Graph Signal Processing for Dynamic Geometry

PHILIP A. CHOU, HA Q. NGUYEN, MINH DO, DORINA THANOU, PASCAL FROSSARD

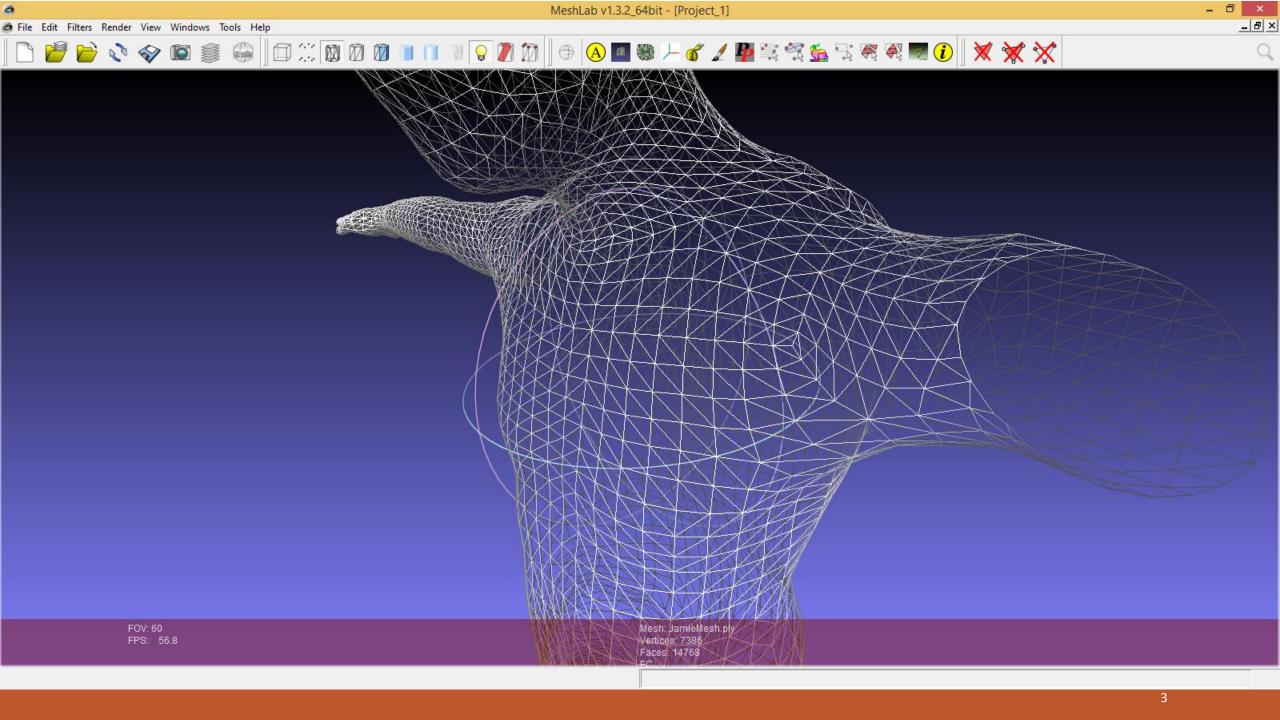
WORKSHOP ON GRAPH SIGNAL PROCESSING FOR IMAGING OCTOBER 31, 2014

Outline

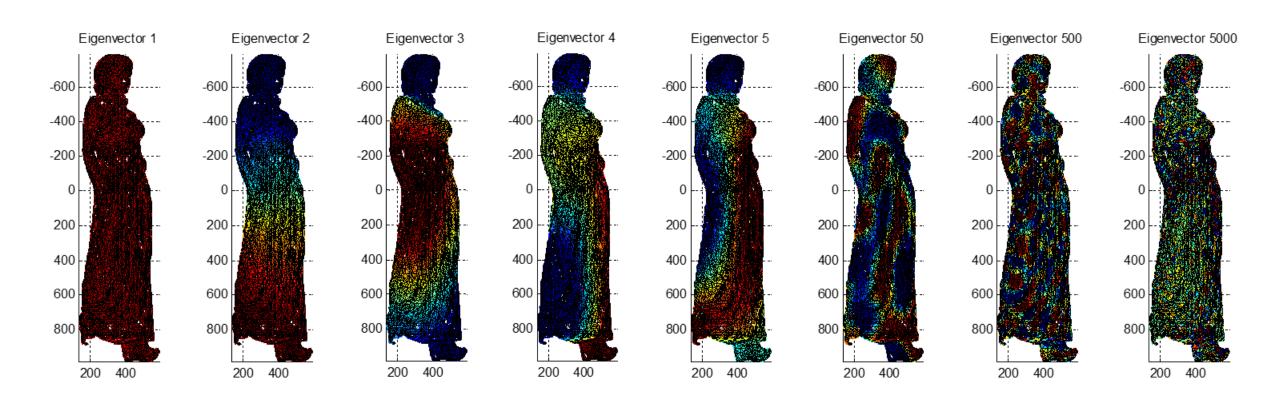
Graph Signal Processing for Static Geometry

