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ABSTRACT

We propose a method to compute scale invariant features in omni-
directional images. We present a formulation based on Riemannian
geometry for the definition of differential operators on non-Euclidian
manifolds that correspond to the particular form of the mirrors in
omnidirectional imaging. These operators lead to a scale-space anal-
ysis that preserves the geometry of the visual information in omni-
directional images. We eventually build novel scale-invariant om-
niSIFT features inspired by the planar SIFT framework. We ap-
ply our generic solution to omnidirectional images captured with
parabolic mirrors. Simple descriptors that use omniSIFT character-
istics offer promising performance in the case of image rotation or
translation where visual features can be preserved due to the proper
handling of the implicit image geometry.

Index Terms— Omnidirectional vision, scale-invariant fea-
tures, Riemannian geometry

1. INTRODUCTION

Omnidirectional vision has been an active research field in robotics
and surveillance where sensors with large fields of view present sev-
eral advantages for scene analysis, representation or detection, for
example. The omnidirectional cameras typically consist of either a
fisheye lens or a lens and a mirror system with a smooth surface such
as parabolic or hyperbolic mirrors. These sensors collect the light
rays from the scene and project them onto a sensor with a regular
grid of sensitive cells. The structure of the resulting images is highly
dependent on the geometry of the mirror, which should be taken into
account for an appropriate processing of the light information.

Applications such as camera calibration, object detection, recog-
nition or tracking generally rely on the localization and matching
of particular visual features in multiple images. Scale invariance is
an important characteristic of visual features that permits to be less
sensitive to imperfect camera settings. The most popular scale in-
variant feature detection algorithm is certainly the SIFT framework
[1] for perspective camera images. Many other methods have been
proposed with different distinctive descriptors and feature detection
methods [2, 3, 4, 5] for classical cameras. However, omnidirectional
images have generally a specific geometry due to the sensor char-
acteristics, which typically causes partial scale changes in different
regions of the images. For example, a scene captured with a cata-
dioptric camera using a paraboloid mirror is sampled more densely
in the outer parts of the image than in the center. Classical feature
detection algorithms do not take into account the implicit geometry
of the mirrors; this penalizes the performance of the image analy-
sis applications when they are applied directly on the sensor images
[6,7,8].
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We propose in this paper a novel framework for the computation
of scale invariant features on omnidirectional images created by
sensors with particular geometries. In particular we build on Rie-
mannian geometry to define differential operators on non-Euclidian
manifolds, such that the images can be processed in their native
geometry. We then define a scale-space analysis that permits to
build scale invariant features that are adapted to the geometry of
the omnidirectional images. We illustrate our framework in the
case of parabolic omnidirectional images that are commonly used
in robotics and surveillance applications. We show in experiments
that simple descriptors based on our new features provide invariance
to rotation on SO(3) and give good matching performance in the
case of translation. Our framework provides a promising solution
for calibration and feature detection application in omnidirectional
camera networks.

Recent works such as [9, 10, 11] have proposed to process om-
nidirectional images on the sphere after an inverse stereographic
projection that preserves the geometry of the light information [12,
13]. In these works, the scale-space representation is computed with
Gaussian kernels on the sphere, while the convolution is performed
using the spherical Fourier transform on a equiangular grid. The
extra interpolation step between different sampling grids however
induces loss of precision on the pixel positions. In addition, the
non-uniform sampling grid does not preserve the original sampling
density and can cause spurious upsampling and downsampling pro-
cesses that affect the scale of the computed features. Furthermore,
even if the spherical Fourier transform provides an efficient way to
perform convolution, its inherent bandwidth limitations can cause
aliasing and extra smoothing. In an attempt to better preserve the
image geometry, an approximate solution that maps the gaussian
functions back to the original image is proposed in [14]. It con-
firms that processing the images on their original sampling grid has
important benefits. In this paper, we adopt a different strategy where
the geometry of the imaging system is represented as a Riemannian
manifold. We then build on [15] to propose a scale-space analysis
that permits to compute scale invariant features with help of differ-
ential operators instead of Gaussian kernels. Our generic framework
can be applied to different types of omnidirectional imaging systems
where it provides scale invariance and preserves the geometry of the
light information.

2. SCALE-SPACE ANALYSIS ON NON-EUCLIDIAN
MANIFOLDS

2.1. Riemannian Geometry Framework

Scale-space analysis is generally performed with help of Gaussian
kernels and differences of Gaussians on planar images. Gaussian
kernels can however not be used on generic smooth surfaces. One
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can however compute a scale-space representation [ (z,y, t) on non-
Euclidian manifolds with help of the heat equation. It reads

ol(z,y,t)
ot
where A is the Laplacian operator and ¢ is the scale level. The initial
condition is given as I(x,y,to) = I(x,y). It can be noted that the
Gaussian function with standard deviation /7 is the solution for the
heat equation (1) on planar images.

