

Palladium/Norbornene Cooperative Catalysis

Fenggang Sun

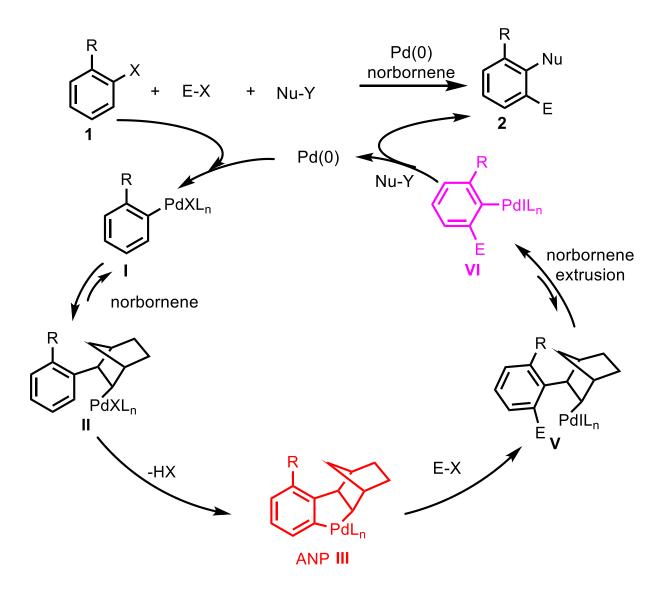
14.04.2022

Outline

- 1. Introduction
- 2. Pd(0)-Initiated Catalytic Reactions
- 3. Pd(II)-Initiated Catalytic Reactions
- 4. Summary

Introduction

Marta Catellani

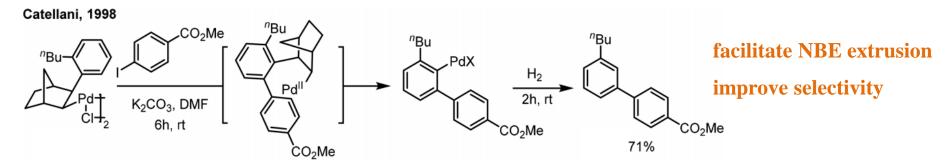

Ph.D. in chemistry from the University of Parma postdoctoral education at the University of Chicago Professor, University of Parma, Italy

Catellani reaction

$$R^1$$
 $+$ 2 R^2 $+$ N Y $Cat., Pd$ R^1 R^2 $+$ R^2 $+$ R^2 base, solvent R^2

Catellani, M.; Frignani, F.; Rangoni, A. Angew. Chem. Int. Ed. 1997, 36, 119.

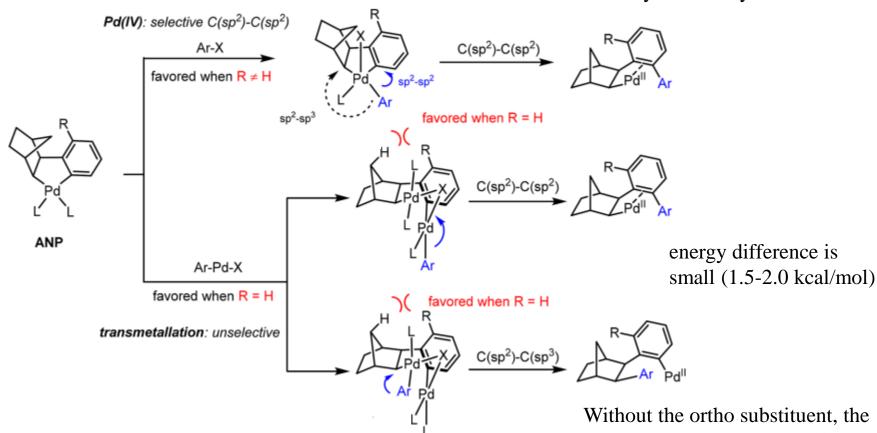
Proposed Mechanism:



Proposed Mechanism

Catellani, 1988

J. Organomet. Chem. 1988, 346, C27-C30.


Ortho Effect

New J. Chem. 1998, 22, 759-761.

Origin of the Ortho Effect

the Pd(IV) pathway becomes the preferred pathway when an ortho substituent is present in the aryl moiety of ANP by 1-7 kcal/mol.

J. Am. Chem. Soc. 2011, 133, 8574-8585.

without the ortho substituent, the transmetalation pathway is favored over the Pd(IV) pathway by 8-10 kcal/mol for different substrates