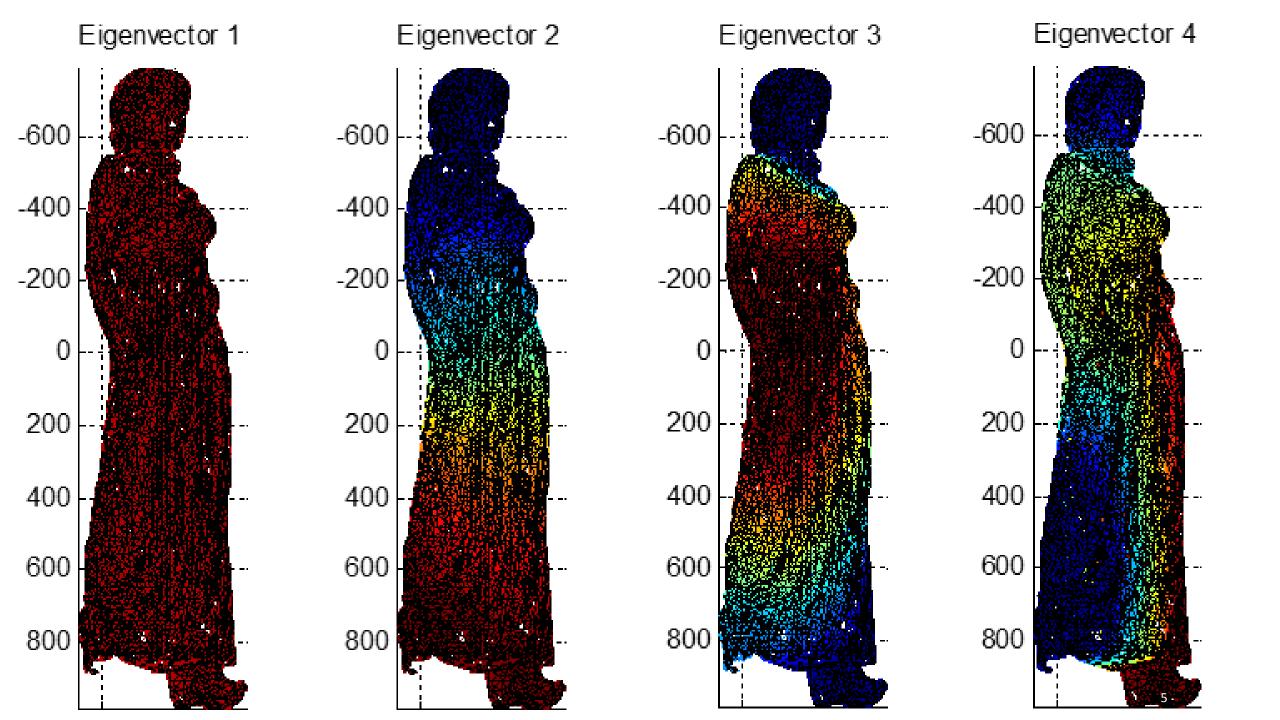
Graph Signal Processing for Dynamic Geometry (topology consistent over time)

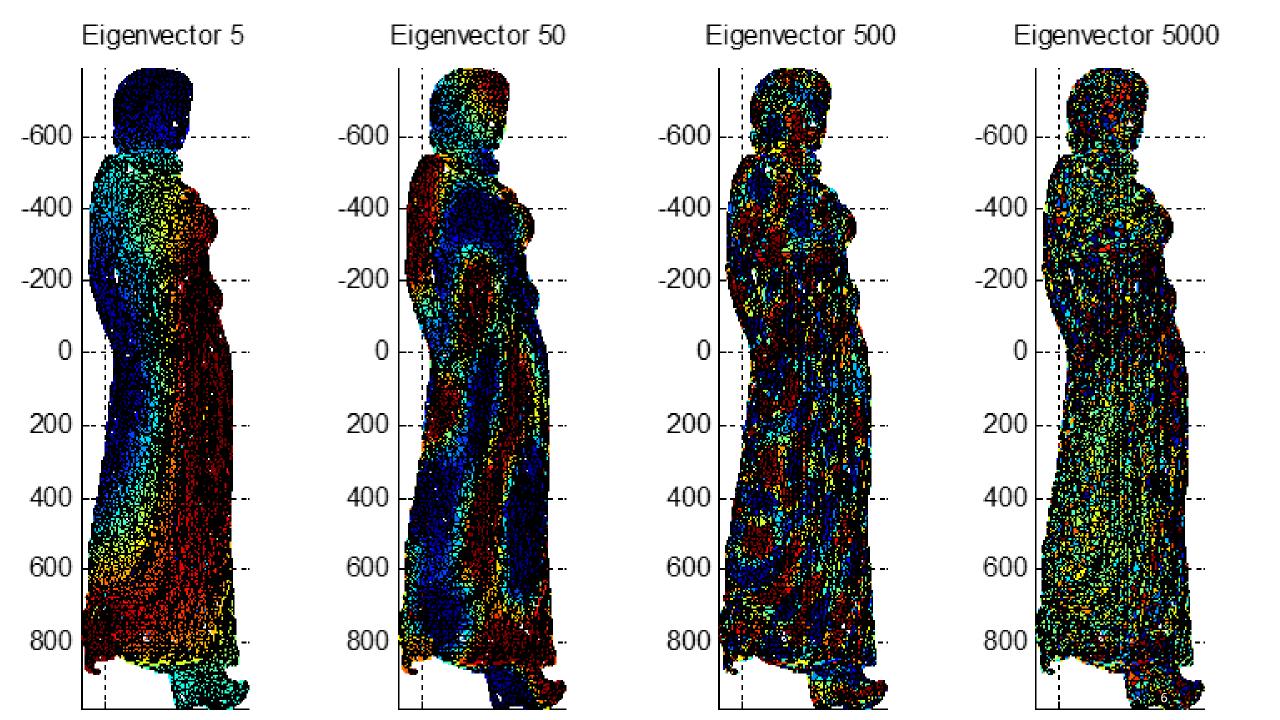
Graph Signal Processing for Dynamic Geometry (topology not consistent over time)



