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Multiparty videoconferences, or more generally multiparty video calls, are gaining a lot of popularity as
they offer a rich communication experience. These applications have, however, large requirements in terms
of both network and computational resources and have to deal with sets of heterogenous clients. The mul-
tiparty videoconferencing systems are usually either based on expensive central nodes, called Multipoint
Control Units (MCU), with transcoding capabilities, or on a peer-to-peer architecture where users cooper-
ate to distribute more efficiently the different video streams. Whereas the first class of systems requires
an expensive central hardware, the second one depends completely on the redistribution capacity of the
users, which sometimes might neither provide sufficient bandwidth nor be reliable enough. In this work,
we propose an alternative solution where we use a central node to distribute the video streams, but at the
same time we maintain the hardware complexity and the computational requirements of this node as low
as possible, for example, it has no video decoding capabilities. We formulate the rate allocation problem as
an optimization problem that aims at maximizing the Quality of Service (QoS) of the videoconference. We
propose two different distributed algorithms for solving the optimization problem: the first algorithm is able
to find an approximate solution of the problem in a one-shot execution, whereas the second algorithm, based
on Lagrangian relaxation, performs iterative updates of the optimization variables in order to gradually
increase the value of the objective function. The two algorithms, though being disjointed, nicely complement
each other. If executed in sequence, they allow us to achieve both a quick approximate rate reallocation, in
case of a sudden change of the system conditions, and a precise refinement of the variables, which avoids
problems caused by possible faulty approximate solutions. We have further implemented our solution in a
network simulator where we show that our rate allocation algorithm is able to properly optimize users’ QoS.
We also illustrate the benefits of our solution in terms of network usage and overall utility when compared
to a baseline heuristic method operating on the same system architecture.
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1. INTRODUCTION

Nowadays, videoconferencing applications are getting more and more popular, and this
trend is expected to continue, according to Cisco Visual Networking index [3]. These
applications allow several users to communicate together using audio/video streams
and thus to provide a rich communication experience. Ideally, all users aim at sending
their own video data to all the other participants; at the same time, they would like to
receive the video data from all the other participants. When the number of participants
becomes large, and the network resources are scarce, the transmission of the video
data among all the endpoints might be extremely challenging. At this point, it becomes
extremely important to optimize the rates of the video streams to provide a good Quality
of Service (QoS) to the users, while meeting the heterogenous bandwidth constraints
imposed by the network.

The video distribution problem takes different forms, depending on the network ar-
chitecture that is used for the data transmission. Since multicast technology is not
widely deployed in the Internet, the most naı̈ve implementation of a videoconferencing
system is the one where each user sends his own video flow directly to all the other
users. If the number of participants is equal to N, then N − 1 video flows share the
download link of each endpoint, and N−1 replicas of the source stream share the upload
link. This architecture is particularly problematic in the case of asymmetrical connec-
tions, such as asymmetrical digital subscriber lines (ADSL), where the upload capacity
rapidly becomes the main bottleneck for large values of N. An alternative solution con-
sists in using a Multipoint Control Unit (MCU) with transcoding capabilities. The MCU
is an endpoint used as a communication bridge by the video-conference participants. In
this case, every sender sends its video only to one node (the MCU), which mitigates the
constraints on the upload link. The MCU, which is usually connected to the internet
with some high bandwidth links, transcodes the video of each sender and forwards it
to all the other participants [1], possibly in different versions. This solution, however,
exhibits important scalability problems due to the huge computational load required
by the MCU for the transcoding operations. In order to alleviate the scalability problem
derived from a single MCU, some works proposed to adopt a peer-to-peer solution [6,
7, 17]. Instead of having a unique central node, the users’ endpoints compose a peer-
to-peer network to improve the video delivery capacity. Although this solution is ex-
tremely scalable it strongly relies on the upload bandwidths of the users’ endpoints. In
practice, these may not provide sufficient bandwidth and induce large communication
delays.

In this work, we aim at designing a multiparty videoconferencing system that offers
a tradeoff between a fully centralized solution with transcoding capabilities and a
complete peer-to-peer solution that relies only on peers’ resources. We focus on an
architecture that keeps the computational requirements of the central node extremely
low compared to a MCU with transcoding capabilities. Similar to peer-to-peer systems,
the intelligence resides completely in the users’ endpoints, and the rate optimization
process is fully distributed preserving system scalability.

In more detail, we make the following key assumptions: (i) the central node can
enable application layer multicast communication, (ii) the users’ endpoints are capable
of encoding their video streams at multiple rates (single rate encoding is included as
trivial scenario), (iii) a suitable transport protocol is available for real-time multimedia
applications. The central node, also called the switch node in the remainder of the
work, is used by the users as a communication hub. First, it offers a video packet
forwarding service. In this way every sender can implement a two-hop application
layer multicast tree for the video delivery, alleviating the constraint on the upload link
of the users. Second, it provides a coordination service among the senders and receivers
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to reach an effective QoS aware rate allocation. The complexity of the central node is
kept as low as possible: the computation of the layer rates, as well as the forwarding
policies of the video packets, are computed by the videoconference participants in a
distributed manner. The central node is thus simply a sort of “application layer” switch,
hence the name switch node. Having low complexity at the central node is not only
important for preserving the scalability of the system in the case of multiple parallel
videoconference sessions. From the perspective of videoconferencing providers, a low
complexity central node requires less computation capabilities, making the hardware
cheaper and eventually decreasing the operative costs of the videoconferencing service.

In more detail, the operation of our system is the following. We first associate to every
user a utility function, which depends on the activity (or importance) of the users and
on the video characteristics. The utility functions and the upload/download bandwidth
constraints are used to define an optimization problem that reflects the entire video-
conference setup. We then propose two methods for solving this optimization problem.
The first one provides a fast and efficient way to obtain an approximate solution. The
second one is an iterative method that gradually improves an initial guess to achieve
a higher objective value. Thanks to the structure of the problem, both methods can
be implemented in a distributed way, preserving the overall scalability of the system.
The two proposed algorithms are actually executed in sequence every time the pa-
rameters of the original optimization problem change, for example, when the relative
importance of the users varies. In this way, we can exploit the features of both methods:
the fast algorithm modifies the rate allocation in a single step, trying to reach quickly
a good approximate solution; the iterative algorithm then refines the approximate
solution to further improve the objective function.

We carefully evaluate the performance of our system in a network simulator (NS3)
that replicates realistic network settings. We use the NADA congestion control [25] to
send the media data streams, and we perform the proposed rate allocation methods on
top of it. Our experiments show that our system is able to properly allocate resources for
optimizing the QoS of each user. The fast algorithm provides a quick good approximate
solution to the rate allocation problem, while the iterative method provides a better
solution at the price of slower convergence.

