with a redundant frame, on the next frames of the encoding thread.
The results correspond to the Foreman QCIF sequence encodedwith Qp = 25 andQr = 42. We can see that the distortion due
to error propagation indeed attenuates with time, and that the decay is close to exponential. This rather intuitive behavior
corresponds to the observations reported in other works [48], [49]. We therefore assume that the distortions present an
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Fig. 17. Propagation of error∆Dr(j) in the same encoding thread when the15th primary frame is replaced by a redundant pictures in the Foreman QCIF
sequence encoded withQp = 25 andQr = 42 (j = i−15

2
).

exponential decay with time. We denote by∆Dr(i − m) and ∆Dc(i − n) the distortion observed in framei due to a
loss in framen, which has been replaced by the corresponding redundant picture or respectively concealed. We can write

∆Dr(i − m) ≈ ear·(i−m)+br , i ≥ m (7)

∆Dc(i − n) ≈ eac·(i−n)+bc , i ≥ n, (8)

wherear, ac, br, bc are parameters that depend on the sequence content and encoding rates. These parameters can be estimated
at the encoder, by simulating the corresponding losses of primary and/or redundant slices, and can be communicated to the
decoder. We want now to approximate the average distortion in each macroblock that represents the basic unit for motion
estimation. We assign the following indicator values to each decoded pixel:

• ”C”, if both primary and redundant slices carrying information about this pixel are lost
• ”R”, if a primary slice is lost but the corresponding redundant slice is received
• ”G”, otherwise.

These indicators permit to track errors over time, and the resulting distortion can be estimated based on the history of the
macroblock references. We propose the following distortion model for computing the average end-to-end distortion of a
macroblock with coordinates(k, l) in the primary picturei:

Dp(i, k, l) = χpR
ξp

p +

⌊ i
2
⌋∑

j=1

{[I(i − 2j, k
p
j , l

p
j ) == R] · ∆Dr(i − 2j)

+[I(i − 2j, k
p
j , l

p
j ) == C] · ∆Dc(i − 2j)} (9)

where

k
p
j = k +

j∑

t=1

mvy(i − 2(t − 1), kp
t−1, l

p
t−1) (10)

l
p
j = l +

j∑

t=1

mvx(i − 2(t − 1), kp
t−1, l

p
t−1) (11)

and
k

p
0 = k (12)

l
p
0 = l, (13)

where ” == ” is the equality operator. The first part of the distortion is due to source distortion, while the second part
represents the additional distortion due to error propagation. The indicators report the possible errors in referenceframes from
the same coding thread. Note that Intra macroblocks reset the temporal error propagation, in which case the indicator functions
are reset to ’G’ for the corresponding pixels. The parameters mvx(i, k, l) andmvy(i, k, l) denote the horizontal and vertical
components of a motion vector for the macroblock with coordinates(k, l) in the framei. Finally, we can write the expected
distortion for macroblocks in redundant frames in a very similar way.
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C. Performance analysis

 

Frame n+2 
primary picture  

Frame n+1 Frame n 

Frame n+2 
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Best decoding choice

Fig. 18. Reconstruction of then + 2th frame from the Foreman QCIF sequence (Qp = 28, Qr = 29) when its both primary and redundant picture are
received. Here thenth frame, used as a reference for then+2th primary frame, is entirely lost, while then+1th frame, used as a reference for then+2th

redundant frame is correctly received. As can be seen, choosing the redundant picture can greatly improve the quality and reduce the error propagation.

We analyze here the performance of the improved decoding based on combination of redundant and primary pictures, with
the simple rate-distortion model proposed above. We first show in Figure 18 that the choice of a redundant picture can improve
the quality of the decoded sequence. In the case where both primary and redundant pictures are available, it is not always
effective to discard the redundant picture, and to use only the primary picture. According to our distortion model, the primary
picture, although it has been correctly received, has a muchhigher average distortion due to errors in previous frames of the
same coding thread. Therefore, the redundant picture is chosen for decoding, which also improves the decoding quality of the
subsequent frames in the same thread.
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Fig. 19. Minimal achievable average distortion, as a function of a probability of loss, p. Sequence: News QCIF, 10 fps, 48kbits/s.

We report on Figures 19 and 20 the benefits of the improved decoding process in terms of average distortion for theNews
QCIF sequence encoded at 48 kbits/s and 10 fps andForeman QCIF sequence encoded at 144 kbits/s and 7.5 fps, respectively.
We can see that the PSNR quality improvement ranges from 0.07dB whenp = 3% to 0.56 dB at 20% loss rate for the simple
News sequence. In theForeman sequence that contains more temporal activity, we can see that the gain ranges from 0.07
dB whenp = 3% to 1.14 dB whenp = 20%. In general, the improvement at low loss rates is rather small, and gets more
important at high loss rates. As the loss rate gets higher, itbecomes very likely that an entire frame can be lost, in which
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Fig. 20. Minimal achievable average distortion, as a function of a probability of loss, p. (Sequence: Foreman QCIF, 7.5 fps, 144 kbits/s).

case a serious quality degradation can be seen in subsequentframes. At the same time, the probabilities that both threads are
seriously affected stays small, so that the possibility of choosing the frame to decode becomes beneficial.
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Fig. 21. Frame-by-frame behavior of the improved and old MSVC-RP. Sequence: News QCIF, 10 fps, 48 kbits/s.

We finally represent in Figure 21 the temporal evolution of the decoding quality in one specific realization of the loss
process whenp = 20%. It shows that the choice of a redundant picture that has a correct reference is a much better option than
choosing a primary picture whose reference has been lost. Inthis specific scenario, the improved MSVC-RP scheme provides
an average gain of 0.83 dB over the old scheme. Discarding theredundant pictures by default is therefore not optimal, as the
additional information provided by these pictures can be very helpful against temporal error propagation.

VII. C ONCLUSIONS

In this paper, we have proposed a simple and standard compatible Multiple Description Video Coding scheme based on
redundant pictures. We analyzed the rate-distortion behavior of the proposed solution in lossy scenarios, which permits to
derive a strategy for the choice of the encoding parameters that control the redundancy and minimize the end-to-end distortion.
Compared to state-of-the-art error resilient coding solutions, the proposed scheme offers significant gains in terms of average
PSNR quality, fewer temporal fluctuations in the picture quality, and improved robustness to bad estimation of the loss
probability in the network. We finally propose to improve thedecoding process by choosing, on the macroblock level, between
the primary and redundant macroblocks, based on their expected distortions, which proves to be beneficial at high loss rates.
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