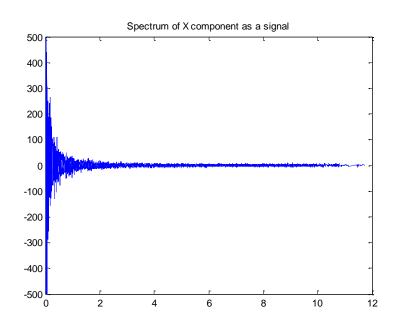
Eigenvectors of a Mesh

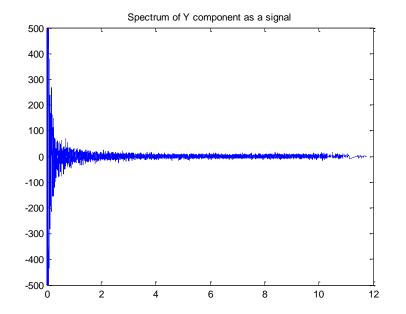


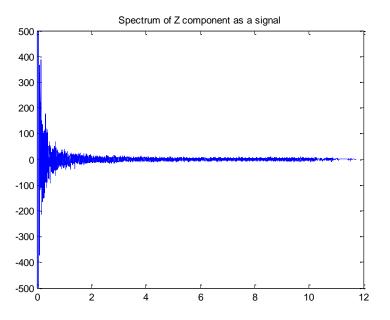




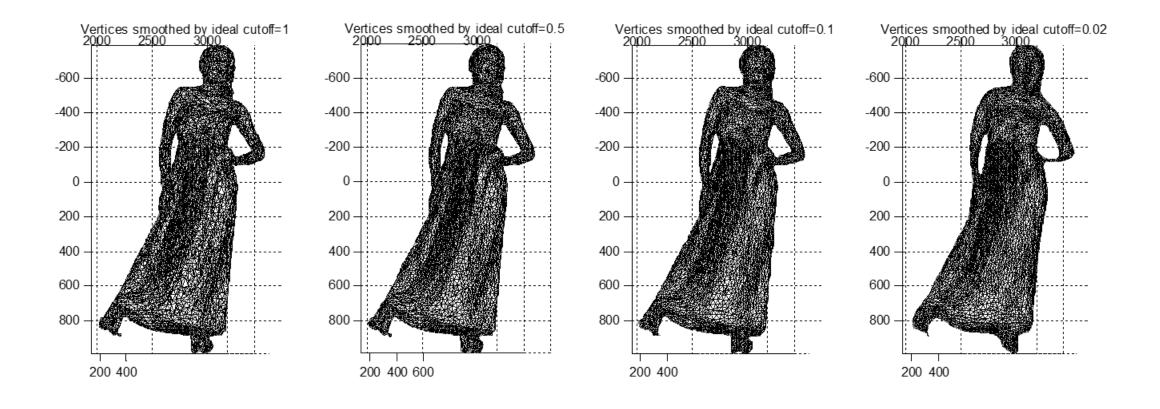
Spectrum of Geometry as a Signal



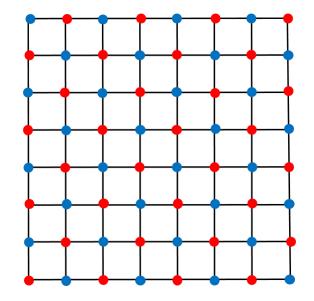