The remainder of the work is composed as follows. In Section 2, we discuss the related
work on multiparty videoconferencing systems. The system model used in this work
is described in Section 3. In Section 4, we introduce the optimization problem that
we aim to solve, and we present the approximate and the iterative solution methods
in Section 5. We discuss the algorithm implementation in Section 6. In Section 7, we
provide some simulation results of the implemented system. Finally, conclusions are
given in Section 8.

2. RELATED WORK

Most of the existing works in the literature tackle the design of a multiparty videocon-
ference problem based on peer-to-peer architectures. Compared to our system, which
relies on the existence of a central helper node, the peer-to-peer architectures have a
higher number of decision variables in the rate allocation process. An example of such
variables is the video stream route. Most of these works are based on the construc-
tion of a set of two-hop multicast trees that employ users’ nodes as a central node to
redistribute packets. In Reference [6], the authors consider a peer-to-peer multiparty
videoconferencing system and show that under specific assumptions, such as the peer
uplinks being the only bottlenecks, the rate region achievable by using a limited num-
ber of mutualcast trees [14] is equal to the rate region achievable using inter-session
network coding, making peer-to-peer solutions extremely attractive. In Reference [7],
the authors adopt a similar framework as the previous work but consider general
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topologies where the bottlenecks can be located anywhere in the network. In both stud-
ies, however, every user encodes his video in a single stream. This might not provide
sufficient performance in the scenario where the users’ download links have heteroge-
nous values. The work in Reference [17] focuses instead on a multi-rate scenario with
upload link constraints only. In this work, every user is required to encode N − 1 video
layers to perfectly match the link constraints and use the network resources in an effi-
cient way. Finally, a recent work [13] extends the previous framework to the case with
both upload and download capacity constraints. The last two works, however, assume
no constraint on the number of encoded video versions that a user can generate. In
reality, the computational load required to every client node for the encoding process
might become too heavy when the number of participants to the videoconference grows
large.

In our case, we have a fixed central node that is used to redistribute the packets
among the different participants, thus, our problem is simpler than the peer-to-peer
ones from this perspective. In addition, we do not have limitations on the location of the
bottleneck links. However, differently from all the previous multi-rate works, we can
further impose a specific constraint on the number of encoded streams that every user
can generate, making our solution more applicable in scenarios with a large number of
users.

The authors in Reference [23] analyze how some of the commercial video con-
ferencing solutions (specifically: Google+, Ichat, and Skype) implement multiparty
videoconferences. The analysis showed that both the fully peer-to-peer, with a single
encoded stream per sender, and the server-based solution, with multiple encoded
streams, are used by commercial solutions. Furthermore, another commercial solution
[10] uses a simple central communication bridge to enable a two-hop application layer
multicast tree for the video delivery. The users encode the video with a finite set of
rates and send them to a central node. The central node then decides which layers
to forward to each receiver according to the download link bandwidth. Similar to our
system, this method offers a good compromise with a reliable central node to improve
communication with no strong computational requirements for transcoding. The
solution of the optimal rate allocation and the transmission policy are, however, not
known nor available for all the analyzed commercial solutions. Finally, in Reference
[11] the authors develop a multiparty system with an architecture similar to the
aforementioned solution and to our proposed system. Analogously to our work, this
study is also motivated by the advantage and efficiency of having a simple central
node with no transcoding capabilities that applies different forwarding policies to
different flows. In order to limit the network usage, the central node forwards to the
endpoints only a subset of the videoconference flows. The forwarding decision is made
according to the users’ importance level (based on the audio activity). However, as
for the aforementioned commercial solutions, this study does not tackle the specific
problem of the bitrate selection in the presence of heterogenous bandwidths among the
videoconference participants. This is one of the gaps that we aim to fill in this article.

3. SYSTEM MODEL

We target a scenario where N users participate in a videoconference. All the partic-
ipants are both senders and receivers, thus the video of every user should ideally be
received by all the other users. In the remainder of this work, we use the terms user
and participant interchangeably.

The proposed system architecture is a hub topology with the hub node corresponding
to the switch node. Figure 1 depicts a simple topology example. Every user establishes
a bidirectional connection with the switch node using a general Congestion Control
(CC) algorithm suitable for real-time communications. Multiple streams of video data
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Fig. 1. System example.

are sent from a single user node to the switch node, and vice versa. In our solution,
all streams from the switch to a user share a single download session. Another session
is active on the reverse path for uploading the user’s video streams. This way, we can
improve the responsiveness of the system when the rates of the video streams need to be
modified. The idea of coupling several Real-time Transport Protocol (RTP) flows to gain
more flexibility is similar to the one described in the internet draft of Reference [22]
developed in the context of the RTP Media Congestion Avoidance Technique (RMCAT)
working group [2]. Real-time CC algorithms maximize the sending rate and at the same
time try to limit the end-to-end delay experienced by the user. We identify with dn(t) the
transmitting rate achieved by the CC algorithm from the switch node to the endpoint
of user n at time t. Similarly, we denote with un(t) the transmitting rate achieved by the
CC algorithm from the user endpoint to the switch node at time t. As a result, dn(t) and
un(t) represent the download and upload rate for the user n. The download and upload
rates are obviously time-varying, however, in the remainder of this work, we drop the
time dependency in the notation to make it lighter.

We assume that every user is able to encode its video into one or multiple streams
at different bitrates. Encoding a larger amount of streams is obviously more hardware
demanding. In this work, we let the maximum number of encoded streams be different
among the videoconference participants, so we can emulate the possible hardware
heterogeneity of the endpoints. Although the proposed framework can easily be
adapted to the case of Multiple Descriptor Coding (MDC) or multiple independent
video streams, we consider the specific case of a Scalable Coding (SC), for example,
Scalable Video Coding (SVC) [21], which offers a compromise between adaptation to
receiver bandwidth heterogeneity and overall resource requirements. In SC, a video
is encoded using different layers, namely a base layer, and one or more enhancement
layers. Users can increase video quality by stacking several enhancement layers on top
of each other. The advantages of SC with respect to independent coding is illustrated by
a simple example. Consider the case where one user wants to serve a video available at
two rates, for example, 0.5Mbps and 1Mbps. With SC the sender can encode the video
progressively in two layers: one base layer of 0.5Mbps; and an enhancement layer of
0.5Mbps, the user will then send a total of 1Mbps. Both layers are necessary at the
receiver to decode the full quality stream. In the case of independent coding, the user
needs to send a total of 1.5Mbps, since the two streams are independent. It is easy to
understand that if the total rate is an important constraint, SC enables a much more
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efficient bandwidth utilization. Finally, we indicate with Lm the maximum number
of different SC layers that the user m can encode, and we denote with rml the rate
required to decode the lth layer of user m. Thus, rml is not the rate of the single lth layer,
but the cumulative rate of all the layers that are required to decode the layer l. The
coding rate of layer l can thus be written as rml − rm(l−1) for 1 < l ≤ Lm (with rm0 = 0).

