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Structured data
2
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Structured, but irregular data …
l Traditional signal processing in Euclidean space

3

l Irregular (graph) structures: new challenges for signal processing?
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Agenda
l Graph Signal Processing Basics 

- Main definitions and operators 
l Adaptive Graph Signal Representations 

- Graph Spectral Dictionaries 
- Dictionary Learning Algorithm 
- Applications of Graph Spectral Dictionaries 

l Inferring Graphs from Observations 
- Factor Analysis Model 
- Graph Learning Algorithm 
- Illustrative Applications

5
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Signals on Graphs
6

G = (V,E,W )

Wi,j e = (i, j)is the weight of the edge

f : V ! R

where
l Connected, undirected, weighted graph   

l Graph signal: a function                    that assigns real 
values to each vertex of the graph

L

D

W

l Graph description:  
- Degree matrix     : diagonal matrix 

with sum of weights of incident edges 
- Laplacian matrix     : difference 

operator defined based on  
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(Unormalized) Laplacian
l Laplacian is a difference operator 

l It is a real symmetric matrix 
l It has a complete set of eigenvectors  
l The eigenvectors are associated with real, 

nonnegative eigenvalues 

l Its spectrum is defined as

7

L := D�W

{�`}`=0,1,...,N�1

{u`}`=0,1,...,N�1

Lu` = �`u`, 8` = 0, 1, . . . , N � 1

0 = �
0

< �
1

 �
2

...  �N�1

:= �
max

�(L) := {�0,�1, . . . ,�N�1}

(Lf)(i) =
X

j2Ni

Wi,j [f(i)� f(j)]
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Laplacian example
8

D = diag(degree(v1) ... degree(vn))
v1

v2

v3

v4 v5

v6

v7
v8

l Symmetric 
l Off-diagonal entries non-positive 
l Rows sum up to zero 
l Has a complete set of orthonormal 

eigenvectors: L = �⇤�T

G = {V,E}

0 = �0 < �1  . . .  �n�1

L := D�W

LW
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Normalized Laplacian
l The normalized Laplacian is another popular graph 

matrix 
l Each weight         is normalised by  

l The set of eigenvalues is  
l The normalized Laplacian has often stability benefits

9

Wi,j
1p
didj

L̃ := D� 1
2LD� 1

2

(L̃f)(i) = 1p
di

X

j2Ni

Wi,j

"
f(i)p
di

� f(j)p
dj

#

0 = �̃
0

< �̃
1

 . . .  �̃
max

 2
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Graph Fourier Transform
l The eigenvectors of the graph Laplacian are used for 

defining the Graph Fourier Transform 

l This is analogous to the classical Fourier Transform 
built on eigenfunctions of the 1-D Laplace operator

10

f̂(⇠) := hf, e2⇡i⇠ti =
Z

R

f(t)e�2⇡i⇠tdt

��(e2⇡i⇠t) = � @2

@t2
e2⇡i⇠t = (2⇡⇠)2e2⇡i⇠t

f̂(�`) := hf ,u`i =
NX

i=1

f(i)u⇤
` (i) f(i) =

N�1X

`=0

f̂(�`)u`(i)

GFT IGFT
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λ

Number 
of zero 

crossings 

Notion of ‘frequency’
l The graph Laplacian eigenvalues and eigenvectors 

carry a notion of frequency

11

u1

u50
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Dual representations
l Graph signals represented in either the vertex or the 

spectral domains (kernels, or graph Fourier multipliers)

12

ĝ(λ )

λ

ĝ(�`) = e�5�` g(n)
IGFT ���� ĝ(�`)
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Frequency filtering
l Analogously to classical filtering, one can perform 

graph spectral filtering with transfer function 

l Equivalently 

l In matrix notation: 

13

f̂
out

(�
`

) = f̂
in

(�
`

)ĥ(�
`

)

ĥ(�`)

f
out

(i) =
N�1X

`=0

f̂
in

(�
`

)ĥ(�
`

)u
`

(i)

f
out

= ĥ(L)f
in

ĥ(L) := U

2

64
ĥ(�0) 0

. . .