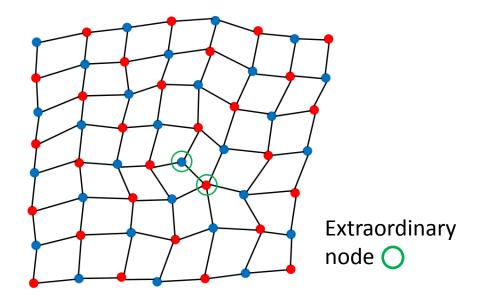
Smoothing by Ideal Low-Pass Filtering



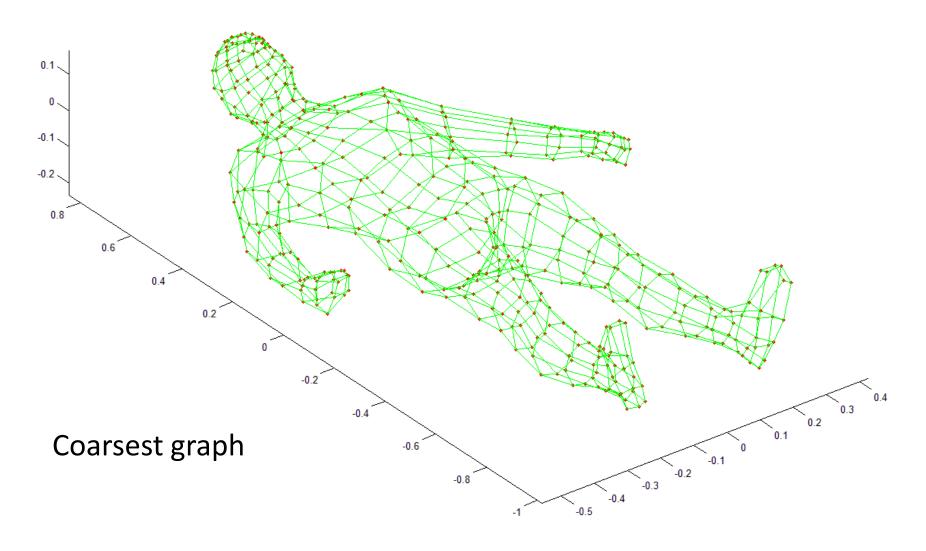
Dealing with Complexity

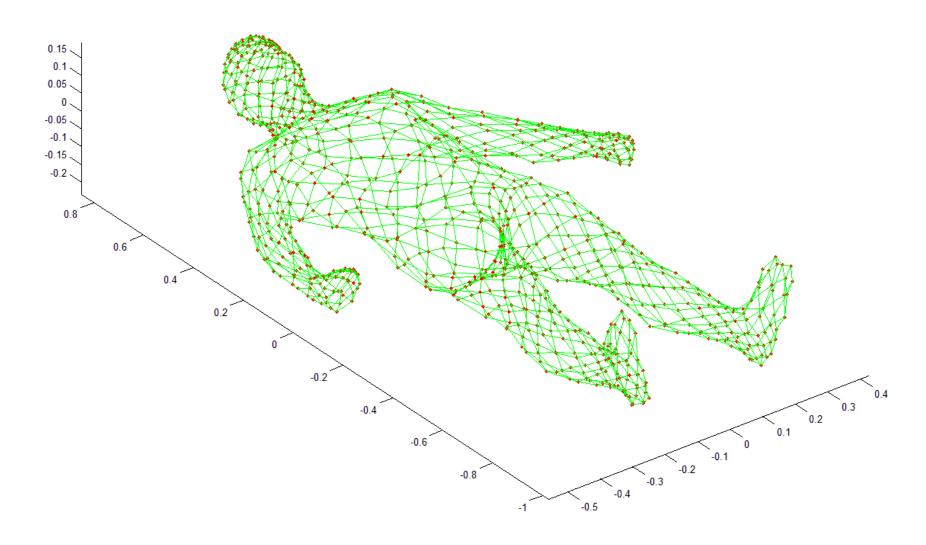


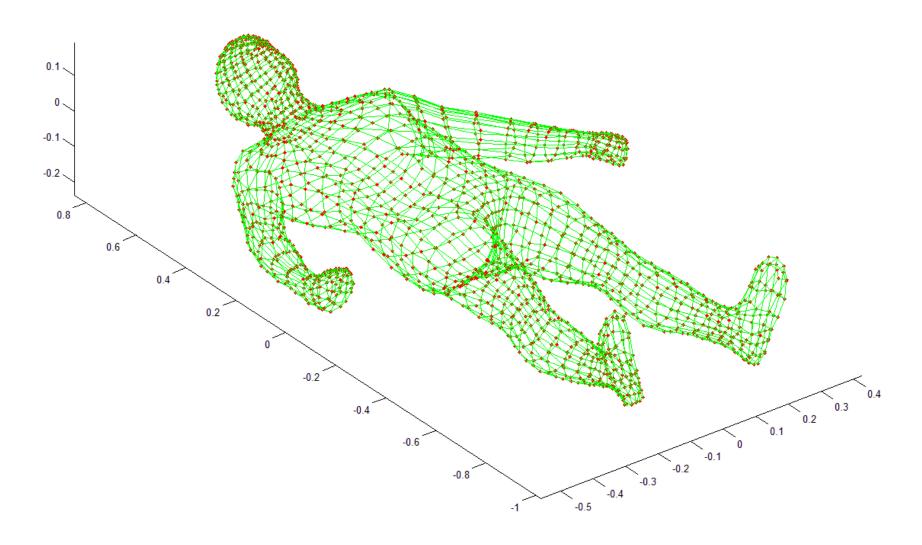
Traditional images: process in blocks or wavelets

