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Abstract

The paper addresses the media-specific rate allocatioriepmoim multipath networks. The streaming rate on each path is
determined such that the end-to-end media distortion ismimed, when the receiving client aggregates packets vedevia
multiple network channels. As it is difficult for the mediarger to have the full knowledge about the network status, rep@se
a distributed path selection and rate allocation algoritfiime network nodes participate to the optimization strgtbased on
their local view of the network status. This eliminates tleea for end-to-end network monitoring, and allows for thplogment
of large scale rate allocation solutions. We design an ggtiate allocation algorithm, where the media client itesdy updates
the best set of streaming paths. According to this rate aflog, each intermediate nodes then forwards incoming aniéalivs on
the outgoing paths, in a distributed manner. The proposgeritim is shown to quickly converge to the optimal rate @dlion
solution, and hence to lead to stable rate allocation swistiWe also propose a greedy distributed algorithm thaeees close-
to-optimal end-to-end distortion performance in a singgsg Both algorithms are shown to outperform simple hecHigtsed
rate allocation approaches for numerous random netwoidgpes, and therefore offer an interesting solution fodraespecific
rate allocation over large scale multi-path networks.

I. INTRODUCTION

As the internet is far from providing any widely deployed targtee of service solution, efficient media streaming atyiat
have to be devised to cope with the weaknesses of the netwlvdsiructure, and provide an acceptable quality to maitiia
applications. Lately, multipath streaming emerged as dectfe solution to overcome some of the lossy internet path
limitations [1], [2]. It allows for an increase in streamidgndwidth, by balancing the load over multiple network path
between the media server and the client. It also providesisnalimit packet loss effects, when combined with erroiliess
streaming strategies, and scalable encoding capabiliettipath streaming can be deployed in content deliverywoeks,
overlay networks, or wireless and peer-to-peer scenavbgre a client has access to the media sources through sariou
network paths.

This paper addresses the problem of distributed mediafgpeate allocation for streaming applications in multipat
networks. We build on our prior work [3] that provides a gexidramework for the analysis of joint path and rate allomati
in multipath streaming, driven by media-specific qualitytries. It considers a network model composed of multiple fipw
and a streaming server that can adapt the media source ridite tansmission conditions (by scalable coding, or tradisqy,
for example). Given the knowledge of the network parametés server selects an optimal set of transmission patbegal
with their respective transmission rate. However, suchraey requires end-to-end monitoring, and the knowledgih®
complete network status at the server, which clearly lintits implementation of such algorithms to small-scale netwo
scenarios. Therefore, we propose in this paper a distdbsidution, where intermediate network nodes capable ofllian
application-level information, participate to the pattestion and rate allocation algorithm, based on their lodaW of the
network.

The joint path selection and rate allocation performs fheedy, until all intermediate nodes converge to a (unigapdimal
solution. Initially, the intermediate network nodes tdustreport the resources available to the streaming sesBased on
this information, the client determines the best path $elecand rate allocation, and issues flow reservation raguies
the intermediate network nodes and the streaming servercliént-based flow reservation is then accommodated witien
network on a node-by-node basis. Such a distributed syratiémyvs to relax the assumption of full network status knedge at
the server, and to eliminate the need of end-to-end netwarkitoring systems. We design an optimal path selectionrélgo
that quickly converges to the optimal rate allocation sotlutin parallel, we propose a fast, one-step algorithmgchviprovides
a close-to-optimal solution. The performance of both athors are analyzed in details, and compared to simple hauhased
approaches. Thanks to the optimal media-specific allocatlte proposed algorithms clearly outperforms other smistin
terms of media quality metrics, and provide effective dohg to streaming rate allocation in medium to large scaléipaih
networks.

This work has been supported by the Swiss National Scienoadation, under grant PP-002-68737.



The rest of this paper is organized as follows. Section Ituses the related work and motivates the need for distdbut
rate allocation solutions. Section Il describes in detiad streaming scenario considered in this paper, and pgeetenrate
allocation optimization problem. We present our distrdalisolutions in Section IV and we analyze the charactesistiche
proposed algorithms in Section V. Extensive simulatiorultssare finally presented in Section VI, for numerous nekwor
topologies, and for a practical scenario that is analyzedieitails.

II. RELATED WORK

This paper addresses the multipath routing problem from diaregoplication perspective. The process of selecting &tlesp
for transmission, and their respective rate allocatiorgets an improved streaming experience measured in termiled
distortion. Previous works discuss similar problems, buiags consider the path selection problem from a networktpof
view only. Numerous routing algorithms have been proposedptimize a given network QoS metric [4], to improve the
performance of TCP over wireless Ad-Hoc networks [5], tacdiger multiple available network paths to one source [6}toor
optimize the network resource allocation in overlay makits [7], [8]. In addition, the authors of [9] adapt the DSRtpcol
for ad-hoc networks to provide multiple viable paths for timédia transmissions. However, none of these works spebifi
considers the multimedia application characteristich@rbuting decisions. They rather rely on routing algorghtmt find the
best path (or set of paths) given some established netwotkameNhile this may be optimal in terms of network utilizat,
it is however suboptimal from the point of view of the medieeatning application. In 30-80% of the cases, the best paths
found by classic routing algorithms are suboptimal from aliagerspective [10].