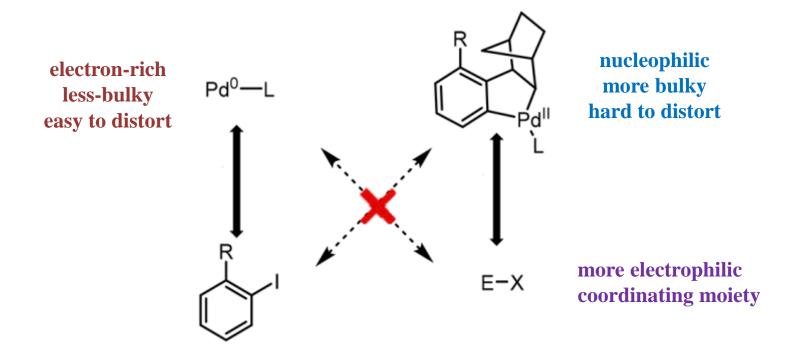
NBE Extrusion

strain energy = 21.6 kcal/mol

strain energy = 32.4 kcal/mol

ligands and additives could also have an influence on the equilibrium

$$R_1$$
 $Pd^{\parallel}R_2$


$$Pd^{\parallel}$$

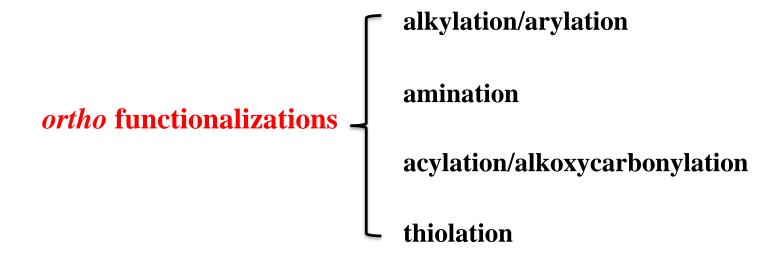
Cheng, 1994

migratory insertion less reversible!

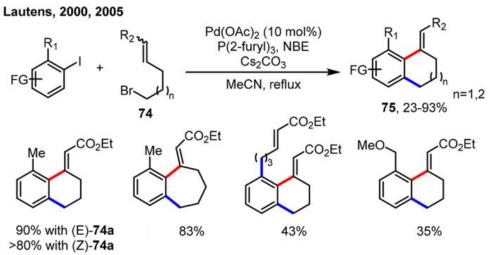
Organometallics 1994, 13, 18-20.

Selectivity Issue for Oxidative Addition of Pd(0) versus ANP

a. electrophile selectively oxidizes the ANP intermediate than the Pd(0) catalyst b. aryl halide substrate selectively reacts with the Pd(0) instead of ANP


Outline

1. Introduction


- 2. Pd(0)-Initiated Catalytic Reactions
- 3. Pd(II)-Initiated Catalytic Reactions
- 4. Summary

Pd(0)-Initiated Catalytic Reactions

ipso **functionalizations** : Heck, Suzuki, Sonogashira, C–N coupling, C–H activation, carbene coupling, borylation...

ortho-alkylation of Aryl Iodides

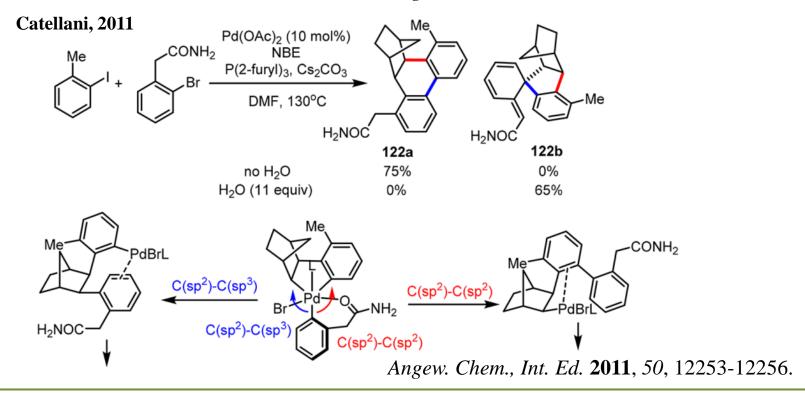
Angew. Chem., Int. Ed. 2000, 39, 1045-1046.

Synthesis **2015**, *47*, 2446–2456.

ortho-alkylation of Aryl Iodides

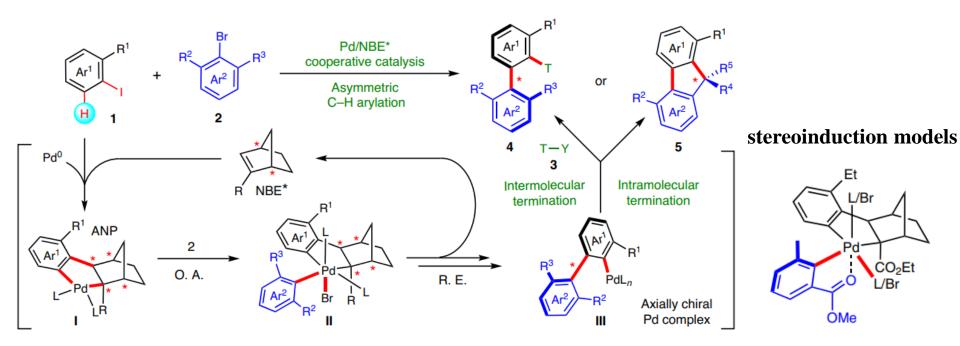
Lautens, 2010

Pd(OAc)₂ (10 mol%) P(m-Cl-C₆H₄)₃, NBE


ortho-Arylation of Aryl Iodides

Catellani, 2004

J. Am. Chem. Soc. 2004, 126, 78-79.


ortho-Arylation of Aryl Iodides

Angew. Chem., Int. Ed. 2017, 56, 2767-2771.

