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ABSTRACT

This paper proposes an adaptive entropy-constrained Matching Pur-
suit coefficient quantization scheme. The quantization scheme
takes benefit of the inherent properties of Matching Pursuit streams
where coefficients energy decreases along with the iteration num-
ber. The decay rate can moreover be upper-bounded with an ex-
ponential curve driven by the redundancy of the dictionary. An
optimal entropy-constrained quantization scheme can thus be de-
rived once the dictionary is known. We propose here to approxi-
mate this optimal quantization scheme by adaptive quantization of
successive coefficients whose actual values are used to update the
quantization scheme parameters. This new quantization scheme
is shown to outperform classical exponential quantization in the
case of both random dictionaries and practical image coding with
Gabor dictionaries.

1. INTRODUCTION

Non-orthogonal transforms presents several interesting properties
which position them as an interesting alternative to orthogonal
transforms like DCT or wavelet based schemes. Decomposing a
signal over a redundant dictionary improves the compression effi-
ciency, especially at low bit rates where most of the signal energy
is captured by only few elements. In this context, Matching Pur-
suit algorithms [1] provide an interesting way to iteratively decom-
pose the signal in its most important features with a limited com-
plexity. It outputs a siream composed of atoms or basis functions
along with their respective coefficients. Since the Matching Pur-
suit coefficients generally take on real values, quantization is how-
ever necessary to reduce the bandwidth needed to transmit them.
Quantization errors have been studied in {2, 3] in the context of
overcomplete frame expansions and consistent Matching Pursuit.
This paper focuses particularly on:a-posteriori coefficient quanti-
zation for a general Matching Pursuit decomposition, in contrary
to usual schemes [4, 5, 6) where the encoder uses the quantized
coefficients to update the residual signal.

An optimal entropy-constrained quantization scheme can be
derived taking benefit of the inherent properties of Matching Pur-
suit streams [7]. The coefficients energy are indeed upper-bounded
by a exponential decay curve along with the iteration number. This
curve only depends on the properties of the dictionary and the
search algorithm. Hence, the contribution of the Matching Pur-
suit coefficients to the quantization error clearly depends on their
position within the encoded stream, and hence on the redundancy
of the dictionary. Based on the characterization of the energy de-
cay curve, the quantization range and the number of quantization
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steps can be adapted to the relative importance of the coefficients.
Moreover, the optimal number of atoms for a given bit budget is
also given by the exponential decay curve parameters that depend
on the redundancy factor and the signal energy. In this paper,
an adaptive but suboptimal quantization scheme is proposed to
approximate the optimal entropy-constrained quantization in the
practical case of large dictionaries. The actual values of the co-
efficients are used to update the quantization scheme parameters,
thus avoiding estimation error effects due to suboptimal Matching
Pursuit search on large size dictionaries. This new adaptive quanti-~
zation scheme truly outperforms entropy-constrained exponential
quantization schemes, especially at low bit rates. Furthermore, it
is shown to achieve very good results in the practical case of image
compression.

The paper is organized as follows: Section 2 first overviews
the Matching Pursuit algorithm and presents the convergence prop-
erties of the decomposition. Section 3 then presents an optimal
entropy-constrained a posteriori quantization of Matching Pursuit
coefficients. A suboptimal adaptive quantization scheme is derived
in Sec. 4. Experimental results are given in Sec. 5 for random and
Gabor dictionaries in the practical case of image coding. Finally,
concluding remarks are given in Section 6.

2. MATCHING PURSUIT OVERVIEW

In contrast to orthogonal transforms, overcomplete expansions of
signals are not unique. The number of feasible decompositions is
infinite, and finding the best solution under a given criteria is a
NP-complete problem. In compression, one is interested in repre-
senting the signal with the smallest number of elements, that is in
finding the solution with most of the energy on only a few func-
tions. Matching Pursuit [1] is one of the sub-optimal approaches
that greedily approximates the solution to this NP-complete prob-
lem.

Matching Pursuit (MP) is an adaptive algorithm that itera-
tively decomposes any function f in the Hilbert space # in a
possibly redundant dictionary of functions called atoms [1]. Let
D = {gy}, r be such a dictionary with ||g,|| = 1 and T' repre-
sents the set of possible indexes. The function f is first decom-
posed as follows :

F=(gvlf) gy + RS, )

where (g, | f) g+, represents the projection of f onto g,, and R f
is aresidual component. Since all elements in D have by definition
a unit norm, it is easy to see from Eq. (1) that g, is orthogonal to



RS, and this {eads to
IFII” = Uano II* +IRFN . 2]

To minimize ||R f||, one must choose g,, such that the projection
coefficient |{g,|f)| is maximum. The pursuit is carried out by
applying iteratively the same strategy to the residual component.
After N iterations, one has the following decomposition for f :

N-1

=Y (93.IR" gr + RV f, 3)
n=0

where RY is the residual of the Nt* step with R®f = f. Simi-
larly, the energy || f|| is decomposed into :

N-1

AP =D Kgma IR A1 + IRV £117 . @
=0

Although Matching Pursuit places very few restrictions on the
dictionary, the latter is strongly related to convergence speed and
thus to coding efficiency. Any collection of arbitrarily sized and
shaped functions can be used as dictionary, as long as complete-
ness is respected. The completeness property ensures that Match-
ing Pursuit is able to perfectly recover the input signal after a pos-
sibly infinite number of iterations.