The heat equation permits to develop a scale-space analysis with
differential operators. These operators can be defined on smooth
manifolds with help of Riemannian geometry, as recalled in [15].
Let M be a parametric surface on R® with an induced Riemannian
metric g;; that encodes the geometrical properties of the manifold.
In a local system of coordinates x* on M, the components of the
gradient of the scalar function I read V = g% %, where g% is the
inverse of g;;. Furthermore, the divergence of a vector field V on

M is given as divV = %8,-(\/2'\/57), where g is the determinant of

9% We can then define the Laplace-Beltrami operator as the second
order differential operator on the scalar field I on M, as

= Al(xz,y,t) (D
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This operator that corresponds to the Laplace operator on the
plane can be used to solve the heat equation (1) on non-Euclidian
manifolds. The specific form of the Laplace-Beltrami operator de-
pends on the particular geometry of the manifold M.

2.2. Parabolic Mirror Systems

We consider here the specific case of omnidirectional imaging sys-
tems with parabolic mirrors that are quite common in robotics and
surveillance applications. Images from parabolic mirrors can be
uniquely mapped on the 2-sphere by inverse stereographic projec-
tion, similarly to images from most simple mirrors and catadioptric
systems. This enables easier processing of the parabolic images. We
then derive the metric necessary to the construction of differential
operators on the sphere, in order to perform scale-space analysis and
feature detection by properly taking into account the geometry of the
images.

First, we can define the Euclidian line element dl on the 2-sphere
S? in terms of the variables -, # and ¢ that represent the spherical
coordinates. The line element satisfies

di* = 2 (d6* + sin® 0d¢?). 3)

Stereographic projection maps each point on the sphere to a
plane R? of coordinate (z,y). A point in polar coordinates (R, ¢)
on the plane is related to the a point (6, ¢) on the sphere by R =
2r tan(%) and ¢ = ¢. Using the identities, R> = x? + 3, ¢ =
tan™" () in cartesian coordinates and r = 1, the line element reads
16

a?=—
(4+$2+y2)2

(dz® + dy?) )
giving the metric
P et 0
gij = (t= 0+y ) 16 )
(4+a2+y?)?
and the inverse metric

- (4+a”+y?)? 0
g7 = 1(;3 (4432 4y2)2 (6)
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Equipped with this metric, we can finally compute the differen-
tial operators on the sphere with help of Eq. (2). In particular, the
norm of the gradient reads

B (4+SE2 +y2)2

VAl = === Ve[’ ™

while the norm of the Laplace-Beltrami operator can be written as

_ (+a®+y?)?
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These operators permit to compute a scale-space representation
of the images in the sensor plane, while providing an accurate rep-
resentation of the geometry in the omnidirectional images through
proper Riemannian metrics.

3. FEATURE DETECTION

We get inspiration from the SIFT framework to construct features
and design simple descriptors for omnidirectional images, based on
the scale-space analysis presented in the previous section. For planar
images, it has been shown that differences of gaussian can approxi-
mate scale-normalized Laplacian of Gaussian if the scale levels are
separated by a constant multiplicative factor [1], since this satisfies
Lindeberg’s normalization condition for scale invariance [16]. In or-
der to benefit from scale invariance, we adopt a similar method and
define a multiplicative factor k that controls the scaling in the heat
equation. We set t; = k%‘c? in Eq. (1) and we compute the heat
equation successively at times ¢; defined in terms of the normaliza-
tion and scale factors k and o. We form the scale levels such that
scale normalized difference images are obtained after scale-space
analysis. Similarly to the SIFT framework, we select & = 2'/3 and
use 4 successive octaves.

Note that we use discrete operators for the computation of the
scale-space representation. The timesteps in the heat equations are
discrete, and we use discrete differential operators on the plane for
the computation of the gradient (i.e., [—1 1]/ds)and laplacian (i.e.,
[-1 2 1]/ds). Smoothing is performed by updating I(z,y,t)
with the differences that have been computed at previous steps. Fi-
nally, the images are downsampled for each octave in order to reduce
the computation time. However, since the induced metric is depen-
dent on the position, after downsampling, the sampling factor, ds is
doubled for each octave in the differential operators.

Once the scale space images are formed, we use a similar strat-
egy as the SIFT framework [1] in order to detect the most important
visual features. First, we detect local extremum points by checking
26 neighbor points in windows of 3 x 3 pixels in the current and
adjacent difference images. Differences between neighbors permit
to remove low contrast features by thresholding on the magnitude of
these differences. In [1] , edge responses are then removed by check-
ing the ratio between maximum and minimum principle curvatures
of the difference image at the pixel position and features with ratio
greater than 10 are deleted. Finally, a 3D quadratic function is fit
to the pixel position and scale for additional refinement of the set of
features.

4. EXPERIMENTAL RESULTS

We propose experiments in order to test the invariance of our novel
features to rotation and translation in omnidirectional images. We
build simple descriptors from the visual features, and we compute
the performance of matching features in transformed images.



We use two simple descriptors inspired from planar SIFT de-
scriptors [1]. The first type of descriptor (i.e., Planar descriptor) is
simply computed on the planar sensor image. The window size in
the definition of the descriptor is however adapted to the position on
the plane by using the metric ¢/ for handling the geometry of the
omnidirectional images. In addition, all the gradient computations
necessary for building histograms of gradients in the descriptor are
performed on the original manifold using the same metric g*/. The
second type of descriptor (i.e., Spherical descriptor) is computed us-
ing planes tangent to the sphere. An image patch on the tangent
plane at a given pixel position is formed by mapping the neighbor-
ing pixels onto the image patch. Then a classical SIFT descriptor is
computed on that planar image patch.