In the same time, several works have investigated the probfemultipath streaming, as a way to increase the mediatguali
of service on lossy network infrastructures. Neverthelessst of the research work dedicated to multipath strearfongses
on the streaming process itself (media scheduling aspdmis)generally not towards finding which paths should idebi
used for the streaming application, for a given network togp between a server and a client. More specifically, thetipath
problem is specifically addressed in the case of media singgim [11], for a multicast scenario. The authors presenE& F
scheme combined with server diversity and a packet schegloliechanism, which intends to minimize the cumulativeodiiin
of individual erroneous video packets. Multi-stream caggdicombined with multipath transmission, has been predeantgl2]
as a solution to fight against network errors in an ad-hoc atwnvironment. In the same time, the authors of [13] aralyz
a multiple path streaming scenario for the transmission widao sequences encoded in multiple descriptions. Otheksvo
in distributed video streaming [14]-[16] deal with resaualocation and scheduling on multiple, a priori choserastring
paths, with the final goal of minimizing the overall distortiperceived by the media clients. All these works rely onvegi
set of transmission paths, and try to optimally exploit éhestwork resources. However, none of them specificallyetarthe
optimal choice of the streaming paths, and the relative alibeation problem.

In this work, we address the problem of joint selection ofwwek paths, and rate allocation, such that the end-to-erdiane
distortion is minimized. The work presented in [17] addessa similar problem of choosing the best paths from a media
perspective. However it only investigates the efficiencyath switching schemes from the media application pointiefvy
without analyzing the benefits of multipath streaming. ldliidn to considering multipath strategies that have bdwws to
improve streaming performances, our work innovates by @i a distributed solution for path computation. It alees
the need for expensive end-to-end path monitoring systantshence can be deployed in large scale network scenaniws. O
streaming framework is quite generic, and applicable to strgaming system that obeys an additive rule for the agtgdga
transmitted rate and loss process. The optimal routing atel allocation decision determines the best usage of erddo
transmission paths, so that the media distortion is miréchiwhen network flows are aggregated at the decoder.

IIl. THE MULTIPATH RATE ALLOCATION PROBLEM
A. Network and Video Model

We consider that the media streaming application is deployea large scale network, modeled as a fully connectedtditec
acyclic graphG(V, E), between the streaming servgrand the clientC' (Figure 1).V is the set of nodes in the network, and
E is the set of links. Each nod¥; € V' has alocal view\; = {I;,0;} of the network topology, wherg C F andO; C £
represent the sets of incoming, and respectively outgogétgark links to, and from nodeV;. Each link L,, € E has two
associated positive metrics:

« the available bandwidtp, > 0 expressed in some appropriate unit (e.g., kbps), and,

« the average packet loss probability € [0, 1), assumed to be independent of the streaming rate.

We defineP,, 1 <i < n, as an end-to-end path betwesrand C in G, with parameter$?, andp{, being the end-to-end
bandwidth and loss probability respectively, andhe total number of distinct paths. A fldviransmitted on pattP:, has a
streaming rate’, < b, = [min (pu), and is affected by the loss probability, =1 — [ (1 - pu).

were Ly€P}

IThroughout this paper, the terms flow and end-to-end netwath are used interchangeably.
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Fig. 1. Multipath Network Scenario and Network View at Nodg.

The video quality is then assumed to be dependent on thel atteaming rate and loss probabilities. We consider that th
end-to-end media distortion can be computed as the sum cfahece distortion and the channel distortion. It is commonl
admitted that the quality experienced at the client, depemd both the distortion due to a lossy encoding of the media
information, and the distortion due to losses experiencethé network. The source distortidbs is mostly driven by the
encoding rateR (also called streaming rate in this paper), and the mediaeseg content, whose characteristics influence
the rate-distortion characteristics of the encoder. Thannobl distortionD;, is dependent on the average loss probabdityf
video information, and the sequence characteristics. fbugyhly proportional to the number of video entities (eftames)
that cannot be decoded, and the loss probabiliorresponds to the actual video packet loss ratio when videoes are
encapsulated into distinct network packets. The end-tbelstortion can thus be written as:

D=Ds+Dp=a-R+f-¢, 1

wherea, 3 € RT and¢ € [—1,0) are parameters that depend on the video sequence. In the ahudtipath streaming scenario,
the streaming rate can simply be written as the sum of the @itéhe different flows :

n
R = To -
i=1

In this paper, we assume that the streaming server can tenmedia source rate to the transmission conditions (by lsieala
coding, or transcoding, for example). In the same time, whenloss processes on different paths are independentyénallo
loss probability becomes : o
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The end-to-end distortion model is a simple and general cpiation, suitable for most common streaming strategies
where the number of packets per frame is independent of tbedérg rate. Note that under the given network assumptions,
the video distortion metric is insensitive to the actuaklarror model, and is only influenced by the average loss frititya
on the given network segment. A validation of this model tigio video experiments can be found in [3].

The remainder of this section presents the optimizatiomlpro, whose aim is to find the optimal flow rate allocation in
order to maximize the received media quality at the cliamthle same time, we provide an overview of the solution in #eec
where the available end-to-end network paths are knownvaraze by the server. We then present the distributed ofstioiz
problem that is solved in the rest of the paper. The assumptiofull network status knowledge at a given node can thezefo
be released, and the need of end-to-end monitoring mechar@bminated.

€ =

B. Optimal Rate Allocation

This section briefly overviews the solution to the optimaérallocation, when the server has full knowledge about thieis
of the network. In previous work [3], we have derived the gtiehl rules that allow to derive the optimal solution to floent
path selection and rate allocation problem, with a simptgithm whose complexity is linear in the number of avaiabl



end-to-end network paths. Namely, once the parameters pétils P/, are known bysS, the three following theorems lead to
the optimal greedy rate allocation solution in any networ&pd. Interested readers are referred to [3] for ample d&ons
and proofs of these theorems.

Theorem 1 (On-Off Flows)Given a network grapl with independent flows, having rates, € [0,b%] and a distortion
metric as defined in Eq. (1), the optimal solution of the rdtecation problem when all the paths are disjoint, lies a th
margins of the value intervals for atf,, i.e., the optimal value off, is either0 or b, Vi: 1 <i < n.

Theorem 2 (Parameter DecouplingBiven a network grapliZ with independent flowsF, having rates', € [0,b] and a
distortion metric as defined in Eq. (1), the structure of thémal rate allocation isb* = [b}, bZ, ..., b5, 0,0,...0].

