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ABSTRACT

This paper presents a new image representation method based on
anisotropic refinement. It has been shown that wavelets are not op-
timal to code 2-D objects which need true 2-D dictionaries for ef-
ficient approximation. We propose to use rotations and anisotropic
scaling to build a real bi-dimensional dictionary. Matching Pursuit
then stands as a natural candidate to provide an image represen-
tation with an anisotropic refinement scheme. It basically decom-
poses the image as a series of basis functions weighted by their
respective coefficients. Even if the basis functions can a priori
take any form bi-dimensional dictionaries are almost exclusively
composed of two-dimensional Gabor functions. We present here a
new dictionary design by introducing orientation and anisotropic
refinement of a gaussian generating function. The new dictionary
permits to efficiently code 2-D objects and more particularly ori-
ented contours. It is shown to clearly outperform common non-
oriented Gabor dictionaries.

1. INTRODUCTION

Non-orthogonal transforms presents several interesting properties
which position them as an interesting alternative to orthogonal
transforms like DCT or wavelet based schemes. Decomposing a
signal over a redundant dictionary improves the compression ef-
ficiency, especially at low bit rates where most of the signal en-
ergy is captured by only few elements. Moreover it provides a
great flexibility in image representation and more particularly of-
fers the possibility to use true 2-D dictionaries. Such dictionaries
are necessary for an efficient approximation of bi-dimensional ob-
jects. The main limitation of non-orthogonal transforms is how-
ever the encoding complexity, since the number of possible de-
compositions becomes infinite.

Matching Pursuit algorithms [1] provide an interesting way
to iteratively decompose the signal in its most important features
with a limited complexity. It outputs a stream composed of atoms
or basis functions along with their respective coefficients. The
atoms are chosen among a redundant dictionary of basis functions.
The dictionary design is completely open but it has to be carefully
completed since it directly drives the coding performance. In im-
age coding, the two-dimensional basis functions have to efficiently
capture the features of natural images while offering efficient cod-
ing possibilities. This paper presents a new oriented and anisotrop-
ically refined dictionary based on gaussian functions which have
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shown to maximize the uncertainty principle. The new dictionary
efficiently captures oriented contours as well as weakly textured
regions. It moreover favorably compares to commonly used two-
dimensional separable Gabor functions.

This paper is structured as follows. Sec. 2 first overviews
the Matching Pursuit algorithm and the convergence properties
of the coding process. Sec. 3 then emphasizes the need for true
2-D dictionaries and presents a new design method based on ori-
ented and anisotropically refinement of gaussian basis functions.
Experimental results and comparisons with common Gabor atoms
are presented in Sec. 4. Finally, concluding remarks are given in
Sec. 5.

2. MATCHING PURSUIT OVERVIEW

In contrast to orthogonal transforms, overcomplete expansions of
signals are not unique. The number of feasible decompositions is
infinite, and finding the best solution under a given criteria is a
NP-complete problem. In compression, one is interested in repre-
senting the signal with the smallest number of elements, that is in
finding the solution with most of the energy on only a few func-
tions. Matching Pursuit [1] is one of the sub-optimal approaches
that greedily approximates the solution to this NP-complete prob-
lem.

Matching Pursuit (MP) is an adaptive algorithm that itera-
tively decomposes any function f in the Hilbert space H in a
possibly redundant dictionary of functions called atoms [1]. Let
D = {g4}, r be such a dictionary with [{g,|| = 1 and I" repre-
sents the set of possible indexes. The function f is first decom-
posed as follows :

F = {gv)f) 9v0 + RS, n

where (g ] f) g+, represents the projection of f onto g, and R f
is a residual component. Since all elements in D have by definition
a unit norm, it is easy to see from eq. (1) that g, is orthogonal to
R f, and this leads to

AP = Kgvo IO + IRAI® - @

To minimize ||R |, one must choose g, such that the projection

coefficient |{g~,|f)| is maximum. The pursuit is carried out by

applying iteratively the same strategy to the residual component.

After NV iterations, one has the following decomposition for f :
N—-1

F=3 {gmIR" f)gs + RV f, 3)

n=0
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where RY is the residual of the N** step with R°f = f. Simi-
larly, the energy || f]|* is decomposed into :

N-1

AP =D Kgna IR A1 + IRV £II “

n=0

Although Matching Pursuit places very few restrictions on the
dictionary, the latter is strongly related to convergence speed and
thus to coding efficiency. Any collection of arbitrarily sized and
shaped functions can be used as dictionary, as long as the com-
pleteness is respected. The completeness property ensures that the
Matching Pursuit is able to perfectly recover the input signal after
a possibly infinite number of iterations.