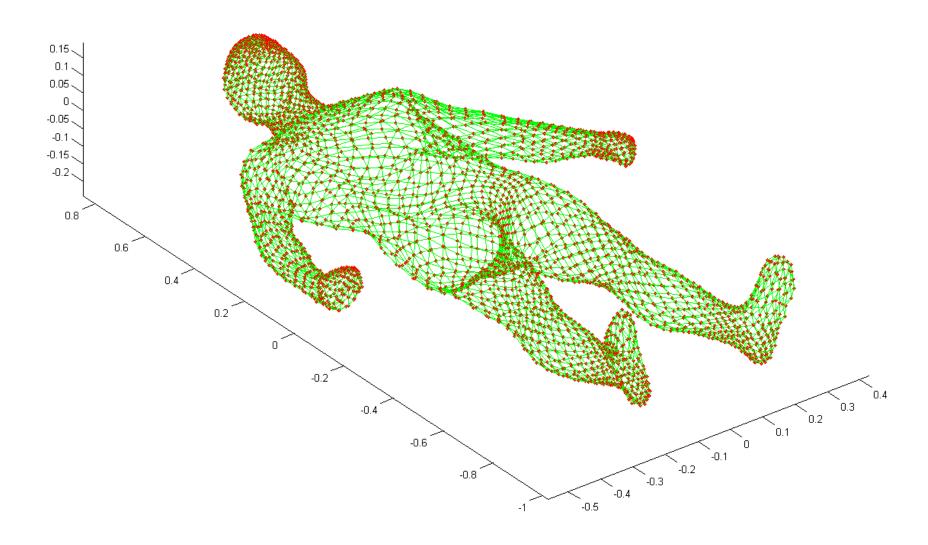


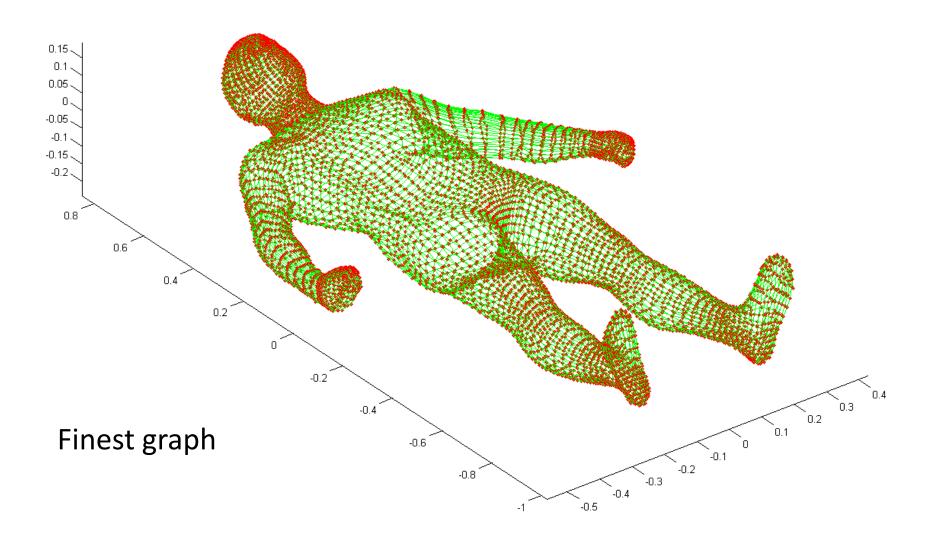
Arbitrary meshes: not so easy

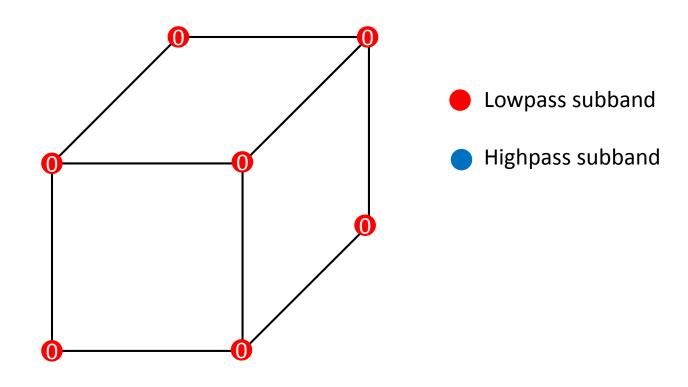


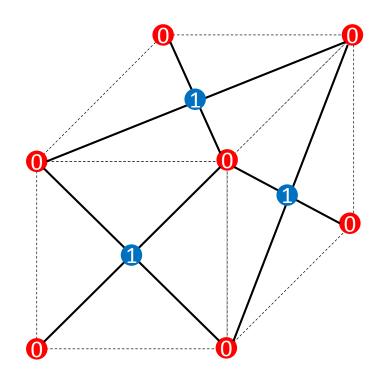




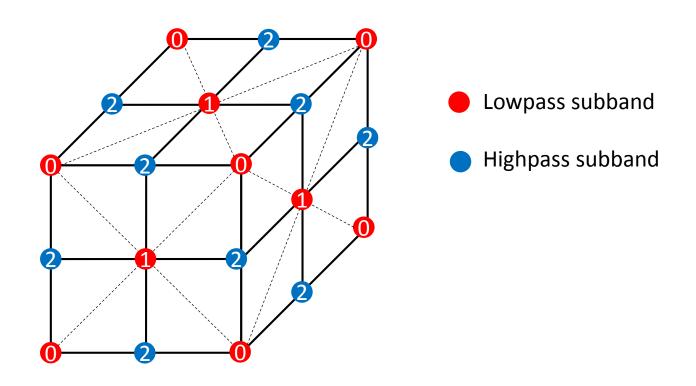


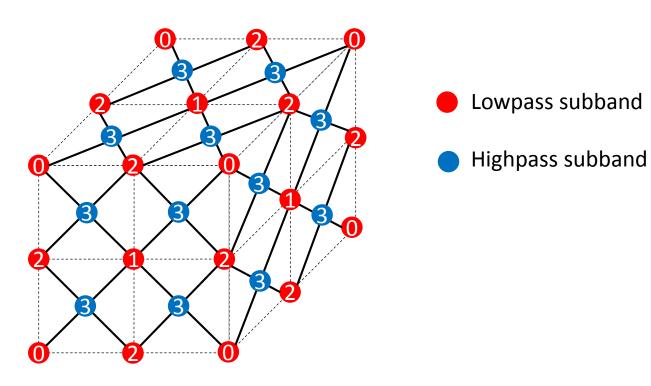


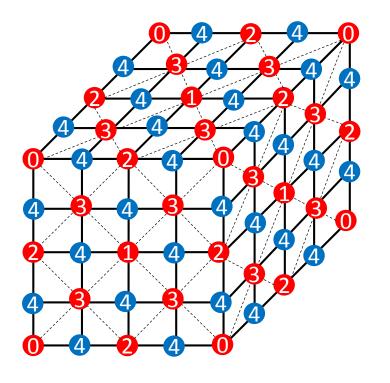




- Lowpass subband
- Highpass subband





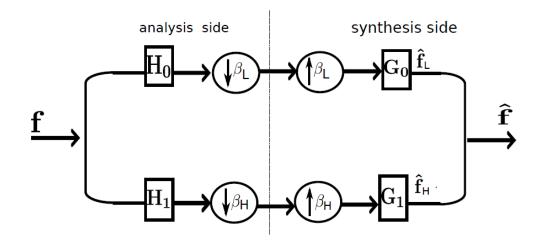


- Lowpass subband
- Highpass subband

Graph Wavelet Filter Banks (GWFBs)