Theorem 3 (Bottleneck Bandwidth Sharinget L, be a bottleneck link for the set of paths = {P%} in G. The bottleneck
link bandwidthp,, shall be shared among patR$ in a greedy way, starting with the path affected by the lowes probability.

When the characteristics of all pat#¥, are known by the serve§, Theorems 1 to 3 show that the optimal rate allocation
can be achieved by a greedy path selection algorithm thids stéth the paths affected by the smallest end-to-end lossgss.
In the same time, the rate of bottleneck links that are shbyetiultiple network paths should also be split in a greedy mean
among media flows. Once a pafff, is chosen for transmission, it is optimal to stream at rdte= b., from the media
application perspecti¥e Based on these rules, the optimal path selection and riteatibn can be achieved by a greedy
algorithm, which provides a low complexity solution to madipecific resources optimization in generic network séesa
We now relax the assumption of full network knowledge at theaning server, and present distributed mechanisms for
computing the available end-to-end paths on the networhgré/e build on the previous theorems to eventually comphee t
optimal rate allocation on these paths.

C. Distributed Optimization Problem

We now formalize the distributed path selection and ratecalion problem addressed in this paper. When no single node
N; € V (including S), is aware of the entire network topology, we want to find the optimal path selection and flow rate
allocation that minimizes the overall distortidn at the client. Under the assumptions that the streamingceatéde controlled
(e.g., by scalable encoding, transcoding or packet filigriand that packet loss rate is independent of the strearategthe
serverS adapts the video encoding rate to the aggregate rate of tikalale network paths used for streaming, and to the
loss processes experienced on these paths. The optimizatblem can be formulated as follows:

Distributed Multimedia Rate Allocation Problem (DMMRGiven the network grap&(V, E') whose linksL,, have a maximal
bandwidthp,, and an average loss ratiQ, given the node local views;, VN; € V and given the video sequence characteristics
(' = (a, 3,€)), find the complete set of end-to-end paffjs, 1 < i < n and the optimal rate allocatioR* = [ré&, ...r2]* that
minimizes the distortion metri®:

R* =arg mina-RE+8-¢) , 2)
R

n

noog i
where R represents the set of possible rate allocatiorGgi, £'), R = 27’5 ande = %
i=1 i=1TC

IV. DISTRIBUTED RATE ALLOCATION
A. Distributed path computation

We present in this section two algorithms for distributedhpselection, and rate allocation. The algorithms differthie
computation of the paths between the ser§aand the client”'. Before describing in details the distributed path comiona
and rate allocation strategies, we briefly introduce theatimt and assumptions necessary to their presentatiorallRbat
every nodeV; € V has only a local view of the network topology, denotedy= {I;, O;}. I, andO; are the sets of incoming
and respectively outgoing links to/froV;. We assume thad¥, has an estimate of the bandwidil and loss probability,,
on the outgoing links (i.eYL, € O;).

Let P* denote a path connecting the nodig to the server. In addition to maximal bandwidth and loss probability?,

a path is characterized by two decisions flags that are usedebglistributed rate allocation algorithms. The flflgis a path
reservation flag that can only be set or reset by the cligntespectively the serves, and the flagi® is a decision flag that
can be updated by any intermediate node on the RithWhile f* is used to advertise the network flows requested by the
client C, d* is used to signal the feasibility of a requested flow at anrinégliate node.

We denote byil; = {P¥} the set of all distinct paths between the sereand the nodeV;. Note that two distinct paths
PF and P! may not necessarily be fully disjoint, as they may share anmaare network links. Without loss of generality, we

2Note that in our developments we assume ﬁgatis the total fair share of bandwidth allocated by the netwiorkthe streaming application on paﬂ’g,
and that the streaming flows do not suffer form self-congasti



assume that the paths i are ordered according to the increasing value of the pathdosbabilitie?. Let finally IT¥ C TI;
be the set of distinct paths between the seemd the nodéV;, which share the incoming link.,, € I;.

End-to-end paths between the server and the client are thkeinta distributed manner, since no node has the full keolgke
of the network status. These paths are computed by pathstxterwhich is performed independently at each network node
We define— as the path extension operator, which adds a lipke O, leaving nodeN;, to an incoming pathP* € II;,. In
other words, if linkL,, connects noded/; and.V;, we can WriteP} = Pik — L, with Pf e Iy ande e II;. We can compute
the bandwidth and loss probability parameters for the elddrpathP; = P* — L, respectively a$! = min(b}, p,), and
ph=1—(1=p})(1 = pu).

We propose two different methods for distributed path cotatpan, which respectively constructs all the possibléhpaor
builds them in a greedy manner. Formally, the two path exte@nsiles can be stated as follows.

Rule 1: Each incoming pattP* < II; at nodeN; is extended towards all the outgoing links € O;.

If the set of outgoing links directly connedf; to several nodedV;, the set of extended paths at nalg can be written as
Q; ={P! = PF — L, | PF € 1I;, L, € O;}. The subset of the extended paths that borrow the particuigoing link L.,
is written asQy = {P! = P} — L, | P} € II;}. All paths with null bandwidth are obviously omitted. It ia®y to see in
this case that¥| = |1I;|, and that|Q;| = |IL;||O;|. The size of the set is multiplicative in the number of incogflows and
the number of outgoing links [18]. It has to be noted that uese allocation for flows i) is constrained by the available
bandwidth on joint bottleneck links, and that all the pattesymot be used simultaneously at their full transmissiordiadith.

Rule 2: The incoming pathsP* € TI; at nodeN;, taken in order of increasing loss probabilitf are extended towards
the outgoing linksL,, € O;, taken in decreasing order of reliability. Similarly to atesafilling algorithm, the total outgoing
bandwidth is greedily allocated to the set of incoming path#til all the incoming paths are extended, or until no more
bandwidth is available.

