# Recent Advances in Asymmetric Construction of Carbon–Fluorine Quaternary Stereogenic Center

Dina Boyarskaya

16th of May 2022

#### Content

- 1. Introduction
- Fluorine-containing compounds
- Fluorinating reagents
- Electrophilic N-F fluorinating reagents
- 2. Achievements before 2011
- 3. Cinchona alkaloids
- 4. Primary Amine Catalysis
- 5. Anionic Phase-Transfer Catalysis
- 6. Planar-chiral nucleophilic catalysis
- 7. Transition-metal catalyzed transformations
- 8. Conclusion

- 1. Only enantioselective transformation
- 2. Only formation of quaternary carbon atoms
- 3. Only fluorination methods
- 4. Only electrophilic N-F fluorinating agents
- 5. Only achievements during the last 10 years will be discussed

## Introduction – fluorine-containing compounds

New methods for preparation of fluorine-containing compounds are in extremely high demand in nearly every sector of chemical industry:

- 1. Solar cells industry;
- 2. Fluoro-containing markers for biological studies by NMR;
- 3. <sup>19</sup>F magnetic resonance imaging (MRI), a superior alternative to the current diagnostic procedures using harmful ionizing radiation;
- 4. Agrochemical industry about half of newly developed pesticides contain some type of fluorination;
- 5. Pharmaceutical industry fluorine is found in more than half of most-prescribed multibillion-dollar pharmaceuticals



Due to the fact that F is slightly larger and hydrophobic than H, its extreme electronegativity and that F can be H-bond acceptor, introduction of C-F to replace C-H influence the properties of the drug and can lead to modification of :

- Molecular conformation;
- Polarity;
- Acid-base properties;
- Electronic interactions.





Due to the fact that F is slightly larger and hydrophobic than H, its ext that F can be H-bond acceptor, introduction of C-F to replace C-H influ can lead to modification of :

- Molecular conformation;
- Polarity;
- Acid-base properties;
- Electronic interactions.

### Introduction – fluorinating reagents

Three major factors prohibit chemical and biological evolution of fluorine:

- 1. the three richest natural sources of fluorine, the minerals fluorospar (CaF2), fluorapatite (Ca5(PO4)3F), and cryolite (Na3AlF6) are water-insoluble;
- 2. high oxidation potential of fluorine (-3.06 V);
- 3. high hydration energy of fluorine (117 kcal/mol) renders fluoride a very poor nucleophile in an aqueous/biological environment.



#### Introduction – Electrophilic N-F fluorinating reagents



In 2016, the first systematic quantum mechanical calculation of fluorinating strength of 130 electrophilic N–F reagents values was performed in two commonly used solvents ( $CH_2CI_2$  and  $CH_3CN$ ) based on FPD (Fluorine Plus Detachment) energy.





# Achievements before 2011



Shibata, N. JACS 2000, 122, 10728–10729; Cahard, D. Synlett 2004, 0856–0860; Gouverneur, V. ACIE 2003, 42, 3291–3294; Togni, A. ACIE 2000, 39, 4359-4362; Jorgensen, K.A. ACIE, 2005, 44, 3703-3706; Shibata, N. J. Fluorine Chem. 2006, 127, 548–551

#### Content

- 1. Introduction
- Fluorine-containing compounds
- Fluorinating reagents
- Electrophilic N-F fluorinating reagents
- 2. Achievements before 2011
- 3. Cinchona alkaloids
- 4. Primary Amine Catalysis
- 5. Anionic Phase-Transfer Catalysis
- 6. Planar-chiral nucleophilic catalysis
- 7. Transition-metal catalyzed transformations
- 8. Conclusion

### Cinchona alkaloids



#### 1. α-Fluorinations of Branched Aldehydes

Before 2015 – 2 examples with moderate yields and ee



Secondary amines are ineffective catalysts due to the steric hindrance and primary amines suffers from the formation of E and Z isomers.

#### 

Jacobsen, 2015

Substituted arylpropionaldehyde derivatives undergo  $\alpha$ -fluorination with consistent results.  $\alpha, \alpha$ - dialkyl branched aldehydes afforded products with significantly lower ee.



The stereochemical analysis raises the possibility that enantioselectivity is dictated primarily by the E/Z ratio of the enamine intermediates.



Stereospecific process

Various  $\alpha$ -alkyl- $\alpha$ -aryl aldehydes were successfully fluorinated to afford the corresponding  $\alpha$ -fluoroaldehydes in high yields with high ee. The reaction with  $\alpha$ , $\alpha$ -dialkyl aldehydes yielded the products with worse results.