Critical sampled, compactly supported, near-orthogonal, designed in spectral domain

Building block: two-channel filter bank on a bipartite graph



[Narang & Ortega 2013]

Outline

Graph Signal Processing for Static Geometry

Graph Signal Processing for Dynamic Geometry (topology consistent over time)

Graph Signal Processing for Dynamic Geometry (topology not consistent over time)

Dynamic geometry compression competition dataset¹

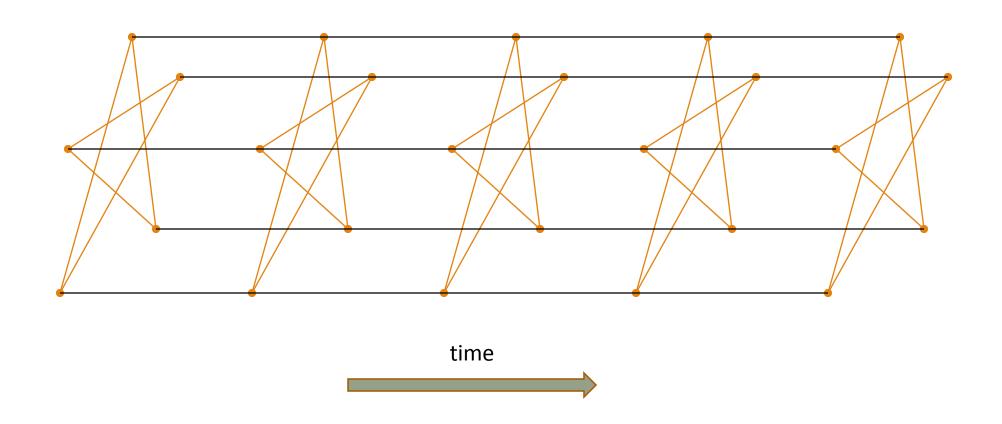
Experiments carried over five sequences: Handstand, Dance, Dog, Wheel, Skirt

Performance measured in terms of Metro distance (RMS)

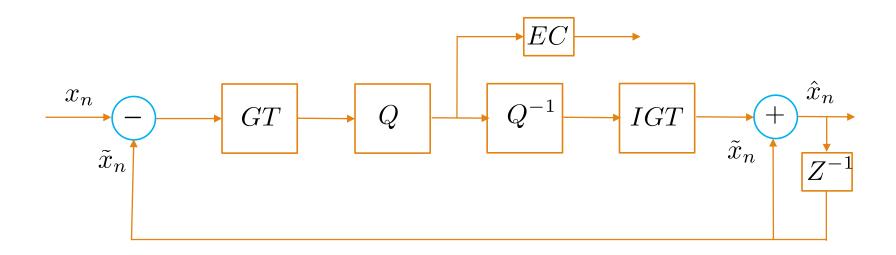
$$d_{RMS}(X,Y) = \max\{ \underset{x \in X}{rms} \inf_{y \in Y} d(x,y), \underset{y \in Y}{rms} \inf_{x \in X} d(x,y) \}$$

¹ http://www.geometrycompression.org/

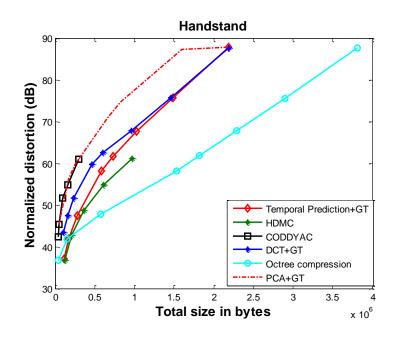
Trellis for Temporally Consistent Graphs

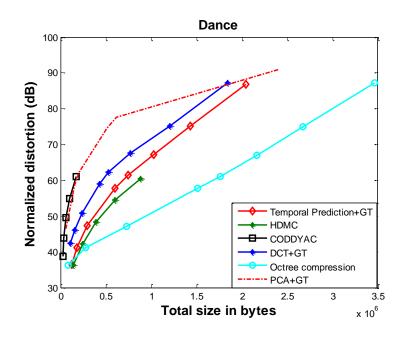


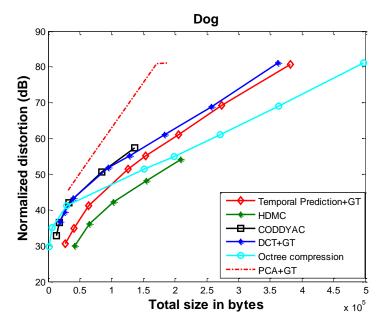
Predictive Transform Coding



Rate-Distortion Performance







Outline

Graph Signal Processing for Static Geometry

Graph Signal Processing for Dynamic Geometry (topology consistent over time)

Graph Signal Processing for Dynamic Geometry (topology not consistent over time)

Motion Estimation and Compensation

From graphs \mathcal{G}_t and \mathcal{G}_{t+1} :