Similar to other works [7, 17], we treat the video streams of the users differently
based on their content. In a videoconference, not all the video streams are equivalent:
(i) the video content of some users might be more complex and require a higher encoding
bitrate than the one of other senders for the same quality, or (ii) some users might be
more active than others in the videoconference. When the rate allocation of the users is
properly computed, a larger rate should be reserved to the most demanding and high
priority users to maximize the overall QoS of the videoconference.

In order to design our QoS aware rate allocation system, we need to define a mathe-
matical model to measure the QoS of a user.

We define Um(r) as the utility of receiving the stream of user m at rate r. The utility
function Um(r) is assumed to be a strictly concave increasing function of the rate and
embeds both the video complexity of the scene and the importance that the user m
plays in the videoconference. Then, the total utility of the receiver n, modeled as a sum
of the utilities of the different streams, can be written as

Un =
N∑

m=1,n�=m

Um (rm) . (1)

An intuitive choice for the utility function could be any sort of video quality metric
multiplied by a scalar gain that reflects the user’s importance in the videoconference. In
this work, we model the utility, or QoS, of receiving a video stream exclusively from its
rate. In interactive communication, however, the communication delay is also a critical
quantity for the overall QoS of the communication and it should ideally be taken into
account in the QoS metric. We, however, neglect this quantity in the present work,
because our rate allocation is carried out on top of the real-time congestion control
algorithm that is actually responsible for achieving a low communication delay. In our
scenario, we assume that each real-time congestion control session seeks for the best
tradeoff between the overall transmitting rate and the experienced delay independently
of the layer rate allocation. Therefore, in this case the overlay rate allocation carried
out by our algorithm has no effect on the experienced delay of the congestion control,
and we can ignore this value in our QoS model.

Finally, note that there is usually a small distortion penalty with SC coding: the
coding efficiency of the SC decreases with the number of encoded layers for a given
total encoding rate. In order to model this effect, the utility function should also depend
on the layer number l, and the utility should ideally decrease when l increases. For the
sake of simplicity, we neglect this dependency in our model, as the distortion penalty
is negligible as long as the layers are large enough. It is, however, possible to include
this behavior in the utility function for a more precise model if necessary. In the rest of
the article, we show how to properly set the coding rates and how to select video layers
to maximize the global QoS.

4. PROBLEM FORMULATION

Given the settings described in the previous section, the rate allocation problem for
maximizing the QoS in the videoconferencing system can be stated as the following
optimization problem:
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maximize
{zn},{rm}

N∑
n=1

N∑
m=1

Lm∑
l=1

znmlUm(rml), (2a)

subject to
N∑

m=1

Lm∑
l=1

znmlrml ≤ dn, ∀n, (2b)

rml ≤ um, ∀ l, m, (2c)

Lm∑
l=1

znml = 1 − δnm, ∀n, m, (2d)

rml ∈ [Rmin, RMAX], ∀m, l, (2e)

znml ∈ {0, 1}, ∀n, m, l. (2f)

The above optimization problem aims at maximizing the overall QoS of the users by
selecting the video layers that every user has to receive and by allocating the rates of
the different layers that each sender has to encode. The variables of the optimization
problem are (i) znml, the decision variables for selecting which layer l of user m should
be received by user n (zn denotes a matrix of size M × max{Lm} containing the layers
selection of user n); and (ii) rml, the rates of the different video layers (rm denotes a
vector of size Lm containing the layer rates of user m). The objective function of the
optimization problem corresponds to the sum of the receivers’ utility functions defined
in Equation (1).

The first set of constraints Equation (2b) represents the download capacity con-
straints, which restrict the sum of the rates of the received layers to be no larger than
the download capacity dn. The second set of constraints Equation (2c) defines the limit
on the upload bandwidth of the users; practically the largest cumulative layer rate of
user m has to be smaller than or equal to the upload capacity um. In Equation (2d), we
impose that every user gets exactly one version of every other source stream and no ver-
sion of his video stream (δnm denotes the Kronecker δ). The next constraints define the
limits on the values that the variables can take: constraints Equation (2e) define some
possible maximum and minimum encoding rates for each sender, while constraints
Equation (2f) limit the value of the decision variables to belong to the set {0, 1}.

Note, first, that in the case where independent video coding is used instead of SC,
the constraints Equation (2c) have to be changed. Since the encoding streams are
independent in this case, the new constraints become

∑Lm
l=1 rml ≤ um. Finally, note

that the parameters of the above optimization problem, for example, download/upload
bandwidths and users’ weights, are time-varying. The optimization Equation (2) needs
to be reevaluated whenever parameters change. The quick computation of the new
optimal allocation is, therefore, fundamental to guarantee a good QoS to the users in
dynamic conditions.

The above problem represents a Non-convex Mixed-Integer Nonlinear Programming
(MINLP) problem. Non-convex MINLPs are generally NP-hard [5] and, therefore, it is
extremely difficult to find the global optimal solution. We, therefore, focus in the next
section on designing fully distributed algorithms to find good suboptimal solutions of
Equation (2) and at the same time preserve the scalability of the system.

5. PROPOSED SOLVING METHODS

We describe now in detail the two methods that we use for finding a suboptimal solution
to the problem. The first method provides a fast and approximate solution and is
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Fig. 2. Steps of the proposed rate allocation algorithm.

based on decomposing the original problem into three easier subproblems. The second
method is an iterative method based on a Lagrangian relaxation: the coupled download
capacity constraint is plugged as a penalty to the objective function, allowing then for
a distributed update of the optimization variables.

5.1. Fast-Rate Allocation Algorithm

The intuition behind the first method is the following. When the available layer rates
of the senders are fixed, every receiver can easily and independently compute the best
combination of the layers to maximize its utility function. This layer selection problem
is actually the discrete version of the one where receivers are free to choose the rate of
every sender as a continuous variable. By asking the receiver to solve the continuous
version, we can collect a list of ideal rates that the receiver wants to get; using these
ideal rates, the senders can then prepare a list of available rates to best satisfy the
different receivers. Finally receivers can select from the available rates computed by
the senders, the ones that maximize their utility.

The original rate allocation problem is therefore divided into three subproblems as
shown in Figure 2. We now briefly describe the individual steps of this method, for a
more detailed description, we refer the reader to our former article [9].