0 ĥ(�N�1)

3

75UT
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Filtering in the vertex domain
l Linear combination of values at neighbour vertices 

- localized linear transform 

l Example: polynomial filter as 

14

f
out

(i) = b
i,i

f
in

(i) +
X

j2N (i,K)

b
i,j

f
in

(j)

ĥ(�`) =
KX

k=0

ak�
k
`

bi,j :=
KX

k=dG(i,j)

ak
�
Lk

�
i,j

f
out

(i) =
N�1X

`=0

f̂
in

(�
`

)ĥ(�
`

)u
`

(i)

=
NX

j=1

f
in

(j)
KX

k=0

a
k

�
Lk

�
i,j
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Translation on graphs
l The classical translation                                 does not 

generalise to non-regular graphs 
l A generalized translation operator on graphs can still 

be defined as

15

(Tuf)(t) := f(t� u)

Tn : RN ! RN

(Tng) (i) :=
p
N(g ⇤ �n)(i) =

p
N

N�1X

`=0

ĝ(�`)u
⇤
` (n)u`(i)

�n(i) =

(
1 if i = n

0 otherwise

(f ⇤ h)(i) :=
N�1X

`=0

f̂(�`)ĥ(�`)u`(i)
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Translation example
16

Translation of the heat kernel to  
different locations of the Minnesota graph
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l Localized transforms are ideal to analyse graph signals 
- analysis properties and scalable implementations 
- GFT is unfortunately not a local transform 

l Wavelet transforms are particularly interesting  
- localization in both the vertex and spectral domains 
- different designs in the vertex or the spectral domain [Shuman:2013] 
- example: Spectral Graph Wavelets [Hammond:2011] 

l Dilations and translations of a band-pass kernel 
l Translation of a low-pass kernel 

l Such transforms do not explicitly adapt to the data  :(

Transforms on graphs
17

 SGWT : RN ! RN(K+1)  SGWT = [ SGWT
scal ; SGWT

t1 ; . . . ; SGWT
tK ]

 SGWT
scal,i := Tih = ĥ(L)�i

 SGWT
tk,i := TiDtkg = [Dtkg(L)�i
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SGWT illustration
18

 SGWT
t4 f

 SGWT
t2 f

f

[Shuman:2013]
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Data-adaptive representations
l Sparse graph signal representation 

l We want to have an efficient structured representation 
that is adapted to data: graph spectral dictionaries

19

        defined                                   
via mathematical structures 

(transforms):                          
Fourier, wavelets...

        learned                                   
via training samples   
(dictionary learning):          

sparse coding, MOD, K-SVD...

structure-based methods numerical methods
� �

�

y = �x s.t. kxk0  T0

not graph-specific!not data-specific!
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Dictionary for Graph Signals
l Our objective: meaningful graph signal representations 

that  
✓ reveal relevant structural properties of the graph signals/extract 

important features on graphs  
✓ sparsely represent different classes of signals on graphs  

How can we define atoms on graphs? 

20
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Sparse signal model
l Graph signals can be approximated by a small number 

of localized components 
- e.g., multiple processes started at different vertices

21
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Parametric graph atoms
l A set of generating kernels                           represent 

the spectral characteristics of the signals  
l The kernels are chosen to be smooth polynomial of 

degree     in order to form localized graph features 

l A graph atom is the translation of the kernel to vertex n

22

{ bgs(·)}s=1,2,...,S

K

ĝ(�`) =
KX

k=0

↵k�
k
` , ` = 0, ..., N � 1

L �`

Tng =
p
N(g ⇤ �n) =

p
N

N�1X

`=0

KX

k=0

↵k�
k
`�

⇤
` (n)�` =

p
N

KX

k=0

↵k(Lk)n

: normalized Laplacian,          : eigenvector
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Dictionary Structure
l A parametric graph dictionary                                     is 

a concatenation of    subdictionaries   

l Each subdictionary is built on a specific kernel  

- Each atom (column of      ) corresponds to a K-hop localized pattern 
centered on a node of the graph, i.e.,

23

D = [D1,D2, ...,DS ]
S

Ds = bgs(L) = �

 
KX

k=0

↵sk⇤
k

!
�T =

KX

k=0

↵skLk

1p
N

Tngs

Ds
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The spectral constraints 
guarantee that: 
1. The learned kernels cover 
the whole spectrum 
2. The dictionary is a frame