- 1. Extract feature vectors in each graph, f_m ($m \in \mathcal{G}_t$) and f_n ($n \in \mathcal{G}_{t+1}$)
- 2. Compute feature (dis)similarity, $score(f_m, f_n)$
- 3. Find best matching points, $m = n^*$ for each n
- 4. Keep matching pairs of interest, (n_i^*, n_i)
- 5. Compute sparse set of motion vectors, $mv_{n_i} = p_{n_i} p_{n_i^*}$
- 6. Smooth to get dense motion field, \widetilde{mv}_n for all $n \in \mathcal{G}_{t+1}$
- 7. Warp graph \mathcal{G}_{t+1} and connect to graph \mathcal{G}_t
- 8. Interpolate signals on \mathcal{G}_{t+1} from signals on \mathcal{G}_t

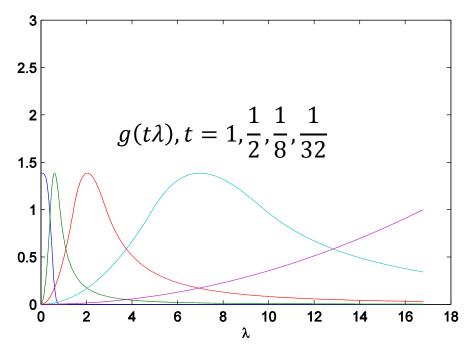
Features: Spectral Signatures on Graphs

Based on spectral graph wavelets (SGWT)*: dilated, translated versions of a bandpass kernel designed in the graph spectral domain

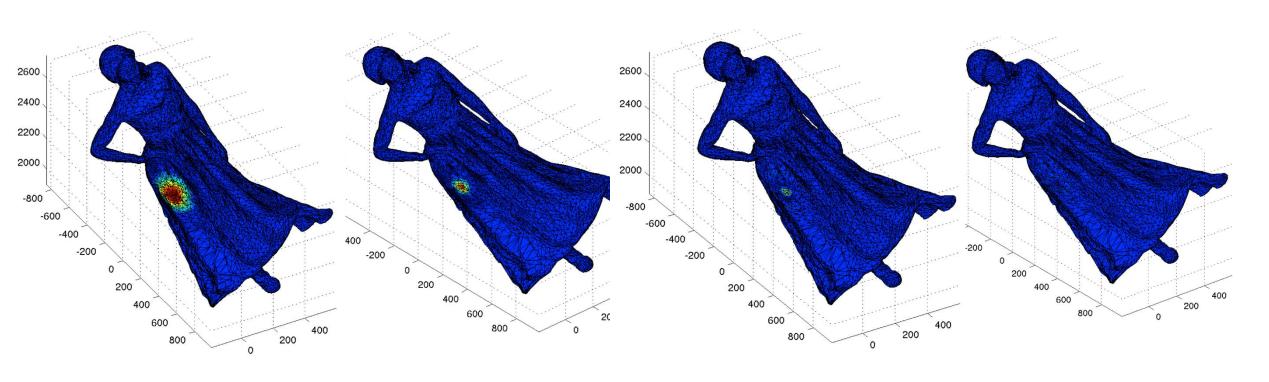
of the graph Laplacian

$$\psi_{t,n}(m) = \sum_{l=0}^{N-1} g(t\lambda_l) \chi_{\ell}^*(n) \chi_{\ell}(m)$$

*D. Hammond, P. Vandergheynst, and R. Gribonval, Wavelets on graphs via spectral graph theory, App. and Comp. Harm. Anal., 2011



Spectral Graph Wavelets $\psi_{t,n}$ (example)



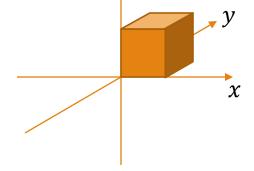
Can be efficiently implemented by approximating the wavelet operator with powers of the Laplacian (Chebyshev polynomials)

Feature Extraction

For each node $n \in \mathcal{G}$, define the octant indicator functions:

1.
$$o_{1,n}(k) = 1_{\{x(k) \ge x(n), y(k) \ge y(n), z(k) \ge z(n)\}}(k), k \in \mathcal{G}$$

2.
$$o_{1,n}(k) = 1_{\{x(k) \ge x(n), y(k) \ge y(n), z(k) < z(n)\}}(k), k \in \mathcal{G}$$
...



8.
$$o_{1,n}(k) = 1_{\{x(k) < x(n), y(k) < y(n), z(k) < z(n)\}}(k), k \in \mathcal{G}$$

For each color and geometry component $s \in \{r, g, b, x, y, z\}$ at that node compute the wavelet coefficients:

$$f_{n,t,o_i,s} = \langle s \cdot o_{i,n}, \psi_{t,n} \rangle$$
 for $i = 1, \dots, 8$ and $t = t_1, \dots, t_{max}$

Feature vector is concatenation of these wavelet coefficients: $f_n = \{f_{n,t,o_i,S}\}$

Feature (dis)similarity and matching

For all $m \in \mathcal{G}_t$ and $n \in \mathcal{G}_{t+1}$ compute the Mahalanobis distance

$$score(m,n) = (f_m - f_n)^T P(f_m - f_n)$$

where P is a covariance matrix estimated (i.e., trained) from features known to be in correspondence

For each $n \in \mathcal{G}_{t+1}$ define its best match in \mathcal{G}_t :

$$n^* = \arg\min_{m \in \mathcal{G}_t} score(m, n)$$

$$bestscore(n) = \min_{m \in \mathcal{G}_t} score(m, n)$$

Keep sparse set of matching points (n_i^*, n_i) s.t. each region in \mathcal{G}_{t+1} has at least one point n_i and $bestscore(n_i) \leq thresh$.