When the sets of outgoing links, and the incoming paths atk balered along increasing values of loss probability, the
set of extended paths at nodé can be written a¥’; = {P} = P} — L, | Y>.0_, pu > sk b;-’andzz;} pu < F_ br)
The subset of the paths In; that borrow the outgoing linlC,, is denotedl’}. Note that in this case, simultaneous resource
allocation for all flows inI’;, is feasible onGy.

Based on the distributed path computation that followsegitRule 1, or Rule 2, we now describe the rate allocationegjat

B. Distributed path selection and rate allocation

The distributed path computation and rate allocation algmis proceed first by determining the paths available betwhe
server and client, and then by reserving paths accordinge@mptimal allocation computed by the client. It proceedsnia
phases, the path discovery, and the path reservation phiaspsctively. To this aim, control messages are exchabgeeen
the serverS and the clientC' via forwarding by the intermediate nodes. We assume thdesxie of a bidirectional control
channel between any two nodesGhthat are connected by a network segmént In order to derive exact bounds on the
performance of our algorithms, we assume that the contrahicél is reliable, and that nodes are synchronized (i.eretls
a bounded time interval in which all nodes receive all dagitdacontrol packets). Note that these assumptions are uoiatr
to the design of the proposed algorithms. For example, lomme synchronization is assumed in most works addressing
decentralized systems [19] in order to obtain concrete dswm protocol performance. This could be easily achieved by
employing separate synchronization protocols [20].

The server sends on all outgoing links path discovery messdt:th*, which are forwarded by the intermediate nodes
on the control channel associated with lik. At each intermediate node, theath messages contain the informatidif (
and p¥) related to every possible flow between the server and Mgdalong with eventual information related to previously
successfully reserved flows. The node then extends the mathrding to Rule 1 or Rule 2, and forwards path discovery
messagePath® that basically contains information about the paths thatdwe links L,,. Depending on the path extension
strategy, the client will eventually receive informatioboart all possible paths, or only a subset of them that are atedpin
a greedy manner, based on decreasing reliability.

Upon reception of path discovery messages, the cliemomputes the optimal path selectidlf, using the Theorems 1
to 3, and the information it gets from the nodes about enentdpaths. It should be noted that these theorems greatplifsim
the rate allocation, since they state that paths shouldtheraised at their full bandwidth, or simply dropped. Themtithen
initiates path reservation messag&gsv", which are forwarded by the network nodes to the server, erbttkward control
channel associated with liAkL,,. A path reservation messadeéesv® contains information about the path(s) that should be
reserved on linkL,, for the streaming session (e.g., requested bfteend-to-end loss probability?, and flagsf* and d*,
both set to 1 byC). However, there is no guarantee that all path&ljn can be accommodated simultaneously. Oncerallv
messages are received at ndde(one for each outgoing link), the nodé attempts to greedily allocate the bandwidth for the
requested flowsdt = f* = 1) on the outgoing links, following the order of increasingsgprobabilitypf.. It eventually marks
the flows that cannot be reserved at the requestedi¥atby setting the flagi* = 0. Once a valid subset of pathk C I, is

3Due to practical implementation considerations, an enfptyv message should be sent even on links that do not contain aesvea flow. Alternatively,
timeouts should be implemented at each intermediate node.



Algorithm 1 Distributed Path Selection and Rate Allocation Algorithms

servers: node N;:

upon receiveResv", VL, € Og: upon receiveResv", VL, € O;:

1. computell}, based on flagg™*; 1.V pathsPF € {PF}|PF — L, € Resv" \ IT*:

2. updatell* based on flagg”; setd* = 0 if b, > pl,,

3.if IT* = () or IT* = IIf,, returnII*. where the available output bandwidtf)

4. else update network view’ is updated according to a greedy allocation;
sendPath, VL, € Og. 2. sendResv?, VL, € I;.

nodeN;: client C-

upon receivePath*, VL, € I;: upon receivePath*, VL, € I¢:

1. update network graph/; 1. compute the set of available patfig;

2. compute available pathi$; according taV/; 2. compute the optimal allocatidiy, from Il¢;

3. compute extended patts, resp.I';, VL, € O;; | 3. VPE € II%, set f* = d* = 1;

4. send discovery messagPath’, VL, € O;. 4. send reservation messagessv?, VL, € I¢.

successfully reserved by (i.e., all d* flags are set to 1), the nodes update their local view of thearkt A7 = A \ IT*, and
new path discovery messages are issued. The client aggsag&trmation about the residual network resources, awctes
the path selectiodl?, accordingly. The process is iterated until convergencéi¢odptimal rate allocation, which is reached
when all reserved flows bg' can be accommodated by the network at the requestedjate

The path extension rule directly controls the convergemcéhe stable rate allocation, but also the quality of the rate
allocation. Comprehensive information about end-to-eathp as created by Rule 1 allows to reach an optimal rateagitot
but at the expense of possible several iterations of the reastirvation schemes. The algorithm however converges imadl s
number of rounds to a feasible solution, given the netwodph&. The Rule 2 constructs only a limited subset of end-to-end
network paths, given a greedy forwarding solution at eatérimediate nodeV;. It allows for a quicker computation of the
solution, which may however be suboptimal. Both algorithens analyzed in Section V and their performance is compared
in Section VI.

The distributed path selection and rate allocation alpori are summarized in Algorithm 1, where the left-hand siohel
right-hand side columns respectively correspond to the datcovery, and path extensions phases. The algorithrfes dif
the path extension rule (step 3 in the bottom left block}tidily, both algorithms start at the server side, with Stefrdr the
sake of clarity, we call Algorithm 1, resp. Algorithm 2, thésulibuted path allocation and rate allocation solutiomat trely
on Rule 1, resp. Rule 2 for path extension.