Dictionary Learning Problem
l Learning consists in computing 
l Given a set of training signals                                           

on the graph    , solve 

24

G

argmin

↵2R(K+1)S , X2RSN⇥M

�
||Y �DX||2F + µk↵k22

 

subject to kxmk0  T0, 8m 2 {1, ...,M},

Ds =

KX

k=0

↵skLk
, 8s 2 {1, 2, ..., S}

0 � Ds � c, 8s 2 {1, 2, ..., S}

(c� ✏1)I �
SX

s=1

Ds � (c+ ✏2)I,

{↵sk}s=1,2,...,S; k=1,2,...,K

Y = [y1, y2, ..., yM ] 2 RN⇥M
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Alternating optimisation
25

Algorithm 1 Parametric Dictionary Learning on Graphs

1: Input: Signal set Y , initial dictionary D(0)
, target signal sparsity T0, poly-

nomial degree K, number of subdictionaries S, number of iterations iter
2: Output: Sparse signal representations X, polynomial coe�cients ↵
3: Initialization: D = D(0)

4: for i = 1, 2, ..., iter do:
5: Sparse Approximation Step:
6: (a) Scale each atom in D to a unit norm

7: (b) Update X using Sparse Coding

8: (c) Rescale X, D to recover the polynomial structure

9: Dictionary Update Step:
10: Compute the polynomial coe�cients ↵ and update the dictionary

11: end for

http://lts4.epfl.ch
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Properties of the dictionary
l By construction, the dictionary is a frame 
l The coherence depends on the graph 

l Parametric structure: easy dictionary description 
- it has only                 parameters 

l Polynomial form: efficient implementation, esp. when 
the graph is sparse 
- Both forward and adjoint operators can be efficiently applied

26

(K + 1)S

�  max

n 6=n0,s,s0

⌫(
PN�1

`=0 | bgs(`)cgs0(`)|2)1/2kdegk2

| bgs(�0)|| bg0s(�0)|
p
degn

p
degn0

DT y =
SX

s=1

KX

k=0

↵skLky DDT y =
SX

s=1

bgs2(L)y
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Recovery on synthetic data
27
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ĝ(
λ
)

 

 

Original polynomial kernels

Learned kernels (M=400) Learned kernels (M=2000)

http://lts4.epfl.ch


EPFL – Signal Processing Laboratory (LTS4) 
http://lts4.epfl.ch

Approximation on synthetic data
28
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Real World Datasets
29

Flickr Traffic Brain

✓ Nodes:  245 vertices in the 
Trafalgar Square (London), 
each representing a 
geographical area

✓ Edges: Assign edge when 
distance < 30m

✓ Graph signals: Daily 
number of distinct users 
that took photos between 
Jan. 2010 and June 2012

✓ Nodes:  439 detector 
stations in Alameda 
County, CA

✓ Edges: Assign edge when 
distance < 13km

✓ Graph signals: Daily 
number of bottlenecks (in 
minutes) between Jan. 
2007 to May. 2013

✓ Nodes:  88 brain regions of 
contiguous voxels

✓ Edges: Assign edge if 
anatomical distance < 40 mm

✓ Graph signals: fMRI 
signals acquired on five 
subjects, in different states, 
1290 signals per subject

0.95695 0.99991
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Approximation performance

l As the sparsity level increases, the localisation property becomes 
beneficial 

l The polynomial dictionary is able to learn local patterns in areas of the 
graph that do not show up in the training signals

30
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Examples of Learned Atoms 
l Most common atoms in OMP expansions

31

Polynomial Graph Dictionary K-SVD Dictionary 
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Applications of graph dictionaries
l Graph dictionaries apply to many 

sparse problems 
- sparsity prior on graphs 
- helpful when smooth priors are insufficient 

l Graph dictionaries also define 
features on graphs 
- learning or clustering applications 

l By construction, spectral graph 
dictionaries lead to effective 
implementations 
- distributed processing applications in 

networks

32

y(n)