We compare the matching performance of these simple descrip-
tors built on our new visual features, with those using a planar SIFT
framework [17] on the sensor image and the spherical SIFT method

[9].

4.1. Invariance to rotation

In a first experiment, we test the invariance of the different features
to rotation in SO(3). Recall that the catadioptric image from the
parabolic mirror can be mapped uniquely onto the sphere. A ro-
tation in SO(3) should not change the scale of the features, but it
might change the resolution of the image in different regions; this
can cause problems for methods that do not consider the geometry
of the images.

We first create a test set of five planar test images (see Figure 1).
These images are mapped onto a 10x10 unit plane. The omnidirec-
tional camera captures this image plane from two different positions
that are set to be 8 and 10 units away from the plane. We create
transformed images with 9 different rotations by moving the camera
around its center with angles ranging from —40 to 40 degrees by
intervals of 10 degrees.

Fig. 1: Test Images mapped on the synthetic plane

For each rotation value, we measure the matching performance
by comparing the image to all other rotated versions and then av-
erage the results for all images and each capture position (i.e., 8 x
2 x 5). We measure the number of correct matches, the number of
features and the localization errors for all methods under compari-
son. Since the transformation between images is known, the correct
matches are computed by checking the distance between the feature
points and by comparing the scales of the features. We use a deci-
sion threshold that is adaptive to the scale levels and to the descriptor
framework.

Figure 2 shows the percentage of the correct matches over num-
ber of features. The proposed algorithm is not affected by the ro-
tations and provides the best percentage. Although the planar SIFT
has the highest peak percentage, it is affected by rotations and the
performance drops sharply at the high rotation values. It is a re-
sult of feature detection mechanism that does not take geometry into
consideration. The spherical SIFT is not affected by rotation but the
percentage of correct matches is low. The same behavior is observed
for the our visual features and the spherical descriptor. This is due
to the computation of the descriptors on the sphere where the nec-
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Fig. 2: Percentage of correct matches over number of features for
different rotation values.

essary extra interpolation step in both algorithms generates incorrect
descriptors.

We also measure the mean localization error for the matched
features. This error is computed by measuring the error on the local-
ization of features that provide correct matches. The matching pa-
rameters for the different methods are selected such that the average
number of features in each case is approximately constant. Figure
3 shows the mean localization error for different rotation values for
all methods. The spherical SIFT descriptor has a significant local-
ization error while the proposed features and the planar SIFT permit
to keep the localization error low. This performance confirms that
the proposed framework can be used for calibration and scene re-
construction with omnidirectional images.
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Fig. 3: Mean localization error for different rotations

4.2. Invariance to translation

‘We then propose experiments that include translation of the cameras.
We use the same test images as for the first experiments, and we set
the distance of the camera to the image plane to be of 10 units. We
select the matching parameters so that the number of features are
approximately equal.

We consider two types of translation. First, the camera moves
perpendicularly to its optical axis, which itself stays perpendicu-
lar to the test image plane. Figure 4 shows the percentage of the
correct matches with respect to the number of detected features in



each method. Although the proposed method gives high percent-
age, the planar SIFT method is better for this type of translation. For
large translation, the test plane moves towards the outer region of the
image where more important smoothing is performed in our scale-
space analysis, and this degrades the feature detection performance.

Correct Match/Feature (%)
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Fig. 4: Percentage of correct matches with respect to the number of
features for different displacements for the first translation test.

Second, the camera moves along its optical axis with some ro-
tations. The camera makes 5 units of displacement with 1 unit in-
tervals. The axis of the rotation is the same as for the above rota-
tion test. The values are averaged for different translations. This
test checks the response of the proposed method to combinations of
translation and scaling transformations. Figure 5 shows percentage
of correct matches with respect to the number of features detected
by each method. The proposed features with Planar descriptor lead
to the best performance when translation is combined with scaling,
which represents probably the most common type of transformation
in practice.

Correct Match/Feature (%)

—+— LB Planar Desc N
5 —&— Planar SIFT

— + LB Spherical Desc
—— Spherical SIFT

a5 L L L L L L L

2
Translation

Fig. 5: Percentage of correct matches with respect to the number of
features for different displacements for the second translation test

5. CONCLUSION & DISCUSSION

We have proposed a scale invariant feature computation method for
omnidirectional images from imaging systems with particular geom-
etry. We have exploited the foundations of the Riemannian geometry
to formulate the scale-space analysis and a feature detection frame-
work that works directly on the original image plane without need for
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any interpolation. We have derived and tested the proposed method
for parabolic omnidirectional images, where experiments show that
an accurate exploitation of the geometry leads to invariance of the
features to rotations in SO(3), and to competitive performance in the
case of translation. The proposed method can be extended to more
generic manifolds and computation of a good descriptor with full
geometry integration is one of our future works.
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