The convergence speed of the Matching Pursuit corresponds to
its ability to extract the maximum signal energy in a few iterations.
In other words, it corresponds to the decay rate of the residue and
thus the coding efficiency of the Matching Pursuit. The approxi-
mation error decay rate in Matching Pursuit have been shown to
be bounded by an exponential [1, 2]. From [3], there exists @ > 0
and 8 > O such that forallmm > 0 :

IR™ £l < (1—a? B%)% [R™ ], ®)

where a € (0, 1] is an optimality factor. This factor depends on
the algorithm that, at each iteration, searches for the best atom in
the dictionary. The optimality factor « is set to one when the MP
browses the complete dictionary at each iteration. The parameter
[ depends on the dictionary construction. It represents to ability of
the dictionary functions to capture features of any input function f
and satisfies :

sup [(f, v )| 2 BIIfIl- Q)

The redundancy factor 8 corresponds thus to the cosine of the
maximum possible angle between a direction f and its closest di-
rection among all dictionary vectors. A general formulation of the
redundancy can be found in [4].

3. ORIENTED AND ANISOTROPICALLY REFINED
DICTIONARIES

3.1. The need for anisotropic refinement schemes

In the last few years, wavelet based image compression schemes
have been highly optimized. They are nowadays acknowledged to
be a very efficient solution allowing for high compression ratios
while keeping good quality and low complexity. The final step in
the rise of wavelet techniques will be the release of the JPEG2000
compression standard which is entirely based on wavelets [S5]. The
efficiency of wavelets to achieve good compression ratios lies in
some of their intrinsic mathematical properties. One of the most
important is probably the ability of wavelets to capture the essen-
tial features of a signal with a small number of coefficients. The
sparsity of the wavelet representation comes from its near opti-
mal non-linear approximation rate when considering signals in the
Besov class (piecewise smooth with any number of singularities).
Intuitively, it is a simple consequence of the vanishing moment
and compact support properties of wavelet basis : locally poly-
nomial parts of the signal are filtered out by vanishing moments.
Only singularities will give high wavelet coefficients. Now, since
wavelet basis have short support, few wavelets will occasionally

intersect singular parts of the signal, giving rise to a highly sparse
representation [6, 7]. These nice properties are unfortunately not
available in two dimensions and this opens the door to new im-
age representations. Indeed, an image can still be modeled as a
piecewise smooth 2-D signal with singularities, but the latter are
not point like anymore. Higher dimensional singularities may be
highly organized along embedded submanifolds and this is exactly
what happens at image contours for example. Figure 1 shows
that wavelets are inefficient at representing contours because they
cannot deal with smoothness of the contours themselves. This is
mainly due to the isotropic refinement implemented by wavelet
basis : the dyadic scaling factor is applied in all directions, where
clearly it should be fine along the direction of the local gradient
and coarse in the orthogonal direction.
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(a) 6 coefficients

Fig. 1. Inadequacy of isotropic refinement for representing con-
tours in images. The number of wavelets intersecting the singular-
ity is roughly doubled when the resolution increases.

Candes and Donoho [8] have recently proposed a construction
called the curvelet transform which aims at solving this problem.
Basically curvelets can be first oriented along a given direction
and then arbitrarily refined in the orthogonal direction. Curvelet
frames have been shown to achieve a much better non-linear ap-
proximation rate than wavelets thanks to this anisotropic scaling
scheme. Unfortunately, even though the curvelet representation is
very sparse, it yields a tremendous expansion factor in the number
of data [9]. Matching Pursuit, as already stressed before, itera-
tively chooses the best matching terms in a dictionary. Since there
is almost no constraint on the dictionary itself, MP stands as a
natural candidate to implement an efficient anisotropic refinement
scheme and such a construction is detailed in the next section.

3.2. Anisotropic refinement using Matching Pursuit

Our dictionary is built by acting on a generating function of unit
L? norm by means of a family of unitary operators U, :

D={U,, yeT}, @)

for a given set of indexes I'. Basically this set must contain three
types of operations :

e Translations 5, to move the atom all over the image.

e Rotations 6, to locally orient the atom along contours.

e Anistropic scaling (a1, az), to adapt to contour smoothness.
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A possible action of U, on the generating atom g is thus given by :
Uyg = U(5,6)D(ay,az)g ®)

where I/ is a representation of the Euclidean group,
U®,6)9(2) = g(r-e(z - 8)), ©)

T is a rotation matrix, and D acts as an anisotropic dilation oper-
ator :

1
D(a1,a2)9(z,y) = \/msg(%’ ﬁf;). (10)

It is easy to prove that such a dictionary is overcomplete using
the fact that, when a1 = a2 one gets 2-D continuous wavelets as
defined in [10]. It is also worth stressing that, avoiding rotations,
the parameter space is a group studied by Bernier and Taylor [11].
The advantage of such a parametrization is that the full dictionary
is invariant under translations and rotations. Moreover, it is also
invariant under isotropic scaling, e.g. a1 = as.