Ln,:

n
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3D Point Cloud Sequences

l No explicit spatio-temporal geometry structure  
- Frames have different number of points 
- No association between points over time 

l Graph localised features can be used to match frames

33
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Graph-based Motion Estimation
34

Graph SP representation used for motion estimation and 
compensation, and eventually predictive coding
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Motion Compensation - Example

- The sparse set of matching vertices are accurate and well-
distributed in space

35

(a) reference + target frame (b) sparse correspondences  
      between frames

(c) motion compensated       
      reference frame + target frame
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3D Color Compression Results 
36
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Distributed processing
l Graph signal: function on a network 

- e.g., measurement in a wireless sensor network 

l Signal processing tasks 
- denoising, reconstruction, inference 

l Communication constraints 
- centralised processing is not possible 
- no node fully knows the signal 
- only local communication

37

y(n)
n
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Processing on graphs: denoising
l Denoising (LASSO) problem 

l Iterative soft thresholding solution 

l Distributed solution feasible as the dictionary-
based operators can be distributed!

38

y(n)

Ln,:

n

x

⇤ = min
x

ky �Dxk22 +  kxk1

x

t = S⌧

⇣
x

(t�1) + 2⌧DT (y �Dx

(t�1))
⌘
, t = 1, 2, ...

S⌧ =

(
0 if |z|  µ⌧

z � sgn(z)⌧ otherwise

http://lts4.epfl.ch


EPFL – Signal Processing Laboratory (LTS4) 
http://lts4.epfl.ch

Illustration: adjoint operator
39

n
y(n)

y(n)

y(n)
y(m)

y(k)

y(l)

l

m

k

c1n = (LT y)n

c1m = (LT y)m

c1k = (LT y)k

c1l = (LT y)l

cKn = (LT cK�1
n )n

(DT y)n = ↵0y(n) +
KX

k=1

↵kc
k
n

Distributed computation of 

Similar operations for the computation of       and

DT y

DDT yDx
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Denoising experiments
40
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The graph learning problem
41

Challenge:  
- How to define models of relationships between signals 

and graph? 
- How to learn graphs that enforce desirable properties of 

graph signals?
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Factor analysis framework
l Graph signal observations could be represented 

explained by unobserved latent variables

42

x = �h+ u

x

+ ✏

observation latent 
variable

representation matrix 
(Eigenvector matrix of graph Laplacian)

mean Gaussian noise

✏ ⇠ N (0,�2
✏ I)
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Statistical model

l Gaussian prior on latent variable 

l Probabilities given as 

l     : eigenvector of covariance of 

43

x = �h+ u

x

+ ✏

h ⇠ N (0,⇤†)

p(x|h) ⇠ N (�h+ u

x

,�

2
✏

I

n

),

p(x) ⇠ N (u
x

, L

† + �

2
✏

I

n

) L† = �⇤†�T

L† + �2
✏ In = �(⇤† + �2

✏ In)�
T

with     the pseudo-inverse of the eigenvalue matrix    of the graph Laplacian⇤† ⇤ L

with

�
x
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‘Classical’ regularisation problem
44

hMAP(x) := argmax

h
p(h|x) = argmax

h
p(x|h)p(h)

hMAP(x) = argmin

h
(�log pE(x� �h)� log pH(h))

hMAP(x) = argmin

h

⇣
�log e

�(x��h)T (x��h) � ↵ log e

�h

T⇤h

⌘

hMAP(x) = argmin
h

||x� �h||22 + ↵ h

T⇤h

u
x

= 0

h

T⇤h = (�T
x)T⇤�T

x = x

T
�⇤�T

x = x

T
Lx

If

smoothness term
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Graph learning problem
l When the graph is unknown,

45

min
�,⇤,h

||x� �h||22 + ↵ h

T⇤h

min
L,y

||x� y||22 + ↵ y

T
Ly.

min
L2Rn⇥n,Y 2Rn⇥p

||X � Y ||2F+↵ tr(Y TLY ) + �||L||2F ,

s.t. tr(L) = n,

Lij = Lji  0, i 6= j,

L · 1 = 0,
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Graph learning algorithm
46

Step 1:

Step 2:

