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Abstract. Graph signals that describe data living on irregularly struc-
tured domains provide a generic representation for structured information
in very diverse applications. The effective analysis and processing of such
signals however necessitate good models that identify the most relevant
signal components. In this paper, we propose to learn sparse representa-
tion models for graph signals that describe heat diffusion processes. This
consists in learning a dictionary that incorporates spectral properties of
an implicit graph diffusion kernel. The underlying formulation enables
the identification of both sparse features and an adaptive graph structure
from mere signal observations. Experiments on synthetic and real datasets
show that the proposed dictionaries not only reflect the underlying diffu-
sion process but also significantly reduce over-fitting of data in comparison
to state-of-the-art methods.

1 Introduction

With the fast growing volume of network data in many application domains,
we see an increasing amount of signals whose input space is represented by a
graph that incorporates important structured information of the data [1]. Un-
fortunately, it is not always easy to choose good models in order to effectively
process and analyze graph signals. In this paper, we are interested in learning
a dictionary that carries information of a latent graph structure over the input
space. The proposed framework is based on [2] and presents a novel data-driven
approach for sparsely representing signals that live on a graph. The major chal-
lenge in this work is that the graph structure to be captured in the dictionary is
assumed to be unknown. Recent works within a similar problem setting include
attempts to learning graph Laplacian and graph shift matrices using smooth
models [3, 4], spectral templates [5], graph diffusion models [6] as well as an
autoregressive model [7].

In this work, we consider learning heat diffusion models in a dictionary learn-
ing framework. While dictionary learning has proven to be an efficient and
adaptive approach for signal processing tasks, our work further enforces its ca-
pability by imposing a structure on the dictionary matrix in order to capture
latent graph information of the network data. We focus on heat diffusion mod-
els for applications to a variety of network data that exhibit diffusive patterns.
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Data recording the concentration of tourists or traffic jams over a network of ge-
ographical sites inside a city and measurements of pollution over a geographical
sensor network are some examples. Besides efficient sparse representation, the
learned dictionary also enables the graph identification and source localization
tasks. More precisely, we propose to learn a structured dictionary that approx-
imates a graph-based heat diffusion kernel of the form of e=7% [8], where L is
the unknown graph Laplacian operator. Our approximate formulation results in
a dictionary learning problem that is a relaxation of the graph learning prob-
lem specifically addressed in [6]. The proposed dictionary learning problem is
solved by the alternating minimization procedure for sparse coding and dictio-
nary update. The Nonnegative Orthogonal Matching Pursuit (OMP) [9] is used
for solving the sparse coding step. In the dictionary update step, first-order
methods in the framework of Riemannian optimization [10] are adopted to han-
dle spectral constraints of the dictionary. Experimental results on synthetic and
real datasets validates that the proposed dictionaries are efficient in representing
diffusive graph signals and have proven to successfully reduce over-fitting of data
compared to unstructured dictionaries such as the one learned with K-SVD [11].

2 A sparse representation model for diffusive graph signals

Consider an undirected graph G = (V,&, W) with n vertices, equipped with a
weighted adjacency matrix W € 8™, where S™ is the set of n x n real sym-
metric matrices. The combinatorial graph Laplacian is defined as L = D — W,
where D = Diag(W1). The graph Laplacian is positive semidefinite thus can be
decomposed as L = UAU T, where U € O(n) is a real orthogonal matrix and
A = Diag(\g, .., A\n—1) = 0 is a diagonal matrix of the eigenvalues. We design
a diffusion model based on the graph heat diffusion process. Given an initial
source signal x € R", a diffusion process y(t) on G is determined by

Yoy, =0 =, (1)
which describes the flow of heat over the graph G. The solution to the heat
equation (1) is y(t) = e 'z, where the matrix exponential e~** is the heat
diffusion kernel [8], which is also a low-pass filter on the graph [1]. We define
a class of diffusive signals as snapshots of the diffusion process, that is signals
observed at a fixed time 7, called a characteristic time, of the diffusion process.
These settings give rise to the graph-based diffusion signal model, expressed as

y=e Lo, (2)

where x € R" is the sparse source signal and € ~ N(0,021) is some Gaussian
background noise. An important assumption in this signal model is the sparsity
of x, since for many diffusion phenomena such as spreading of information over
social networks, physical measurements on geographical networks and epidemic
expansion, the number of sources is much smaller than the total number of
vertices involved in a graph diffusion process. Moreover, we are particularly



interested in modeling x as non-negative, which is a natural assumption for
diffusion sources.