The choice of the generating atom g is driven by the idea
of efficiently approximating contour like singularities in 2-D. To
achieve this, the atom must be a smooth low resolution function
in the direction of the contour and must behave like a wavelet in
the orthogonal (singular) direction. In our experiments, we chose
a combination of a gaussian and its second derivative, that is :

9(z,y) = (42° - 2) exp(—(z® +¢%)). (11)

This choice is motivated by the optimal joint spatial and frequency
localization of the gaussian kernel. We also noticed that degra-
dations caused by truncating the MP expansion are visually less
disturbing with this choice.

For practical implementations the range of all parameters in
the dictionary must be discretized. We have chosen to discretize
the scaling parameters using a dyadic grid while we kept a simple
uniform grid for the position and rotation parameters. The follow-
ing section describes numerical results obtained by comparing this
technique with wavelets and other MP dictionaries.

4. EXPERIMENTAL RESULTS

4.1. Comparison with wavelets

We first compare our scheme with wavelet approximation. It should
be stressed that this comparison is based on measuring the quality
obtained by using the biggest NV terms in a wavelet or MP ex-
pansion of images. We are thus only interested in the non-linear
approximation power of these techniques. In order to convert these
results into compression ratios, one would need to implement a fair
coding of both wavelet and MP coefficients. Even though wavelet
coders have been well studied [12], efficient MP encoding is still
an essentially open subject. Preliminary work nevertheless show
very promising results in this direction [13]. To provide readers
with a fair comparison, Figure 2 compares the quality of 500 MP
iterations with 500, 1000 and up to 1500 wavelet coefficients. It
can be seen that the Matching Pursuit representation outperform
all the wavelet expansions. Even with three times more terms
wavelets are not able to provide a quality equivalent to Match-
ing Pursuit decomposition. This clearly shows the power of a truly
2-D scheme with adaptive refinement.

(c) PSNR =26.36 dB (d) PSNR = 28.45dB
Fig. 2. Reconstructed version of Lena encoded with (a) 500
anisotropically refined atoms and respectively (b) 500, (c) 1000
and (d) 1500 wavelet coefficients.

4.2. Comparison with other dictionaries

A natural question at this point is whether the quality of these re-
sults is due to the choice of the dictionary or to the use of matching
pursuit solely. Indeed, MP is being considered as a valid alter-
native to wavelets or DCT in low bit rate coding schemes [14].
We have implemented two different dictionaries. The first one
uses oriented Gabor atoms generated by translation, rotation and
isotropic scaling of a modulated gaussian :

I P
U(a,6,5)9(2) = —g(a”'r-o(Z - 5)), (12)

whith
(@) = 0 Fm /2 (13)

The other dictionary used in this cvompa.rison is an affine Weyl-
Heisenberg dictionary built by translating, dilating and modulating
the Gabor generating atom of Eq. 13 :

U(a,d,B)g(&) = % ETE D@ N F—B)).  (14)

Figure 3 shows the reconstructed PSNR as a function of the
number of iterations in the MP expansion. Clearly, anisotropic
scaling outperforms the other dictionaries. This comparison shows
that the use of rotations is also of interest since the oriented Gabor
dictionary gives better results than the modulated one. It is worth
noticing that rotations and anisotropic scaling are really 2-D trans-
formations and this shows that, in order to efficiently approximate
2-D objects, one has to use 2-D dictionaries. Separable transforms,
although they provide faster implementations, are unable to cope
with the geometry of edges.
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Fig. 3. Comparison of the quality of MP reconstruction when
using three different dictionaries : anisotropic scaling, Gabor
wavelets and Weyl-Heisenberg dictionary.

5. CONCLUSIONS

This paper has shown that true bi-dimensional transforms are nec-
essary to provide an efficient image representation. Anisotropic
refinement and orientation are true 2-D transformations that offer
the possibility to advantageously approximate the bi-dimensional
geometrical pattern. Matching Pursuit has made possible a simple
implementation of anisotropic refinement which has been shown to
clearly outperform common Gabor dictionaries. Finally, complex-
ity has voluntarily not been addressed in this paper. Modifications
of the basic Matching Pursuit used in this paper will lead to signif-
icant complexity reduction. In the same time, an efficient coding
scheme for the Matching Pursuit coefficients and atoms indexes
will also be investigated.
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