V. ANALYSIS AND DISCUSSION

A. Properties

This section proposes an analysis of the path selection a@iedatlocation algorithms introduced in the previous secti
Under the assumption that the network is stable during oneofwour algorithms, we derive hard bounds on the convergence
of the rate allocation towards the optimized solution. @ase¢hat one round of the algorithms requires one messadeirge
betweenS and C, on the available paths. Hence, the time required by onedraiin the order of the round trip time (RTT)
of the slowest paths in the network. The computations atrimédiate nodes and & and C are trivial and their duration
can be neglected. The assumption about the stability of éeark in terms of average bandwidth and loss probabilitthef
network links is therefore generally valid since the ratecdtion algorithms converge in a very small number of stegss
shown in the next section. Since the total number of pathsiie gmall in general [21], the algorithms reach a stabletsm
after a convergence time that corresponds to only a few Rddisng which the average link characteristics are likel\stay
unchanged.

We consider first the Algorithm 1, which uses Rule 1 for pattersion, so that the client has a complete view of end-to-end
paths to compute the path selection. We show that the Alguarit converges in one round if paths are disjoint. Then, wa/sho
that in the worst case, one round of the algorithm reservé=aat the path with the lowest loss probability. Consedygtite
Algorithm 1 terminates in a finite number of rounds. We nownfally prove these three properties.

Property 1.If the paths requested by do not share any bottleneck joint link,, Algorithm 1 converges in one round.

Proof: Let Il be the set of available paths betwegrand C discovered by Algorithm 1, and ldl}, = {P}L ..., P2}
be the optimal set of paths chosen @yfor transmission, according to Theorems 1 to 3frepresents the available rate of
on requested patR% € I1%, we havebf, < p,, VL, € PE. Since, by hypothesis, the chosen paftisdo not contain any joint
bottleneck linkL,,, we havep, > Z bk, VL, € Pg andVPg € II#. This means that any nod¥;, upon the reception
k:L, €PE
of reservation packetdiesv, can allocate the requested bandwidth on the outgoing fimkall requested flows. Therefore, no



flow is marked withd* = 0, and the serve$ can compute the optimal allocatidi = IT},, after one round of the protocol.
[ |

Property 2.Let the network graph that corresponds to the availableuress at one stage of the algorithm be denoted

G = U N!. During each round, Algorithm 1 reserves@ at least the end-to-end flow, betweenS and C' which is
©N; €V
affected by the smallest loss probabiljt.

Proof: Let P} € IIf \ II* be the lowest loss probability path requesteddybut not yet reserved by our algorithm.
Observe that?}, is the lowest loss probability path in the residual gr&ph and also in the local viewv; observed by each
node IV;. Hence, at every nod#y; traversed byP/, the flow P/, will have priority during the greedy reservation phase of
Algorithm 1.

Indeed, from the path extension operation we héve< p,, VL, € Pt. Hence, P} is successfully reserved at each
intermediate nodeV; on the path. Finally, the flowP, reachesS with the Resv packets with both flagd’ = f* = 1, hence
the serverS integrates the flow to the set of successfully reserved paths= I1* U P,.. [ ]

Property 3.Algorithm 1 converges, and terminates in at mestounds, wheren is the number of allocated flows, that is
not larger than the total number of available distinct pathé:.

Proof: This result is a direct consequence of Property 2. At eachdpthe algorithm reserves at least one flow, and the
available rate of the links in the residual network decrsabkence, on subsequent rounds of the algorithm, the aliewill
not be able to request an infinite number of flows. ]

The previous properties show that Algorithm 1 convergehtodptimal path selection in a limited number of rounds, no
more than the total number of available end-to-end pathsdetS and C. Moreover, in the case of disjoint network paths,
our protocol manages to reserve the optimal set of flows me&deransmission in a single round. And in general netwprks
the algorithm secures at least one transmission flow fronoghienal allocation.

We now concentrate on the second algorithm, and demonskattét converges in a single iteration. Moreover, we show
that the solution offered by Algorithm 2 is actually idemti¢o the optimal solution provided by Algorithm 1 if each wetk
node has only one outgoing link.

Property 4.Algorithm 2 converges after one round of path discovery aldction phases.

Proof: LetIl- be the set of available paths betwegmnd C, as discovered in the path discovery phase of Algorithm 2,
based on path extension Rule 2. Let furth&r, = {P} ..., P2} be the optimal set of paths chosen 6yfor transmission
according to Theorems 1 to 3, based on the information redeftom the network nodes. Let finalb, be the rate of the
requested pattPt € II%, with b5, < p,,, VL, € PL. The greedy rate allocation in the path extension given blg Riensures
that, at any nodévV;, andvL, € O;, we have Z b’g < p.. This means that any nodé;, upon the reception of reservation

k:LuEPé,
packets, can allocate the bandwidth on the outgoing linksllorequested flows. Therefore, no flow is marked with= 0,
and the servef can compute the optimal allocatidi* = II,, after one round of the protocol. [ ]

Property 5.Algorithm 2 provides the same solution as Algorithm 1 if theédegree of every intermediate nodg is equal
to 1.

Proof: In this particular type of networks, we observe that all Elde end-to-end paths betweéhand C are disjoint.
The rate allocation operations during path extension intlleepath discovery phase becomes identical for both Aligrst 1
and 2. Since the rest of the algorithms is totally identittady will provide the exact same solution, which is moreaygimal.

[ |

B. Practical Implementation

We discuss here the practical implementation of the prapakgorithms, and propose a few examples for deploymentah re
network scenarios. In large scale networks, monitoringtereind paths between any two given nodes becomes highlpleam
and costly. Nor active neither passive monitoring solgiggale well in terms of execution time, accuracy and conitglex
with a growing number of intermediate nodes and network ssgs[22]. Since full knowledge about network status cannot
be achieved in large scale networks, distributed path coatipn solutions are certainly advisable. They additinallow to
release the computational burden of a single node/semdrdestribute it among several intermediate nodes [18].