3 The dictionary learning algorithm

Next, we show how we can learn the unknown variables of the model (2), i.e.
the graph Laplacian L and the sparse codes x. Learning these latent variables
by maximum-likelihood is difficult mainly because e~7% is nonlinear w.r.t. the
latent variable L. To avoid this difficulty, we propose to relax this maximum-
likelihood problem by considering the following dictionary learning problem.
Instead of learning explicitly the latent variable L, we optimize D € R™*™ that
approximates e~ according to its spectral properties, as described next.

Given a set of m training signals ¥ € R*™, the learning formulation (de-
noted GDL hereafter) is as follows:

minimize |Y - DX|)%
XeRnXm DeRnxn
subject to 0<D=<1I, (3)

Xj = Oa HXJHO < TOvvj = ]-7 -, M,

where each column of X is assumed to be supported on just a few vertices due to
the sparsity prior of each source signal in the model (2). The constraint X; > 0
captures the non-negativeness of the source signals in the diffusion model. The
constraints for D are determined by spectral properties of the latent diffusion
kernel e~7%. It is necessarily positive definite and all its eigenvalues are contained
in ]0, 1] since the spectrum of e™™F = Ue~™ U is e~7", whose diagonal entries
are included in ]0,1] as the graph Laplacian is positive semidefinite (A > 0).
Hence the search space for D, as stated in (3), is a spectral set [12] included
in 8%, , which by definition is composed of matrices whose spectra belong to a
subset of R} : in our case, C = {D e R"*":0<D = I,} C S,.

The objective function F(D, X) = ||[Y — DX||% is non-convex w.r.t the tu-
ple (D, X) but is convex w.r.t D and X respectively. Therefore we adopt an
alternating minimization scheme between the update of X (the sparse coding
step) and D (the dictionary update step) separately. For the minimization in
X, we apply the nonnegative variant [9, 13] of the OMP algorithm, which is a
state-of-the-art method for sparse coding. For the minimization in D, projected
gradient methods are used: a retraction operator! [10] is designed to carry out
projected gradient descents over the nonlinear search space C. Starting from the
initialization at Dy = I, the steepest descent on C is achieved by a projective
retraction [12]. A line-search technique is employed to optimize the step size
through the Armijo condition while ensuring the constraint D > 0. During each
steepest-descent iteration, the retraction (denoted P¢) acts on the line-searched
candidate matrix Q! € St through spectral projections: based on the eigen-
decomposition Q! = UAU " with U € O(n) and A = Diag(Xg, .., \n_1) > 0,

Pe(Q™) = Ull 1y (AU .

LA first-order approximation of the Riemannian exponential map.



The projected diagonal matrix is Ilj 1j(A) = Diag(ITjo,11( o), -, Hjo,11(An—1)),
where IIjg 1)(A) = min(max(0, A), 1). The retraction Pc ensures steepest descent
within the constrained set C in the dictionary update step.

4 Experiments

We quantify the performance of our algorithm on synthetic and real datasets.
For all our experiments, we measure the performance of a trained dictionary
D* by the Peak Signal-to-Noise Ratio (PSNR), commonly used for evaluation of
image recovery or compression tasks. The PSNR on a test dataset Yiest € Rnxm
is computed based on (D*, X{. ), where X[ is obtained through sparse coding

given Yiest and D*.

4.1 Synthetic data

We generate a random graph G of n = 100 vertices that simulates a sensor
network using the GSP toolbox [14], with vertices in a 2-dimensional coordinated
plane. Each vertex is linked to its nearest neighbors with a degree of around
5 ~ 7. The edge weight of two connected vertices depends on the Gaussian radius
basis function of their Euclidean distance, that is W;; = e_d(i’j)z/"Z,V(i,j) €
E. The ground truth source signals x are generated on a few vertices drawn
independently and uniformly from V, with a sparsity level between 8% ~ 20%,
according to the signal model (2). Our experiments are based on synthetic
datasets Y, corresponding to different values of 7, since the time-scale parameter
7 determines the diffusive characteristics of data. The size of training and test
data is 500 and 125 respectively. The sparsity threshold T} is fixed to a level
that is slightly larger than max; || X;||o of the ground-truth signals.