Sparse set of motion vectors

Compute motion vectors for the sparse set of matching points:

$$mv_n^* = p_n - p_{n^*}$$

where $p_n = [x_n, y_n, z_n]^T$ is the position of vertex n

Approximate score(m, n) for m near n^* in terms of $mv_n = p_n - p_m$:

$$score(m,n) \approx bestscore(n) + (p_n - p_m)^T M_n^{-1} (p_n - p_m)$$

where
$$M_n = \frac{1}{|\mathcal{N}_{n^*}^2|} \sum_{m \in \mathcal{N}_{n^*}^2} \frac{\left(p_m - p_{n^*}\right)^T \left(p_m - p_{n^*}\right)}{score(m,n) - bestscore(n)}$$
 and $\mathcal{N}_{n^*}^2$ is the two-hop neighborhood of n^* in \mathcal{G}_t

Smooth dense set of motion vectors

Letting
$$Q = \begin{bmatrix} M_1^{-1} & \cdots & 0_{3\times 3} \\ \vdots & \ddots & \vdots \\ 0_{3\times 3} & \cdots & M_N^{-1} \end{bmatrix}$$
 where $M_n^{-1} = 0_{3\times 3}$ if $n \notin \text{sparse set}$,

smooth the signal of motion vectors:

$$\widetilde{mv}^* = \arg\min(mv - mv^*)^T Q(mv - mv^*) + \lambda \sum_{i=1}^{3} (S_i mv)^T L_t(S_i mv)$$

where L_t is the graph Laplacian and S_i is a selection matrix

Penalize excess matching score on the sparse set

Impose smoothness of the motion vectors on the graph

Closed form solution

This has a closed form solution,

$$\widetilde{mv}^* = \left(Q + \lambda \sum_{i=1}^3 S_i^T L_t S_i\right)^{-1} Qmv^*$$

which can be solved iteratively using MINRES-QLP for efficiency on large systems

S.-C.T Choi, and M.A. Saunders, MINRES-QLP for symmetric and Hermitian linear equations and least-squares problems, ACM Trans. Math. Softw., 2014.

Graph G_t warped to G_{t+1} – Example 1

previpnsvirantenatificantenaterame+MpCepicusounfrantename

Graph G_t warped to G_{t+1} – Example 2

previous frame previous frame+MC previous frame

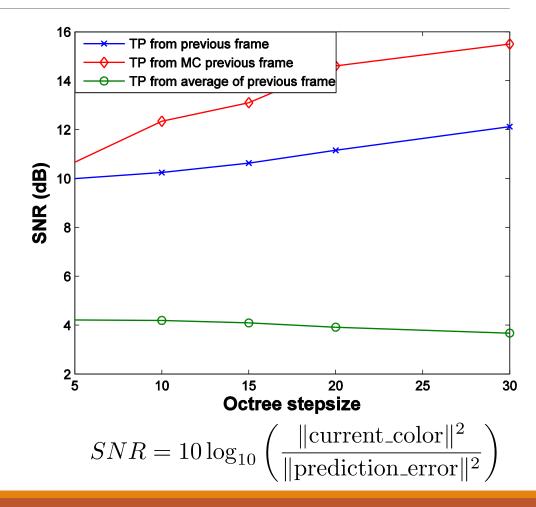
current frame+Mc previous frame

Graph G_t warped to G_{t+1} – Example 3

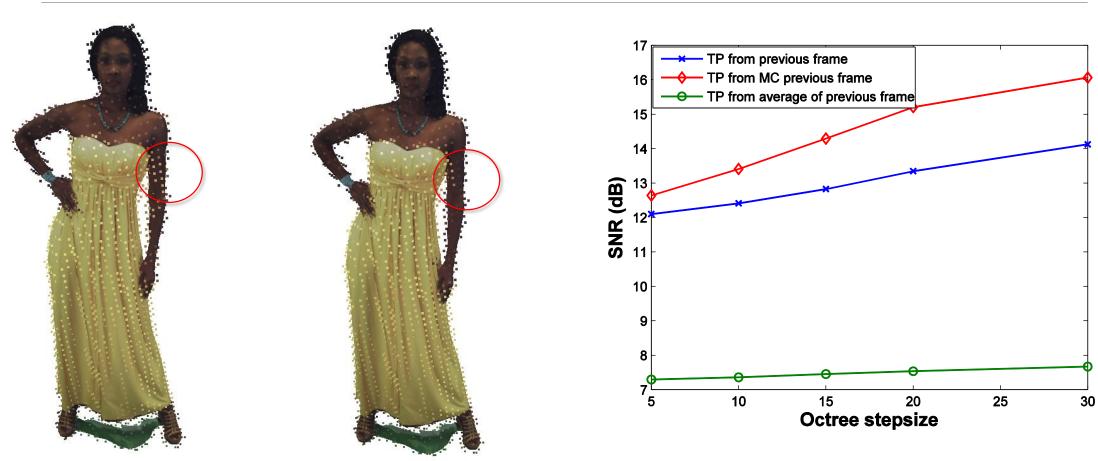
Color Prediction – Example 1

Prediction from previous frame

Prediction from motion compensated previous frame



Color Prediction – Example 2



Prediction from the previous frame

Prediction from motion compensated previous frame

Conclusion

Geometry is a natural application of Graph Signal Processing

Dynamic Geometry, especially where topology is temporally inconsistent, is fertile ground for new problems in Graph Signal Processing