In this paper, we address the decentralized path computatid rate allocation problem, from the perspective of a medi
streaming application. The forwarding decisions are takerorder to maximize the quality of service of such specific
applications, in particular to minimize the loss probabpiland aggregate enough transmission bandwidth. Our #hgasi
present a low complexity in terms of message passing anduBaactime. In variable network scenarios, where the link
parameters change slowly over time, our algorithms can beperiodically in order to adapt the streaming process to a
dynamic network topology. Observe that the fastest netyarameter estimation algorithms offer good results on dtakes
of a few seconds [23], while the execution of our path-coraponh algorithms takes one, or a few round-trip times. Hence
running our algorithm periodically, on timescales equathe network estimation intervals ensures the optimal trassion
decision, with the latest estimation about the networkestat



We now identify a few typical scenarios where optimal ratecation between multiple stream paths can bring intargsti
benefits in terms of media quality. The list is certainly neh&ustive, and it rather describes a few practical sitnatiwhere
the application of the algorithms proposed above is sttfoghard.

« Wireless Network Scenarios (e.g., WiFi Networks). A wisdeclient can aggregate the media information transmitted
on multiple wireless channels. Interference among tragsion channels can be minimized by choosing non-overlgppin
wireless channels (e.g., there are 8 non-overlapping eéisimccording to the IEEE 802.11a standard specificatiams),
by optimizing the transmission schedule in the wirelessvaek [24]. For example, the authors of [25] test a protocol
stack that allows one wireless network card to be simultaskycconnected to, and switch between, multiple WLANS in
a transparent way for the application. In the same time, tieaas of [26] present a video system over WLANS that uses
multiple antennas in order to aggregate the rate of multiyteless channels. Our decentralized algorithms ensuge th
end-to-end path computation at each intermediate nodimgtékto account the requirements of the media application.

o Hybrid Network Scenarios (e.g., UMTS/GPRS/WiFi Network&)mobile client can simultaneously benefit from multiple
wireless services in order to retrieve the media inforrmaffom a server connected to the internet backbone. Existing
commercial products [27] can already maintain connegtitdt multiple wireless services, and transparently switth a
any time to the service that offers the best channel perfoomafor a fixed subscription price. It is only a question of
time before commercial products will be able to aggregagerssources of multiple services in order to enhance the
user streaming experience, and telecommunications apsrate actively working on such systems. In this scenario, o
decentralized algorithms can compute the parameters ofatieus end-to-end paths to the client, over the variousretf
network services.

o Overlay Network Scenarios (e.g., Content Distribution wwks). The media information from a server is forwarded
towards the client by multiple edge servers or proxy, whielobg to the same overlay network. The client consumes the
aggregated media from multiple transmission flows empldyethe application. Our proposed algorithms can be applied
directly to find the end-to-end paths from the server to tient| via multiple intermediate overlay nodes. The discede
paths are later used by the client to compute the optimastnission flows along with their rate allocation.

VI. SIMULATIONS

A. Simulation Setup

We analyze the performance of our path computation alguostlin different network scenarios, and we compare them
to simple heuristic-based rate allocation algorithms.uResare presented in terms of convergence time, and videditgju
performance. We first study the average behavior of the illhges in random network graphs, and we eventually discuss in
details a specific, realistic scenario, implemented in 28} [n the presence of cross traffic.

In all simulations, the test image sequence is built by ctaraion of theforeman sequence, in CIF format, in order to
produce a 1500-frame video stream, encoded in H.264 forindD drames per second (equivalent of 50 seconds of video).
The encoded bitstream is packetized into a sequence of rfepezkets, where each packet contains information related
at most one video frame. The size of the packets is limitedhaydize of the maximum transmission unit (MTU) on the
underlying network. The packets are sent through the né&twaor the chosen paths, in a FIFO order, following a simple
scheduling algorithm [29]. The video decoder finally imptats a simple frame repetition error concealment strategase
of packet loss. A video packet is correctly decoded at thentliunless it is lost during transmission due to the errars o
the network links, or unless it arrives at the client pastdégoding deadline. We consider typical video-on-demandry)
streaming scenarios, where the admissible playback delégrge enough, i.e., larger than the time needed to trartbenit
biggest packet on the lowest bandwidth path.

B. Random Network Graphs

We generate two types of network topologies: (i) typivdirelessnetwork graphs, with low bandwidth and high error
probability for the network links; and (iiHybrid network scenarios, where the server is connected to thelwifeastructure
(high rates, low loss probabilities), and the client caneascthe internet via multiple wireless links, that have auced
bandwidth, and an increased loss probability. For both ades, we generate 500 random graphs, with 10 nodes each. Any
two nodes are directly connected with a probability The parameters for each link are randomly chosen accordira
normal distribution, in the intervdlR,,,;,, Rinq.| for the bandwidth, and respectively, ..., maz] for the loss probability. The
parameters for the wired and wireless links are present8chlite |.

First we analyze the number of rounds in which Algorithm 1v@ges to the optimal rate allocation given by a centralized
algorithm, as proposed in [21]. The results for both netwsc&narios are presented in Figure 2. We observe that thé grea
majority of the cases require less than three iterationsderao reach the optimal rate allocation. This shows thattgorithm
performs very fast and needs only a very small number of obniessages to converge to the optimal rate allocation.