The convergence speed of Matching Pursuit corresponds to its
ability to extract the maximum signal energy in a few iterations.
In other words, it corresponds to the decay rate of the residue and
thus the coding efficiency of the Matching Pursuit. The approxi-
mation error decay rate in Matching Pursuit have been shown to
be bounded by an exponential [1, 8]. From [9], there exists a > 0
and § > 0 such that forallm > 0:

[R™ £l < (1—a? 822 |R™fI], ©)

where a € (0, 1] is an optimality factor. This factor depends on
the algorithm that, at each iteration, searches for the best atom in
the dictionary. The optimality factor « is set to one when the MP
browses the complete dictionary at each iteration. The parameter
B depends on the dictionary construction. It represents to ability of
the dictionary functions to capture features of any input function f
and satisfies :

sup|(f, 92a)] 2 Bl ©
v

The redundancy factor 3 corresponds thus to the cosine of the

maximum possible angle between a direction f and its closest di-

rection among all dictionary vectors. A general formulation of the

redundancy can be found in [10].

3. ENTROPY-CONSTRAINED COEFFICIENT
QUANTIZATION

The aim of the quantization is clearly to offer the best possible re-
construction quality for a given bit budget. The quantization error
can first be upper-bounded by the sum of the coefficient quanti-
zation errors. Indeed, the squared quantization error Dg between
the signal approximation f» and its reconstructed version f can
generally be written as :

N-1

=Y Emgml’, O
n=0

N1
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424

where ¢,,, denotes a MP coefficient, or equivalently the inner prod-
uct {g,, |R"f) and &, represents the distorted coefficient. Let
§n = ¢y, — &y, denote the error on the coefficient. It will be
assumed in the remainder of this paper that atom indexes are cor-
rectly received, i.e., that g5 = g5, . By triangular inequality, Dq
can thus be bounded as

N-1
Dg = | Z (Cva = 1) grnll® ®)
n=0
N-1 N-1
< S leal gl < S leal,
n=0 n=0
since ||g,|] = 1. Eq. (8) provides an upper-bound to the recon-

struction error due to quantization noise. Finally, the total dis-
tortion has also to take into account the signal approximation er-
ror due to the finite number of Matching Pursuit iterations. Using
Eq. (8) the total distortion can be written as :

N-1
D < > Kl +IRYAP ©)
n=0
N-1
<

STl + = o BV,
n=0

where the energy of the residue at iteration [V is bounded thanks
to Eq. (5).

The optimal quantization then minimizes the reconstruction
error given by Eq. (9) for a given bit budget. Since the quantization
error depends on the absolute value of the error on the coefficients,
the highest iteration elements can be more coarsely quantized than
the first elements for the same contribution to the quantization er-
ror. Hence, the exponential upper-bound on the coefficients can be
used to design an efficient quantization scheme. Clearly, there is
no need to quantize all coefficients on the same range, since their
values exponentially decrease. Bits can thus be saved by limiting
the quantization region between 0 and the exponential decay curve
given by the parameters (i.e., 8 and || f||). An additional bit of sign
suffices to completely characterize the coefficients. The number of
coefficients, as well as the number of bits per coefficient have now
to be optimized in this context of exponentially decaying quanti-
zation range.

Assume now in a first approximation that the distribution of
the coefficients norm is uniform between 0 and the exponential
upper-bound. For complexity reasons, and under the previous as-
sumptions, the coefficient ¢; is uniformly quantized within the ex-
ponentially decaying quantization range

L=2Ifll (10)
where v = (1 — o? B2)%. Let n; be the number of quantization
steps within I; for the quantization of the j** coefficient. With
the previous assumptions, the distortion due to quantization can be
written as :

N-—1
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Note that uniform quantization within an exponentially decaying
range is similar to an exponential quantization within the complete
range of the coefficients values [11, 12]. The optimal quantization



now minimizes the total distortion D for a bit rate R, or equiva-
lently, minimizes the bit rate for a given distortion. In other words,
we have to find the optimal parameters n; > 1 and IV that mini-
mizes the distortion for a given rate. The Lagrangian multiplier
method is well suited for this kind of constrained optimization
problems. It defines a cost function £{\) as the sum of the ob-
jective distortion function and the constraint on the rate, weighted
by the Lagrangian multiplier A. In our case the cost function may
be written as :

LX) = D+ AR 2
N=1 o 2 ' =)

= Y LNy 4 3 A ogs (my) + B),
= 12nj 7=0

where B represents the average number of bits needed to code the
atom index after possible entropy coding. Under the assumption
of uniform coefficient distribution, the Lagrangian formulation is
equivalent to an entropy-constrained quantization problem. The
rate R indeed represents in this case the entropy of the quantized
coefficients. The optimal quantization is given by

LA v log?
MV ex

and imposes an exponential law to the number of quantization lev-
els:

13

njp _ Y
==

1-a®p%)t. (14)

nj
The complete derivation as well as the optimal number of MP co-
efficients IV are detailed in {7].