5.1.1. Ideal Rate Computation. The ideal rates of user n, denoted by xn, can be computed
using the download bandwidth and the importance of the different participants. In
mathematical terms, the ideal rates of user n are the solution to the following opti-
mization problem:

xn = argmax
x′

n

N∑
m=1
n�=m

Um(x′
mn), (3a)
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subject to
N∑

m=1
n�=m

x′
nm ≤ dn. (3b)

Since we assume concave and non-decreasing utility functions, the solution to this
optimization problem is unique and can be easily computed using basic convex opti-
mization algorithms [4]. The objective function of this problem corresponds to the re-
ceiver utility function as defined in Equation (1), while the constraint simply imposes
that the sum of the rates is smaller than the downloading rate set by the congestion
control of user n. This optimization problem is solved independently by every receiver.
By merging the results of Equation (3) for all the N receivers, we obtain for each sender
a set of N −1 ideal rates that can be used as guideline to decide the layer rates to make
available.

5.1.2. Layer Rates Allocation Problem. This subproblem is the most complex to solve
among the three steps composing the fast-rate allocation method. It corresponds to
the rate allocation of the different video layers at each sender based on the ideal rates
collected from the receivers. The method is strongly based on the multicast rate allo-
cation algorithms described in References [15, 24]. The intuition behind this method
is the following: if the receiver n requests an ideal rate xnm from sender m, then the
associated receiver utility is maximized if the sender m encodes a video layer with a
cumulative rate exactly equal to xnm. Considering an ideal scenario where all the re-
ceiver’s ideal rates are available, any sort of deviation from the ideal rates will surely
cause the receiver utility to decrease. The senders can follow this intuition to compute
an approximate solution of the layer rates.

We first need to introduce a second concept of utility, namely the layer utility, written
as

Ulayer(xnm, rml) =
{

xnm/rml : xnm < rml
rml/xnm : xnm ≥ rml

. (4)

This function attempts to model the loss of utility when a receiver n with ideal rate xnm
receives instead a video layer with cumulative rate equal to rml. The choice of the utility
function in Equation (4) is not unique. It is, however, important that (i) its maximum
value is achieved when xnm = rml, (ii) it is non-decreasing for 0 ≤ rml ≤ xnm, and
(iii) non-increasing for xnm ≤ rml. Following the above intuition, we can assume that,
when multiple encoded rates are available, every receiver will select the one that is
closest to its ideal rate. We can, therefore, define the overall layer allocation utility as

Ulayer({xnm}, rm) =
N∑

n=1,
n�=m

max
rml

Ulayer(xnm, rml), (5)

where rm denotes a vector containing the Lm layer rates of sender m. Note that the
higher the value of Ulayer(), the better the layer rates fit the ideal rates received.

Now that we have introduced the overall sender layer allocation utility, we can use
this function to select the values of rml. In particular, we need to select the values of
rml that maximize Ulayer(). We provide a brief intuition about how it is possible to solve
this problem by using a dynamic programming approach. Consider the case where all
the layers up to l − 1 are fixed, and we want to add layer l on top of them. Due to
the shape of Ulayer, the only receivers that might be interested in switching to this
new layer are the ones that are using the second highest layer l − 1. As a result all
the receivers that are interested in layers lower than l − 1 will not be affected by
the rate of layer l. Therefore, the rate allocation problem between layer l and all the
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rates smaller than l − 1 is decoupled. Following this intuition, it is possible to build
a dynamic programming approach to find the optimal solution layer after layer. For a
more detailed description of the algorithm, we refer the reader to our previous work [9].

We now briefly discuss the performance of the above method that selects the best
set of video layers. In order to measure the overall layer utility, we should know which
layer is going to be chosen by every receiver. However, this information is not available.
In fact, the selection of the rate for the sender mmade by receiver n depends also on the
final rate of the layers of all the other senders, as all the streams compete for the same
download capacity at the receiver side. In the above procedure, the sender assumes
that the receiver n will select the layer that leads to the highest layer utility, which
may actually not be the choice that maximizes the real utility of the receiver. In order
to make the algorithm fast, the sender needs to rely only on local information, as a
result, we need to make the aforementioned assumption.

5.1.3. Layers Selection Problem. After the layer rates allocation step, every sender mhas
fixed the rates of the Lm layers using the ideal rates computed by the receivers in the
first step. The final step consists in the selection, by the receivers, of the layers they
want to receive based on the download capacity and the importance of the users. The
optimization problem can be stated as follows:

zn = argmax
z′

n

N∑
m=1

Lm∑
l

z′
nmlUm(rml), (6a)

subject to
N∑

m=1

L∑
l=1

z′
nmlrml ≤ dn, (6b)

Lm∑
l=1

z′
nml = 1 − δnm ∀ m, (6c)

z′
nml ∈ {0, 1} ∀n, m, l. (6d)

This problem represents the discretized version of Equation (3). In fact, as for Equa-
tion (3), the objective function of this problem represents the utility function of the
receiver n, the download capacity constraint establishes the limit of the amount of data
that can be downloaded, whereas the second constraints impose the limit of receiving
at maximum one layer from each sender, as imposed in the original problem. This
problem is a constrained Integer Linear Programming (ILP) problem [20] and can be
solved exactly by using an ILP solver.

With respect to the original Equation (2), the rate allocation provided by the fast
algorithm is not guaranteed to be optimal. The assumptions made to solve the second
subproblem are not always valid. This solution method makes however the problem
much simpler and permits to solve it in a distributed manner and in a single round of
operations, which is a large advantage in practice.

5.2. Iterative Rate Allocation Algorithm

The method described in the previous section is obviously not the only algorithm that
can be used to find an approximate solution of Equation (2). In this section, we develop
a second iterative algorithm, which is based on a Lagrangian relaxation of the original
problem. Compared to the previous method, which is able to find the solution in a
single round of operations, the new procedure iteratively modifies the optimization
variables in the attempt to improve the value of the objective function while respecting
the constraints.
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As we want to have a distributed algorithm, we decompose the rate allocation prob-
lem among the different users following the decomposition methods that are usually
used for Network Utility Maximization (NUM) problems [16]. The fundamental fea-
ture that permits to decompose NUM problems is the fact that the objective function
corresponds to a sum of utilities, which each depends on a single sending rate. As a
result, every sender is able to compute the derivative of the objective function with
respect to its sending rate, hence to optimize that rate locally and independently of the
other variables. In our case, this is only partially true however: the objective function
derivative computed with respect to the layer rate rml, is independent of all the other
layer rates but depends on the layer selection variables {zn} (similar reasoning is true
for layer selection variables: optimizing over zn can be done independently of the layer
selections of the other users but not of the variables {rm}). In order to have a distributed
iterative algorithm, we need to update the layer rates and the layer selection variables
alternatively, by fixing the other ones.