 $\beta$ -ketoesters – 18 examples, high yields and ee 1,3-dicarbonyls – 1 example, good reactivity, moderate ee  $\beta$ -ketoamides – 7 examples, good yields and good to moderate ee

#### (a) Proposed transition states

#### I: H-bonding Mode

#### H.N.H. H.N.H. R.O.F.N.S.O. Ph

*R***-selective** H-bonding guided *Re*-facial attack

#### II: Electrostatic repulsion Mode



S-selective Electrostatic repulsion pushed Si-facial attack

The use of chiral cation salts as phase-transfer catalysts for anionic reagents has enabled a vast set of enantioselective transformations.

To overcome the problem of background reaction of electrophilic fluorinating agent and starting material – Toste decided to keep low the concentration of electrophilic fluorine in organic solution by applying anionic phase –transfer catalysis

C<sub>8</sub>H

 $C_8H_{17}$ 

i-Pi



- 1. Lipophilic backbone phase –transfer catalyst
- 2. Bulky, chiral phosphonic acid
- 3. Selectfluor is not soluble in nonpolar solvents

Toste, F.D. *Science* **2011**, *334*, 1681-1684

#### 1. Fluorocyclization of olefins



#### 2. Fluorination of Enamides



Asymmetric synthesis of  $\beta$ -fluoroamine





#### 3. Dearomatization of phenols

Direct asymmetric dearomatization through discrimination between the enantiotopic faces of the arene



(b)

5. Fluorination of α-Branched Cyclohexanones Enabled by a Combination of Chiral Anion Phase-Transfer Catalysis and Enamine Catalysis



6. Fluocyclization with dicarboxylic chiral acids



Dicarboxylic acid

### Planar-chiral nucleophilic catalysis



0

Ph

Β'n

(Me<sub>5</sub>C<sub>5</sub>)Fe

(+)-5

95% yield N-acylated

intermediate

| entry          | Ar                                   | R            | ee (%)    | yield (%) <sup>b</sup> |
|----------------|--------------------------------------|--------------|-----------|------------------------|
| 1              | Ph                                   | Et           | 99        | 98                     |
| 2              | Ph                                   | Me           | <b>98</b> | 92                     |
| 3              | Ph                                   | <i>i-</i> Bu | 95        | 95                     |
| 4              | Ph                                   | Bn           | 78        | 96                     |
| 5 <sup>c</sup> | Ph                                   | cyclopentyl  | 80        | 84                     |
| 6              | 4-CIC <sub>6</sub> H <sub>4</sub>    | Et           | 97        | 86                     |
| 7              | 4-MeC <sub>6</sub> H <sub>4</sub>    | Et           | 97        | 92                     |
| 8              | 4-(OMe)C <sub>6</sub> H <sub>4</sub> | Et           | 97        | 91                     |
| 9              | 3-MeC <sub>6</sub> H <sub>4</sub>    | Et           | 97        | 97                     |
| 10             | 2-naphthyl                           | Et           | 94        | 89                     |
| 11             | 3-thiophenyl                         | <i>i-</i> Bu | 98        | 94                     |



Fu, G.C. JACS 2014, 136, 8899-8902

Ph

FN(SO<sub>2</sub>Ph)<sub>2</sub>

THF

–78 °C

#### Transition-metal catalyzed transformations

#### 1. Dyotropic rearrengement with Pd(IV)





- (1) the  $\beta$ -hydride elimination of intermediates **A** and **B** to alkene **5**;
- (2) the premature oxidation of Pd(ii) intermediate A;
- (3) C(*sp*3)–F reductive elimination of Pd(iv) species **C** (isolated).

The whole catalytic process would create three stereocentres including one quaternary C–F bond from a prochiral substrate, the whole sequence would be diastereoselective if the initial carbopalladation be effectively directed.

### Transition-metal catalyzed transformations



- Enantioselective formation of carbon-fluorine bond has become a field of great interest, due to the beneficial pharmarcokinetic properties that judiciously placed fluorine atoms can confer.
- Even though many methods have been discovered to perform such transformation with high enantioselectivity, still number catalytic transformations are still limited, especcially in case of formation of quaternary center.

# Thank you for your attention

#### Synthesis of chiral Selectfluor

#### 2. Fluorocyclization of prochiral polyenes



Scheme 3. Chiral reagents (2R,3R)-**6**a, (2S,3S)-**6**b, and (2S,3S)-**6**c. DMAP = 4-(dimethylamino)pyridine, DMF = N,N-dimethylformamide, THF = tetrahydrofuran.



Various  $\alpha$ -alkyl- $\alpha$ -aryl aldehydes were successfully fluorinated to afford the corresponding  $\alpha$ -fluoroaldehydes in high yields with high ee.

The reaction with  $\alpha$ ,  $\alpha$ -dialkyl aldehydes yielded the products with worse results.