Both steps are convex optimization problems :)

argmin
L

↵ tr(Y TLY ) + �||L||2F
s.t. tr(L) = n, L = L

T
, off(L)  0, L1 = 0

argmin
Y

||X � Y ||2F + ↵ tr(Y TLY )

Alternating optimisation
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Results: Synthetic data
47

0.75461 0.98813

Gaussian 
RBF

Erdős- 
Rényi

Barabási- 
Albert

l Generate random graphs based on three 
models 

l Generate graph signals that follow Gaussian 
distributions with mean zero and precision 
matrix being graph Laplacians 

l Learn graphs using only the signals

Groundtruth GL-SigRep GL-LogDet

http://lts4.epfl.ch


EPFL – Signal Processing Laboratory (LTS4) 
http://lts4.epfl.ch

Analysis of meteorological data
l The learned graph can be used for partitioning 

entities into several clusters, e.g., [Ng, NIPS’01]

48

 

 

Mountain regions (Jura, Alps)
Flat regions and valleys

12

(a) Groundtruth (b) GL-SigRep (c) GL-LogDet
Fig. 7. Visual comparisons between (a) the groundtruth graph Laplacian, (b) the graph Laplacian learned by GL-SigRep, and (c) the graph Laplacian learned
by GL-LogDet. The results for GL-SigRep and GL-LogDet are obtained based on the parameters ↵, � and � that lead to the best F-measure scores. The
values in the graph Laplacian learned by GL-LogDet is scaled so that it has the same trace as the other two matrices.

(a) (b)
Fig. 8. Two clusterings of the measuring stations obtained by (a) applying spectral clustering to the learned graph, and (b) applying k-means to the raw
temperature records. The red cluster includes stations at higher altitudes and the blue cluster includes stations at lower altitudes. Some of the stations with
high altitudes, highlighted by the cyan ellipses, are clustered together with low-altitude stations by k-means.

 

 

Fig. 9. Locations of the 56 measuring stations in California. The colors
indicate 4 groundtruth clusters that correspond to 4 ETo zones.

TABLE III
PERFORMANCE FOR GL-SIGREP AND GL-LOGDET IN TERMS OF
RECOVERING GROUDTRUTH CLUSTERS OF MEASURING STATIONS.

Algorithm NMI Purity RI
GL-SigRep 0.5813 0.7321 0.8039
GL-LogDet 0.5093 0.7321 0.7844

clusters obtained based on the graph learned by GL-SigRep
is more consistent with the groundtruth than that based on
GL-LogDet.

E. Learning political graph from votation data

We now move onto the final real world example, where
we consider votation data from the national referendums for
37 federal popular initiatives in Switzerland between 2008
and 2012 [66]. Specifically, we consider the percentage of
votes supporting each initiative in the 26 Swiss cantons as
our observed signal. This leads to 37 signals (i.e., one per
initiative), each of dimension 26. By applying the proposed
graph learning framework, we would like to infer a graph that
captures the political relationships between the Swiss cantons
in terms of their votes in the national referendums. In this
example, we neither have an obvious groundtruth relationship
graph nor a groundtruth partitions of the cantons in terms of
their political preferences. Therefore, we focus in this example
on validating our results, by interpreting the clusters obtained
by partitioning the learned graph using GL-SigRep.

In Fig. 10(a), we show one 3-cluster partition obtained by
applying spectral clustering to the graphs learned by GL-
SigRep. We can see that the blue cluster contains all the
French-speaking cantons, while the yellow clusters contain
most of the German-speaking cantons and the Italian-speaking
canton Ticino. Then, the five cantons in the red cluster,
namely, Uri, Schwyz, Nidwalden, Obwalden and Appenzell
Innerrhoden, the first four of which constituting the so-called
“primitive” cantons at the origin of Switzerland, are all con-
sidered among the most conservative cantons in Switzerland.
The cluster membership of the canton Basel-Stadt can be

4 ETo zones
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Learning brain networks
49
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Summary
l Graph Signal Processing: joint consideration of the 

signal and the structure 

l Structured adaptive representations lead to 
computationally effective operators 

l In general, the graph is not known!

50

Many open challenges :)
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