In a distributed algorithm, it is not only necessary to decouple the objective function
but also the constraints. We can recognize different types of constraints in Equation (2):
Equations (2e) and (2f) are bounds on individual variables and can be handled locally.
Constraints Equations (2c) and (2d) impose conditions on the vectors rm and zn, respec-
tively, since rm and zn are computed by a single client node they can also be handled
locally. However, the download capacity constraint Equation (2b) is the constraint that
relates all the variables of the optimization problem and needs to be replaced in a dis-
tributed iterative algorithm. An efficient method to handle such coupled constraints in
distributed algorithms uses Lagrangian relaxation [16]. Such constraints are basically
added to the objective function and a constraint violation corresponds to a penalty value
that ultimately decreases the value of the objective function. The original optimization
Equation (2) can be rewritten as follows:

D(λ) = maximize
zn,rm

N∑
n=1

N∑
m=1

Lm∑
l=1

znmlUm(rml) −
N∑

n=1

λn

(
N∑

m=1

Lm∑
l=1

znmlrml − dn

)
, (7a)

subject to rml ≤ um ∀ l, m, (7b)

Lm∑
l=1

znml = 1 − δnm ∀ n, m, (7c)

rml ∈ [Rmin, RMAX] ∀m, l, (7d)

znml ∈ {0, 1} ∀n, m, l, (7e)

where λn ≥ 0 corresponds to the Lagrangian multiplier, or dual variable, associated to
the download capacity constraints of user n (λ denotes the entire vector of dual vari-
ables). The dual variables have different interpretations; in the NUM framework they
are often thought of as prices associated to the utilization of the network resources [12].
We now give a brief intuitive explanation of this price interpretation and explain how
dual variables can be useful for finding a solution to our original Equation (2). First,
note that the utility functions are strictly concave increasing functions, which means
that larger rates will always improve the objective function of Equation (2). In Equa-
tion (7), this is not true anymore, because of the penalty added to the objective function.
Let us assume a fixed λn′ > 0 and ignore for the moment the other constraints; more-
over, let us consider a layer of rate rml that is selected by user n′ (zn′ml = 1). When the
rate rml grows excessively, the download constraint of user n′ becomes violated, and
the penalty value increases progressively reducing the gain of Equation (7a). Since the
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utility functions are strictly concave, whereas the penalty grows linearly with the rate
rml, at some point the gain in the utility will be counterbalanced by the penalty and a
further increase of the rate would make the value of the objective function decrease.
Similar to prices, the dual variables can be varied to control the users’ resources con-
sumption: large values would restrict the network usage, enforcing the rates to respect
the download capacity constraints, while smaller values incentivize the use of the net-
work links. This intuition poses the basis for our iterative algorithm: we can alternate
between updating the primal variables (layer rates and layers selection) and the dual
variables to find a solution that optimizes the original problem and at the same time
respects the constraints. If the primal variables violate one constraint, then we in-
crease the dual variable of that constraint. In the next step, the primal variables will
be pushed toward the feasible set. On the other hand, if a constraint is not violated,
then the dual variable will be reduced. Note that this rule for the price update simply
corresponds to update λ in the direction of the negative gradient computed with respect
to λ of Equation (7a).

From a more formal point of view, it can be proven that, for any fixed set of values λ
the solution to Equation (7) provides an upper bound to the original Equation (2). The
value of this upper bound depends on the dual variables λ. The problem of minimizing
the upper bound is known as the dual problem, which under specific assumptions has
the same optimal value of the primal problem [4]. The iterative procedure described
above actually corresponds to an iterative method for minimizing the upper bound.

The use of the dual variables permits to design a distributed algorithm that improves
the objective value of the original problem, while respecting the download capacity
constraints at equilibrium. Moreover, the updates of the primal and dual variables can
be executed in a distributed way. We describe now the primal-dual method used, where
at every step we slightly modify the primal and dual variables of the optimization
problem in the gradient direction.

5.2.1. Layer Rates Iterative Update. The update of the layer rates is simply done by taking
a small step in the direction of the gradient of the objective function of Equation (7a)
computed with respect to rm:

�ml = α

(
N∑

n=1

zk
nmlU

′
m(rk

ml) −
N∑

n=1

zk
nmlλ

k
n

)
, (8a)

rk+1
ml = max

{
Rmin, min

{
rk

ml + �ml, RMAX, um
}}

, (8b)

where U ′
m(·) denotes the derivative of the utility function, �ml represents the variation

of the rate variable rml, and α > 0 is a simple parameter that controls the step length
of the update equation. The second equation is needed to respect the constraints in
Equations (7b)–(7d). The primal variables zn and the dual variables λ are fixed in this
step.

Note that in some cases the derivative of the objective function of Equation (7a),
computed with respect to some layer rates, might vanish, which results in a null
variation of the rate in Equation (8). This happens when the layer is not selected by any
receiver; that is,

∑N
n=1 zk

nml = 0. In this case, the layer does not contribute to the value
of the objective function and the derivative is therefore null. If a layer is not selected in
one iteration, then it is very unlikely that it will be selected in the future iterations if
its rate is kept fixed. Therefore, to avoid this pitfall, we can randomly change the rate
of the layers that are not selected to promote exploration of new solutions.

5.2.2. Layer Selection Iterative Update. The layer selection variables are discrete and it
is not possible to apply a gradient ascent step as above. We rather solve an integer
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programming problem similar to Equation (7) with respect to zn with an additional
constraint that limits the variation of zn with respect to its previous value. The problem
is the following:

zk+1
n = argmax

z′
n

N∑
m=1

Lm∑
l

z′
nmlUm(rk

ml) − λk
n

(
N∑

m=1

Lm∑
l=1

z′
nmlr

k
ml

)
, (9a)

subject to
Lm∑
l=1

z′
nml = 1 − δnm ∀ m, n, (9b)

Lm∑
l=1

N∑
m=1

(z′
nml − zk

nml)
2 ≤ 2, (9c)

z′
nml ∈ {0, 1} ∀n, m, l. (9d)

This problem represents an integer programming problem with quadratic constraints
and it is solved independently by every receiver. In order to limit the variable variations,
we introduce the quadratic constraint Equation (9c). This constraint limits the l2 norm
of the difference between the old layer selection variable and the new one. This is
equivalent to limiting the variation of the received layer for only one sender at each
iteration. This constraint is meant to avoid abrupt variations of the layer selection
variables and to improve the stability of the algorithm.

5.2.3. Dual Variables Iterative Update. The last update concerns the dual variables. As
mentioned previously the update of the dual variables coincides with a step in the
direction of the negative gradient of Equation (7a) computed with respect to λ followed
by a projection onto the positive orthant:

λk+1
n =

[
λk

n + β

(
N∑

m=1

Lm∑
l=1

zk+1
nml rk+1

ml − dn

)]+

, (10)

where β > 0 is a simple parameter that limits the step length of the dual variable
update, and ()+ denotes the projection onto the positive orthant. We stress the fact that
dual variables are updated according to a very intuitive rule: if a constraint is violated
the associated lambda will grow; on the other hand, if a constraint is neither violated
nor tight the dual variable will decrease. Finally, note that the dynamic update in
Equation (10) does not admit equilibrium points that are infeasible. This can easily be
understood by setting the dual variable variation to zero in Equation (10); in this case,
we see that the download capacity constraint must be respected.