Next, we propose to examine in Figure 3 the convergence afritlgn 1, computed in terms of video distortion, as compared
to the quality of the stream achieved with the optimal ratecaltion. We observe that the distortion due to Algorithnafidly
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TABLE |
PARAMETERS FORRANDOM GRAPH GENERATION

Parameter | Wired Links [ Wireless Links
Connectivity Probabilityy 0.4 0.6
Roin 10%bps 10°bps
Rmaz 3. 10%bps 7 - 10%bps
Pmin 1074 1073
Pmax 5.10°3 4-10"2

I \Wireless Case
0.9r '* I Hybrid Case |

Nr. of Cases

L -

2 3
Nr. of Rounds

Fig. 2. Number of rounds of the iterative rate allocationgassary to converge to optimal solution of Algorithm 1.

decreases, and that the partial solutions are very closetogdtimal one, even after the first round of the iterative edliocation
strategy. It clearly illustrates that the proposed distill algorithm converges very fast to the optimal solutimd that the
most critical paths in terms of video quality are alreadp@dited by the very initial rounds of the distributed solntio

In both Figure 2 and Figure 3, we can observe that Algorithnerfqsms better in thé ybrid network scenario, than in the
Wireless case. This is due to the fact that this network scenario hawanage less bottleneck links. Please observe that in
this simulated scenario, the bottleneck links are usualdywireless links, since the rates of the wired links are mhigher.
Therefore, Algorithm 1 is expected to converge faster todptimal solution in theHybrid scenario, where path are less
likely to share bottleneck links. This is in accordance vifie properties of this algorithm presented in the previagtisn.

Then we analyze the performance of the proposed algorithrterims of video quality obtained with the rate allocation
solution. We compare the results obtained with Algorithntdlthe ones obtained by a simpler distributed heuristic tvhic
forwards the incoming network flow at each intermediate nodehe best outgoing link in terms of loss probability (e.g.,
single best-path streaming). We compute the distributibthe penalty in quality suffered by the heuristic scenafiw, 500
different network graphs. The cumulative density functismepresented in Figure 4, which illustrates the probihbibr the
improvement in quality to be within a predefined ran@ez]. We observe that, for both network scenarios, our algorithm
obtains significantly better results in more thd% of the cases. This motivates the extra control overheaddntred by
Algorithm 1, which is needed to reach the optimal rate alioca A similar behavior is shown in Figure 5, where we observ

Il \Vireless Case
[ Hybrid Hybrid Case

1.5¢

0.5¢

la

1

Average Deviation from Optimal Distortion (MSt

2 3
Nr. of Rounds

Fig. 3. Convergence of Algorithm 1, measured in terms of @idestortion (MSE) as compared to the optimal solution.
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Fig. 4. Cumulative density function for the improvement umtfity offered by Algorithm 1 vs. a Heuristic Rate AllocaticAlgorithm.
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Fig. 5. Cumulative density function for the improvement umtity offered by Algorithm 2 vs. a Heuristic Rate AllocatidAlgorithm.

that Algorithm 2 also performs much better than a the singist Ipath strategy, in a large fraction of the cases congdere
and for both network scenarios.

Algorithms 1 and 2 are compared in Figure 6 and Figure 7. Eidgurepresents the cumulative density function of the
difference incurred by Algorithm 2, with respect to the ol allocation offered by Algorithm 1. A similar represetida is
proposed in Figure 7, except that the quality provided byofithm 1 is computed based on the rate allocation obtainext af
the first round of the iterative algorithm, as opposed to thenal allocation that is used in Figure 6. From both figuses,
see that, for théVireless scenario, the performance of the greedy scheme is equagtoptimal solution in almosi5% of
the cases. Algorithm 2 is even better, when compared to theution of the optimal algorithm after the first rouri% of the
cases providing equal or better results). This is due to #mg small number of paths chosen for transmission, and tdaitte
that link parameters in th@ ireless scenario are quite homogeneous. In the pathological caseevetll network links would
have the same parameters, the performance of the two d&lgritvould be identical. Good results are also observed for th
Hybrid case. However, in this case we observe that the greedy @godffers bad results in a significant number of cases,
since quality attains only 50% of the optimal solution in abh20% of the cases. This is mainly due to the heterogengity o
the network links parameters in hybrid scenarios.

Finally, we compare Algorithms 1 and 2 in terms of number ofvlochosen for the streaming application. The results
for the Wireless and Hybrid network scenarios are presented in Figure 8 and Figure Pectgely. We observe that in
general Algorithm 2 uses a smaller number of flows for trassion. This can be explained by the greedy allocation ofgyath
when Rule 2 is used for path extension. Similar results cammbserved when the average streaming rate is computed for
the solutions provided by both algorithms, for each type effuorks. Table Il shows that Algorithm 2 generally resufisai
smaller transmission rate. However, the performance imgesf received video quality is very close to the optimal aiece
the paths with the lowest loss probability are prioritizadbioth algorithms. In addition, the particular network getised in
the simulation allows for average streaming rates thatdjreffer a good encoding quality, where the rate-distargcadient
is not very large.

Overall, the previous results show that Algorithm 1 repnése fast path computation solution in most types of network
that present a low number of bottleneck links. On the othée,sAlgorithm 2 offers a viable, lower complexity alternati
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Fig. 7. Cumulative density function of the relative diffece in quality, for Algorithm 1 limited to one iteration onlys Algorithm 2.
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Fig. 8. Average Number of Flows used by Algorithms 1 and 2 i Wi:reless Network Case.

TABLE Il
AVERAGE TRANSMISSION RATES CHOSEN BYALGORITHMS 1 AND 2
| Wireless | Hybrid

Algorithm 1 | 531kbps 797kpbs
Algorithm 2 | 473kbps 591kpbs
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Fig. 9. Average Number of Flows used by Algorithms 1 and 2 i dhybrid Network Case.
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Fig. 10. Network scenario: a) Available network graph; bwlallocation chosen by Algorithm 1; ¢) Flow allocation chnsby Algorithm 2.

for very large network scenarios with homogeneous link peters, where convergence time is an issue (e.g., in neswork
characterized by quickly varying parameters).