Based on each dataset Y, dictionaries are trained using our learning algo-
rithm and a graph-agnostic algorithm such as K-SVD [11]. The obtained results
are presented in Table 1 and show that our proposed dictionary not only has
comparable or even better PSNR performance on the training data compared
to the unstructured dictionary but also outperforms the latter on the test data.
These results confirm that the graph structure can indeed be beneficial not only
for understanding the nature of the graph signals but also for reducing the over-
fitting caused by the limited number of training signals in the learning phase.

We have further examined the consistency (last row of Table 1) of the graph
structure information captured by the learned dictionary with respect to the
ground-truth graphs as follows. From the learned dictionary D*, we identify a
graph Laplacian matrix L*i4 by projecting the matrix logarithm — log D* onto
the convex set of valid graph Laplacian matrices Sgqp := {L € 8", L;j = Lj; <
0, L1 = 0}. This leads to a convex optimization problem and is solved by using
the CVX toolbox [15]. The graph edges are recovered by thresholding L¥*id with
a sufficiently large value € > 0: L§; := L;’;“dé Lystidse- The graph recovery scores
are then measured by the maximal F-measure according to the Precision-Recall
curve of (L), w.r.t. the ground truth. We observe that the F-measure score is



particularly high, when 7 is small and tends to reduce when we increase 7. This
is quite expected as a small 7 leads to very localized processes on the graph,
which makes the graph recovery process easier.

Dataset-7 0.10 0.24 0.38 0.52 0.66 0.80 1.00

KSVD 100.40 85.34 69.63 4524 41.02 3876 37.44
GDL 75.78 72.84 73.10 47.15 44.48 41.27 38.98
KSVD 92,94 69.03 59.87 42.01 37.55 35.64 32.52
GDL 73.96 69.50 70.80 46.01 41.48 39.23 35.78

Graph Recovery GDL  0.9197 0.8318 0.9697 0.8717 0.7805 0.8111 0.7252

Training

Test

Table 1: Upper part: PSNR results on training and test data using GDL and
K-SVD. Last row: consistency of the recovered graphs by F-measure.

4.2 Real-world data

Our real-world data is extracted from the Alameda dataset (publicly available on
http://pems.dot.ca.gov), which consists of daily traffic delay detected at 559
geographical points during 2772 days along several intersecting roads situated
in Alameda, California. For simplicity, we consider observations on a subset of
n = 246 detection points. FEach of the 2772 samples is a vector of delay-time
measurements over the n sites. The dictionaries are trained and tested on 862
and 215 samples respectively. The evaluation in terms of PSNR is presented in
Table 2.

Training data Test data
KSVD GDL KSVD GDL

15 41.25 36.49 34.84 35.00
24  44.97 4036 3793 38.51
32 48.16 4346 40.53 41.56
41 52.24 4737 4341 45.48
50 56.37 5216 46.12 50.38

Ty

Table 2: Experiments on the Alameda traffic data: PSNR results on training
and test data using GDL and K-SVD.

From these results, similarly to the synthetic case, we observe that our learn-
ing algorithm is much more efficient than purely numerical dictionary learning
algorithms in representing test data that are not included in the training phase.

5 Conclusion

In this paper, we have presented a framework of dictionary learning for diffu-
sive graph signals. Specifically, we have proposed an algorithm that promotes
sparsity of signals in a graph diffusion dictionary. Experimental results on both


http://pems.dot.ca.gov

synthetic and real datasets show that the proposed dictionary is capable of cap-
turing graph structured information of the input space in a data-driven manner.
Moreover, the sparse representation model for graph signals is learned with high
generalization power, which is otherwise limited in the case of purely numerical
dictionary learning algorithms. Finally, the graph recovery performance shows
high consistency of the recovered graphs with respect to the ground-truth ones.
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