5.3. Summary of the Rate Allocation Algorithms

From the descriptions of the two algorithms, we can identify the differences in their
design. Whereas the fast algorithm is based on the similarity between Equations (3)
and (6), the iterative algorithm is based on the Lagrangian relaxation similar to the
usual NUM problems. Also, the features of the algorithm are radically different. The
fast algorithm does not need an initial guess and provides a solution that is likely
to be good, but it does not offer a way to further improve this solution. On the other
hand, the iterative algorithm is able to gradually improve the solution but it requires
an initial guess. Moreover, since the problem is not convex, local maxima are possible.
Hence, a good initial guess is extremely important to achieve good performances. From
this perspective, the two algorithms are not mutually exclusive but actually can be
combined to achieve better solution. As depicted in Figure 2, we can first run the fast
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Fig. 3. System architecture.

algorithm to obtain a good initial guess of the solution and then refine this guess using
the iterative algorithm and improve the value of the objective function. In the next
section, we describe in more detail how a system that uses both algorithms can be
implemented in a realistic environment.

6. PRACTICAL IMPLEMENTATION

We explain now the practical implementation of the algorithms described in Section 5.
The system is composed of two types of applications: the client application and the
switch node application. In Figure 3 a simplified block diagram with the client and
the switch node applications is depicted. Before continuing with the implementation
description, we recall which information can be measured locally by the different com-
ponents of the system. The client nodes have access to the value of their own upload and
download bandwidth exclusively and to the utility functions of all the videoconference
participants. The bandwidth values can be obtained from the CC, whereas the utility
can be extrapolated from the audio and video data received from the different users.
For example, the video quality can be estimated by using some no-reference techniques
and the relative importance of each stream can be inferred by detecting the current
speaker (see, for example, speech activity detection methods in Reference [19]). The
switch node instead knows all the upload and download bandwidths of all users via the
CC algorithm, but it is not able to measure the utility function, since it has no decoding
capabilities.

6.1. Fast-Rate Allocation Algorithm Implementation

We first describe the implementation of the fast-rate allocation algorithm proposed in
Section 5.1. The fast algorithm is triggered by the client nodes that independently solve
the ideal rate computation problem described in Section 5.1.1. If the computed rates
are different from the old ones, then they are communicated to the switch node using
a reliable protocol.

Upon reception of the new ideal rates from any of the receivers, the switch node
quickly schedules the transmission of the updated ideal rates to all the senders. The
small waiting time before the transmission of the ideal rates permits us to collect
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new ideal rates from other receivers before proceeding to the next rate allocation step.
This ultimately reduces the communication overhead of the distributed algorithm.
The users do not only communicate the new ideal rates to the switch node but also
the dual variable associated to the download capacity constraint of Equation (3). This
information will be used later by the switch node in the execution of the iterative
rate allocation algorithm. When the users receive the new ideal rates forwarded by
the switch node, they independently compute the new layer rates using the algorithm
described in Section 5.1.2 and send the new rates to the switch node. When the switch
node has collected the corresponding values from each client, it forwards the complete
list of available layers to all receivers.

When the users receive the new values of the available rates, they perform two
operations: (i) the sender subpart adapts the actual layer rates to the new values,
(ii) the receiver subpart solves the Layer selection problem described in Section 5.1.3
and sends the output of this optimization problem to the switch node. The switch node
then updates the forwarding table according to the new rules communicated by the
receivers. The forwarding table is a data structure that is maintained by the switch
node. It contains a list of pair values (user identifier and layer identifier) for every user
that indicates which layers should be forwarded to each endpoint. Every time a video
packet is received by the switch node, the application checks which receivers have
requested this pair of user-layer identifier and forwards the packet accordingly. Note
that if users have different Round-Trip Times (RTTs), the updates of the layer rates and
the layers selections are slightly desynchronized. As a result, the capacity constraints
might be violated for a short period of time causing an increase in the communication
delay. However, as it is shown in Section 7, the desynchronization effect for typical
values of RTTs causes a limited delay increase. In the case where the delay increase may
lead to a severe quality degradation of the interactive communication, it is possible to
control and limit the delay increase by properly dropping some packets or by improving
the system implementation to take into account explicitly the desynchronization in the
layer rates update.

At this point, the fast-rate allocation algorithm is completed and to improve the
problem solution, we trigger the iterative rate allocation algorithm.

6.2. Iterative Rate Allocation Algorithm Implementation

We now describe the implementation of the iterative rate allocation algorithm of Sec-
tion 5.2, which uses the output of the fast-rate allocation algorithm as initial guess. The
switch node first executes a dual variable update according to Equation (10).1 Using
the new values of the dual variables and the current layer rate selection, the switch
node computes the following quantities, which are needed by the senders to compute
the layer rates update of Equation (8):

ẑk
ml =

N∑
n=1

zk
nml, λ̂k

ml =
N∑

n=1

zk
nmlλ

k
n. (11)

The variable ẑk
ml simply corresponds to the number of users receiving the layer l of

sender m, whereas λ̂k
ml is the sum of the dual variables associated to all the download

links that are used by layer l of user m. The switch then communicates to each user the
complete list of available rates ({rk

m}), the dual variable of the download capacity λk
m,

the cumulative dual variable λ̂k
ml, and the total receivers ẑk

ml for all the layers generated
by the user m.

1The initial values for the dual variables are the ones collected from the ideal receiving rates computed in
Equation (3).
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Each user, using the received information, updates the primal variables solving
Equation (8) and the integer programming Equation (9). The users then communicate
the updated variables to the switch node. When the switch node receives the new
variables from all the users, the dual variables are updated and the next iteration
starts.

When we apply a primal-dual algorithm, we know that if the equilibrium point exists,
then it has to be feasible. We might, however, achieve feasibility only asymptotically.
In a realistic implementation, we would like to obtain a solution that achieves fea-
sibility in a finite amount of time. Second, it is also advisable, in case the download
bandwidth is noisy, to have a small safety margin between the total downloading rate
and the download bandwidth. In our implementation, the switch node therefore uses
a discounted value for the download capacities in the dual variables update, namely
γ dn, with γ = 0.98.

The time taken to execute one step of the iterative algorithm depends on the RTTs
between the switch node and the users’ endpoints. In fact, when new dual variables
are computed, the next iteration is executed when all the users communicate the
updated primal variables. This time is roughly equal to the maximum RTT plus the time
required to solve the integer programming Equation (9). Lower communication delays
do not only improve videoconference Quality of Experience but also the convergence
time of the iterative algorithm. Unfortunately, communication delays result from the
congestion control algorithm in place and do not depend on the proposed algorithm.