C. Specific Scenario

We now compare the performance of the two path computatigorithms presented in this paper, in a specific network
scenario that represents a practical case study. We sengotleenan sequence, encoded 3T5kbps and 550kbps over a
network as presented in Figure 10 (a). The network scenarieproduced in the ns2 simulator, and the path computation
mechanisms are implemented as extensions to the simulaoeach of the network paths from the server to the client, we
simulate 10 background flows. These flows are generateddingaio an On/Off source models with exponential distribati
of staying time, and average rates between 100 3tdbps. The instantaneous rate available to the streaming apiplica
is considered to be the difference between the total linkdhaédth, and the instantaneous rate of the aggregated baokdr
traffic. We generate two network cases, one with low averiaggerates and high transmission error probability (i.e d-¢orend
loss probability higher tha6%), and a second case with higher average link rates and avé&@@gsmission error probability
(i.e., end-to-end loss probability of abokfi). The average bandwidth, and loss probabilities are ptedan Table Ill, for
the two cases under consideration. The network MTU is sat)t® bytes worth of video data. Finally, we consider cases
where the video stream is sent with, respectively withoutvésd error protection. Forward error protection employsCF
codes with blocks (20,18) and (20,19) for the first and seawsttvork case, respectively. We assume that all video packet
can be recovered if at least 18, respectively 19 packetsareatly received in a block of 20 packets.

Figure 10 b) and c) first show the path selection provided byoAthm 1 and 2, respectively. Both network cases result
in the same allocation, and the application packets anddh&ral messages of our algorithms share the same netwddk lin
Simulations are then run according to these path allocatdod each simulation point is averaged over 10 simulatiors.ru
Figure 11 and Figure 12 present the performance of Algostinand 2 as a function of the playback delay imposed by the
client, respectively in presence of absence of FEC pratecfRecall that the server performs a simple round-robirkgtac
scheduling strategy, for a given set of streaming path. Eetie playback delay influences the scheduling performaarod
larger playback delays allows to pay smaller penalty duéd¢oscheduler choices. The video distortion values incatpahe
source distortion due to the low encoding rate of the secqiealong with the loss distortion due to packet transmiskieses,
and late arrivals at the client. We observe that, even if th@ice of transmission paths differs between the two alfgor,

TABLE Il
PARAMETER VALUES FOR THE NETWORK LINKS INFIGURE 10
[ Lo [ Lz [ Ls [ Ls [ Ls [ Lo [ L
Case l:Loss (%) [ 20| 1.0 20] 15 [ 15] 05 25
Case 1: Ratekpps) 325 225 [ 225 225 | 325 | 225 | 225

Case 2:Loss (%) || 2.5 | 1.0 | 1.0 ] 0.75] 1.0 ] 05 | 15
Case 2: Ratek(pps) || 450 | 300 | 300 | 300 | 450 | 300 | 300
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Fig. 11. Performance evaluation of Algorithms 1 and 2 as atfan of playback delay (Network Case 1, no FEC).
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Fig. 12. Performance evaluation of Algorithms 1 and 2 as atfan of playback delay (Network Case 1, with FEC).

the performance is similar, since the end-to-end paths igjeirt, and quite homogeneous in the network case undely.stu
It can be noted that the influence of the playback delay islainfior both schemes. In the same time, it can be observed
that using even a minimum error protection strategy unssimmly improves the final results. While simple distortiorodels
that encompass the effect of channel protection can be peapas an extension to the rate allocation strategy, thgrdesi
optimal joint source and channel coding strategies are hemigeyond the scope of the present paper. Very similartsesah
be observed for the second network case with the 500 kbps Wiigtream, but they are omitted here due to space corstrain
Finally, we pick one of the simulation run for each algorithand analyze the temporal evolution of the quality. The
reconstructed video quality is measured at the receiveeéoh group of30 pictures, in the absence and presence of FEC,
respectively. Results are presented in Figure 13 and Fitdufer the second network case, where the playback delaysetho
by the client is set to one second. It can be seen that bothithlgs again perform similarly in the presence of network
losses and cross traffic. It confirms the results presentesteatand positions both algorithms as interesting solstifor
media-specific rate allocation in multipath networks.

VII. CONCLUSIONS

This paper has addressed the problem of decentralized patputation for multimedia streaming applications in lasgale
networks. When end-to-end monitoring at the media serveornes intractable and expensive, distributed mechanis®d n
to be derived in order to optimize the streaming processrimgeof media quality. We present two such mechanisms for path
computation that differ in the construction of availablahzabetween the streaming server and the client on a nodedy-
basis. The first algorithm provides a comprehensive vievhefset of end-to-end paths, which leads to optimal rate ailore,
at the price of a small convergence time. The second algorithly offers partial information about the available paths
which results in a lower complexity solution. However, thario a greedy allocation that favors the most reliable pdties
performance of the second algorithm stays close to the aptrrformance in most of the cases.

In both algorithms, each node is responsible for a rate afiloc decision for all incoming flows, on the outgoing links.
Hence, the available set of transmission paths to the cigesteated only from the original local network views at each
individual intermediate node. It allows to release the agsion of full network knowledge at any single node in thewak
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Fig. 13. Temporal evolution of the video quality (Networksga2, no FEC).
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Fig. 14. Temporal evolution of the video quality (Networksga2, with FEC).

and eliminates the need for expensive path monitoring nméshes. Both solutions therefore represent interestingyradtives
for media specific path selection in large scale networkspdrticular, extensive simulations demonstrate that thtemab
algorithm converges very fast, in particular in networkattpresent a small number of bottleneck links. In the same,tim
the greedy algorithm represents a viable and low compledgtytion in very large network scenarios with homogenemis |
parameters, and stringent limitations on the convergenee of the algorithm.
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