4. ADAPTIVE QUANTIZATION

The previous optimal quantization scheme has several limitations
in practical cases of large dictionaries. Moreover, the accuracy of
the exponential upper-bound is highly dependent on the Matching
Pursuit search algorithm. To overcome these limitations we now
propose a suboptimal though very practical algorithm based on
the development of the previous section. The key idea lies in a dy-
namic computation of the redundancy factor 3 (i.e., the parameter
v) from the quantized data, which is the only information avail-
able at the decoder. As in the previous section, we only focus on
the magnitude of coefficients, reporting their sign on an additional
bit.

The adaptive quantization schemes performs as follows. Let
Qlex), k = 1,... j~1 denote the quantized counterparts of the j—
1 first coefficients. Due to the exponential decay of the magnitude,
coefficient ¢; is very likely to be smaller than Q[c;_1]. It can thus
be quantized in the range [0, Qfc;_1]]. The number of quantization
levels at step j is theoretically driven by the redundancy factor
as given by Eq. (14). The adaptive quantization uses an estimate
of the redundancy factor to compute the number of quantization
levels as :

nj =Vji_1nj-1. (15)
The estimate of the redundancy factor # is then updated replacing
the quantization range I; in Eq. (10) with the previously quantized
coefficient Qfc;_1] as :

Vj

T\ i

1
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This can be summarized by Algorithm 1. In practice, it will
run as long as there are bits available according to initial bit bud-
get. Notice that no can either be computed from the optimal A
chosen at startup using a bisection method on a typical R-D curve
or estimated using the recursive formula (14). A bad estimation of
the initial value will however not impair the quantization results,
but rather displace them on the working rate-distortion curve. Fi-
nally, several coefficients could be used in the computation of ¥ to
improve the accuracy of the estimation and avoid potential oscilla-
tory effects.

Algorithm 1 Differential Quantization

. 2 ~
Require: Ip = ||f|l, no = (M%%s_?) =1
while j < max iterations do
nj = Vj_1 nj-1
Qlc;] < Quantize |c;| on n; levels with range I;_1
I; <= Qlg] s
e\ /i
by = (%ﬁ) {update i}
jej+l
end while

5. EXPERIMENTAL RESULTS

In this section we now compare the adaptive entropy-constrained
quantization scheme with an exponential quantization scheme [11]
used in Matching Pursuit coding [12]. The exponential quantiza-
tion is clearly expected to provide better results than uniform quan-
tization [7] due to the distribution of the MP coefficients. Both
schemes, comparable in terms of complexity, are used for a poste-
riori MP coefficients quantization. In both cases, the distortion is
reported to the coding rate estimated as the sum of the quantized
coefficients entropy and the index average size. Note that the ex-
ponential quantization is similar to the one proposed in [12], where
the deadzone is adapted to the statistics of the coefficients.
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Fig. 1. Rate-distortion curve for adaptive and exponential quanti-
zation of random signals MP decompositions.



Figure 1 shows the evolution of the MSE distortion versus
the coding rate for both the adaptive entropy-constrained and the
exponential quantization. The curve has been averaged on hun-
dred decompositions of random signals of length 10. The adaptive
scheme clearly provides better results since it optimally distribute
bits among MP coefficients. It moreover allows to reach much
lower coding rates, since the number of coefficients is adaptively
chosen according to the bit budget. Similar results are given in
Figure 2 for the Matching Pursuit decomposition of the Lena im-
age with a Gabor dictionary. The gain in MSE distortion for the
adaptive quantization is mainly due to a fine quantization of the
first and most energetic coefficients. In the case of the exponential
quantization, the absolute error on the first coefficients becomes
very large, thus increasing the distortion according to Eq. (8).
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Fig. 2. Rate-distortion curve for adaptive and exponential quanti-
zation of the MP decomposition of the Lena image.

Finally, Figure 3 shows the reconstruction of the Lena im-
age after adaptive and respectively exponential quantization for the
same bit budget (36.8 kb). Clearly, the quality offered by adaptive
quantization is much better than the one obtained with exponential
quantization thanks to a finer quantization of the first MP coeffi-
cients.

(a) PSNR =30.88 dB (b) PSNR = 18.33 dB

Fig. 3. Reconstructed version of Lena reconstructed with 1000 Ga-
bor atoms after adaptive and exponential coefficients quantization.
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6. CONCLUSION

We proposed in this paper an adaptive entropy-constrained quan-
tization scheme targeted for Matching Pursuit coefficients. This
scheme is derived from an optimal entropy-constrained quanti-
zation by adapting to quantization parameters to the actual coef-
ficients values. It truly outperforms an exponential quantization
scheme thanks to the optimal distribution of the available bit bud-
get across MP coefficients. Additionally, the adaptive scheme al-
lows for a real-time quantization, while the exponential quantiza-
tion scheme needs two passes to estimate the coefficients statistics
before quantization.
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