The iterative algorithm can be executed continuously to track small variations of the
utility functions or variations of the upload/download capacities. Note that the users’
RTTs pose an upper limit to the speed of the algorithm, but the algorithm can obviously
be executed at a lower speed. For example, the iteration speed can be decreased to save
network resources if the objective function has reached a sufficiently high value.

6.3. Further Implementation Details

We briefly list here some other implementation details in the design of our videocon-
ferencing system.

(1) Every stream flowing from the switch node to one of the receivers goes through
a sending buffer. These buffers are drained according to the sending rate of the
congestion control algorithm. They help to handle situations where the download
capacity changes suddenly or where minor synchronization errors among endpoints
may generate a sporadic surplus of packets. This occurs when the layer rates and
the layers selections change, for example. In our particular implementation, we
simply use a droptail management policy for the output buffers [8]. More advanced
scheduling techniques can also be used at this stage without affecting the design
of the switch node. The maximum size of the buffers is set in such a way to limit
the maximum queuing delay to 100 ms; when this limit is reached, other incoming
packets are discarded. It is worth noting that packet losses at this stage are not
taken into account by the congestion control, since the sessions from the sender
to the switch node, and from the switch node to the receiver(s), are completely
decoupled.

(2) The forwarding rules that are actually used by the switch node can be updated
at any time by the users. For example, if a sudden reduction of the download
bandwidth occurs, then the users can recompute the optimal selection using the
current layers and send the new rules to the switch node. The new rules will
immediately become effective. This fast update is completely decoupled from the
optimization algorithms, this is a sort of emergency action in case of sudden capacity
(or utility) variations.
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(3) In Figure 3, it can be seen that in the proposed implementation the variables
of the iterative algorithm are not the same as the active variables used in the
videoconference; the switch node is responsible for deciding when to update the
active values. Obviously, there are different possibilities for this update choice. One
could decide that the primal variables computed by the algorithm at every iteration
are always the active ones. This method is dangerous, because the variables might
actually provide an infeasible solution of the original problem. Therefore, we prefer
to adopt a different solution. In our implementation, the users solve Equation (5.1.3)
periodically, every second, for example, with the most updated layer rates of the
iterative algorithm {rk

m}, and they communicate the optimal utility to the switch
node. The switch node updates the active layer rates only if the expected total
utility is larger than the current one; basically, we never perform a rate update
that causes a drop of the overall utility function.

(4) If system conditions change remarkably, then it is convenient to restart the al-
location process from the fast-rate allocation algorithm. The restart of the fast
algorithm is simply triggered by sending new ideal rates to the switch node. The
decision whether to restart the process or not has to be taken by looking at the
variations of the utility functions and of the upload/download bandwidth. In our
implementation, we restart completely the process if (i) a bandwidth variation
larger than 250kbps occurs and (ii) the speaker of the videoconference changes.

7. SIMULATIONS

We study now the performance of the proposed algorithm. The system has been im-
plemented in the network simulator NS3 [18]. The simulation results illustrate the
behavior of the system and show performance comparisons between the fast and iter-
ative algorithms. We also show the benefits of the proposed solution over a heuristic
and non-optimized rate allocation method using the same system architecture.

7.1. Experimental Setup

The system described in Section 6 has been fully implemented in the network simula-
tor. We use the NADA congestion control algorithm to send the media packets between
nodes, with the implementation described in Reference [25]. It is worth noting, how-
ever, that the operation of the proposed rate allocation method is independent of the
underlying CC algorithm used by the system.

Similar to many other works on NUM, we use the logarithm of the rate to model the
utility functions:

Um(rm) = wm log(rm). (12)

The coefficient wm embeds the dependency of the utility function on the video content
of user m. In the following simulations, we assume that wm represents only the users’
activity, and we assume to have the same video complexity for the different streams.
The coefficient wm can take the following values: 1 (low activity user), 2 (high activity
user), and 3 (speaker). The weight of the user m can be obtained from the video-audio
information coming from user m or can be signaled in the media packets. Receivers
become aware of the importance of the other users simply by inspecting the incoming
packets.

We consider a scenario with 10 users that participate in a videoconference. In order
to have realistic bandwidth settings, we set the capacities of the links according to
different speed tiers provided by a large internet service provider company.2 The values
of the capacity for the upload/download links are listed in Table I; we use heterogeneous

2Available at http://www.att.net/speedtiers.
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Table I. Settings for the 10 Users Scenario

Download capacity [4 5 3.5 7 10.5 9 12.5 13 13.5 14] Mbps
Upload capacity [0.7 0.7 0.7 1 1.4 1.5 2.1 1.8 2.0 1.8] Mbps

Fig. 4. Transmitted video stream from user 9 to user 5 (user 9 importance is shown).

capacity values to stress the performance of the proposed system. We finally assume
that all the users are able to encode up to three video layers.

7.2. Fast Algorithm Evaluation

In the first test, we evaluate how quickly the fast-rate allocation algorithm can react
to users’ utility variations. We vary abruptly the users’ importance during the video-
conference and observe the reaction of the rate allocation algorithm. Due to the large
number of participants, it is convenient to focus on a single user and analyze that par-
ticular download rate evolution. In Figure 4, we show the evolution of the bitrate and
the end-to-end delay of the video stream sent from user 9 to user 5. The algorithm is
able to track the variation of the user importance by providing fast-rate adaptation (see
Figure 4(a)). The time required to adapt the rate corresponds to 2s, which strongly de-
pends on the RTTs between the switch node and the users. It is easy to observe that the
time required by the fast algorithm for completing the rate adaptation is approximately
equal, in the worst case scenario, to three times the largest RTT between the switch
node and the users plus the waiting time adopted by the switch node before forwarding
the ideal rates (see Section 5.1). Figure 4(b) shows the evolution of the end-to-end com-
munication delay between the two considered users. This metric mostly depends on
the CC algorithm used rather than the proposed videoconferencing system. However,
it is important to verify that the small desynchronization between the adaptation of
the layer rates and the layer selection update does not cause large delay variations
in the data transmission. When the layer rates change, the experienced delay slightly
grows, but this increase is contained within 20ms (similar results hold for the other
users), which confirms that the effect of the desynchronization does not compromise
the QoS of the videoconference. Note that at time 30s and 60s the rate adaptations are
almost instantaneous. In this case, it means that among the layers that are available
at the time where the utilities change, there already exists a combination that can
increase the utility function of user 5. Therefore, the user selects this solution imme-
diately, before the actual conclusion of the fast iterative algorithm, as discussed in the
second paragraph of Section 6.3. For further results regarding the fast-rate allocation
algorithm, we refer the reader to our former article [9].
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Fig. 5. Encoding bitrate, total receivers, and cumulative dual prices for video layers generated by user 6.

Fig. 6. Total received video bitrate, download capacity, and dual variable associated to the download band-
width of user 6.

7.3. Iterative Algorithm Evaluation

In this subsection, we evaluate how the layer rates evolve according to the iterative rate
allocation algorithm. Since the purpose of the iterative algorithm is to progressively
refine the rate allocation, and to evaluate the results more easily, we keep the activity
of the users constant over time but we assign to each user a different importance level,
namely the importance level assigned to each user are: w = [1 1 1 2 1 1 2 2 3 1].
The algorithm works as described in Section 6: we first execute the fast algorithm
described in Section 5.1, and then we use the approximate solution as initial guess for
the iterative algorithm of Section 5.2.

Figures 5 and 6 depict the evolution of the layer rates, the total number of receivers,
and the cumulative dual variables associated to user 6 during the execution of the
iterative algorithm. The upper plot in Figure 5 shows the rate of the layers encoded
by the user. In the initial phase, we can notice the increase of the rate of layers 1
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Fig. 7. Evolution of the Objective function of Problem (7).

and 3. The increase of these two layers reveals one of the pitfalls that might affect
the fast algorithm and that the iterative algorithm can correct. In this case, other
videoconference participants ideally want a lower rate from user 6 and some higher rate
from other users. However, since other participants have a limited upload bandwidth
(see Table I) and are not able to provide the full requested rate, some free bandwidth
becomes available; this is ultimately allocated to users with a larger upload bandwidth,
such as user 6 by the iterative algorithm, which results in a more efficient use of the
upload link. The number of receivers of each layer and the cumulative dual prices
are shown in the central and lower plot of Figure 5, respectively. Note that the total
number of receivers for all the layers is equal to 9, which means that all users in
the videoconference receive the video stream of user 6, which is a constraint of the
original Equation (2). In Figure 6, some variables related to the receiving side of user
6 are depicted. In particular, the upper plot describes the total receiving rate at every
iteration and the user download capacity, whereas the bottom plot illustrates the dual
variable associated to the download constraint. As discussed in Section 5.2 the dual
variable simply evolves according to the overuse or underuse of the capacity. When the
rate exceeds the capacity the dual variable increases whereas when the constraint is
not violated the dual variable decreases.

Using the same scenario, we show in Figure 7 the evolution of the objective function
of Equation (7) as a function of the iteration. The objective function decreases, which
is in agreement with the fact that Equation (7) is an upper bound of the original
Equation (2) that is minimized by the iterative algorithm. The red line is obtained by
solving Equation (2) with respect to the layers selection variables {zn} with the layer
rates fixed to the most recent iteration. At the beginning, the objective value drops,
because the iterative algorithm needs to violate the constraints to build up the dual
variables, making all the layer rates too large to provide a good solution. When the dual
variables are large enough, they push back the solution of the primal-dual algorithm
toward the feasible set of the original problem. At this point, the layer rates are very
close to the boundary of the feasible set, which translates in an efficient usage of the
links and a higher total utility.

Finally, we present a brief discussion on the number of iterations required by the
iterative algorithm. In this simulation, the iterative algorithm requires about 120
iterations to converge to the optimized allocation. If we consider that a time equal to
the largest RTT between the switch node and the users’ nodes is required to execute
one iteration of the algorithms, and assuming realistic RTTs between 100 and 400ms,
then the time required to find the solution is about 12–50s. This is too large to use
the iterative algorithm for fast-rate adaptation, and this is why we combine it with
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Table II. Available Layers Used in the Baseline Solution

Number of available layers Cumulative Layer rates

1 1/4 · un

2 [1/4 1/2] · un

3 [1/4 1/2 3/4] · un

4 [1/8 1/4 1/2 3/4] · un

5 [1/8 1/4 3/8 5/8 7/8] · un

Fig. 8. Total utility, upload link utilization, and download link utilization for the three methods under
evaluation.

the fast-rate allocation algorithm, which instead is able to quickly converge to a good
solution. Nevertheless, the iterative algorithm, as we will see in the next subsection,
is very effective in terms of utility maximization and channel utilization.

7.4. Performance Comparisons

In order to further compare the quality of the solutions achieved by the fast and the
iterative algorithms, we test them for different numbers of encoded layers. In this case,
we use the same network and users’ importance as in the previous simulation, but we
vary the number of encoded layers for the users. The maximum number of layers varies
from 1 to 5, and for each scenario we evaluate the total utility, the average upload, and
download link utilization after convergence for the videoconference participants. We
also compare the performance with a baseline solution, where the rates of the encoded
layers are fixed. The layer rates used for the baseline solution are listed in Table II.
The rates have been selected to offer a tradeoff between an efficient use of the upload
capacity and having a good probability of guaranteeing that all the users are able to
receive all the streams. For this baseline method, the receiver algorithm is the same as
in our proposed solutions: every user selects the combination of layers that maximizes
his own utility function.

The results of these simulations are depicted in Figure 8, where we see that the
combination of the fast and iterative algorithms always outperforms the other methods.
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The fast algorithm is also very efficient in terms of total utility, but it is not always able
to use the bandwidth in the most efficient way. The baseline solution obviously achieves
lower values for all the metrics, but the performance penalty decreases with the number
of layers, since the optimization of the variables then becomes less important. When
only few layers are available for a large user population, a proper optimization of the
rates becomes important, and this is exactly the target scenario for our algorithm.

8. CONCLUSIONS

In this work, we propose a method for solving the rate allocation problem in a multi-
party videoconferencing system. The considered system architecture is composed of a
set of users, which are able to encode their own video at a limited number of different
bitrates, and a central switch node, which enables application layer multicast commu-
nication among the videoconference participants. In order to preserve scalability, the
central node is kept as simple as possible and the system intelligence resides almost ex-
clusively at the users’ side. Unfortunately, the complexity of the rate allocation problem
prevents us from being able to find easily the optimal solution. Therefore, we design
two distributed algorithms to find good suboptimal solutions. The first algorithm is a
fast-rate allocation method able to rapidly find an approximate solution of the original
problem in a one-shot execution. The second algorithm is an iterative algorithm based
on Lagrangian relaxation that gradually updates the variables to improve the initial
solution. Since the two methods offer complementary features, we can combine them
to design a system that is able to guarantee a quick rate adaptation in the case where
videoconference conditions change and a precise refinement of the solution for an effi-
cient network usage. The proposed videoconferencing system has been implemented in
a network simulator and its performance has been compared with a baseline solution.
The results show the benefits that can be achieved by the combined use of the two
algorithms in terms of fast-rate adaptation, resource utilization, and QoS provided to
the users.
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