ortho-arylation of Aryl Iodides

Zhou, 2020

Nat. Catal . 2020, 3, 727-733.

ortho-acylation/alkoxycarbonylation of Aryl Iodides

Gu, 2015

$$R^{1}$$
 $+$
 Ar
 CI
 $+$
 EWG
 R^{2}
 R^{2}

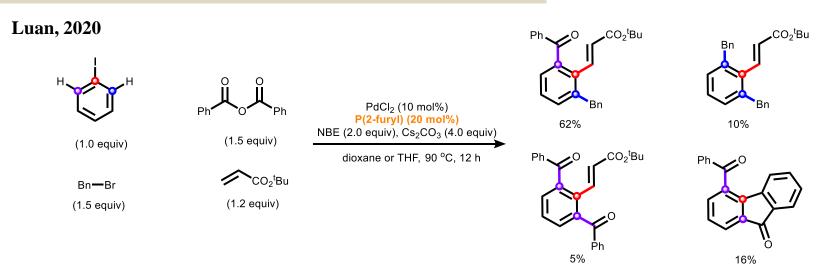
Angew. Chem., Int. Ed. 2015, 54, 12669-12672.

76%

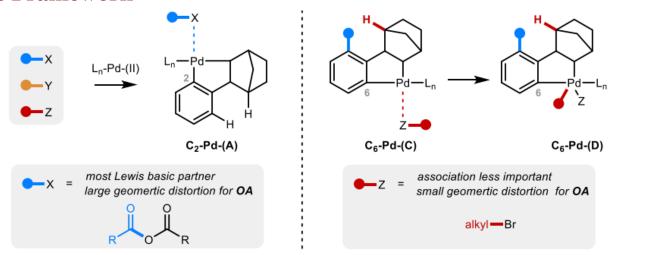
Zhu, 2018

Angew. Chem., Int. Ed. 2015, 54, 12664-12668.

$$FG \xrightarrow{\Gamma} + FG \xrightarrow{\Gamma} N$$


$$R_F CI$$

Dong, 2015


Org. Lett. **2018**, *20*, 6640-6645.

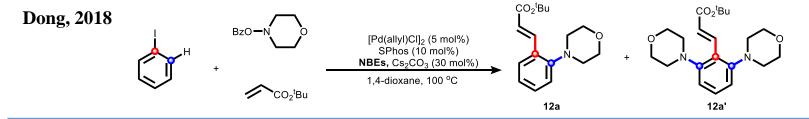
Chem **2016**, *1*, 581-591.

ortho-acylation/alkoxycarbonylation of Aryl Iodides

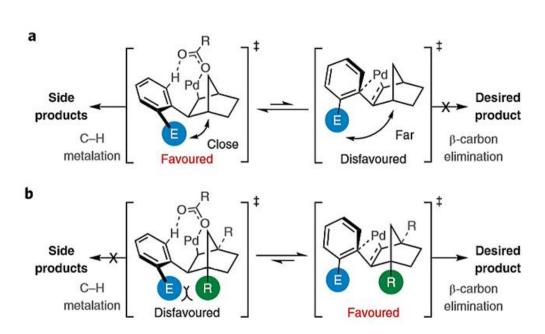
Mechanistic Framework

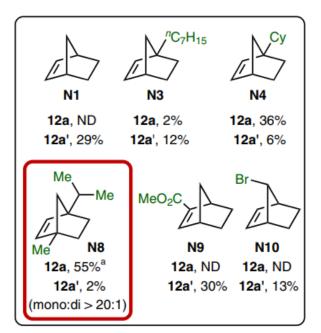
Chem **2020**, *6*, 2097–2109.

ortho-Amination of Aryl Iodides


Liang, 2018

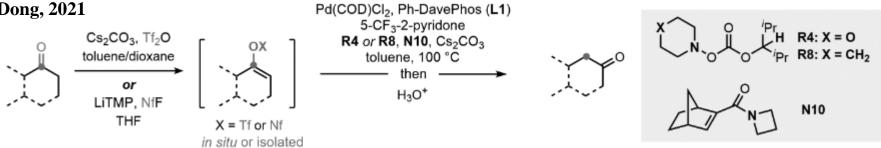
			GC yield of 6 , 7 , 5 , 4 , 3 a					
catalyst	amination reagent	carboxylic acid ^b	6	7	5	4	3a	yield $^{c}(3a)$
Pd(OAc) ₂ /PPh ₃	2a	A1	8	0	16	41	17	15
$Pd(OAc)_2/PPh_3$	2a	A2	5	0	2	39	30	28
$Pd(OAc)_2/PPh_3$	2a	A3	8	0	18	46	16	14
$Pd(OAc)_2/PPh_3$	2a	A4	2	1	3	9	80	74
$Pd(OAc)_2/PPh_3$	2a	A5	5	0	3	34	26	23
$Pd(OAc)_2/PPh_3$	2a	A6	4	0	3	39	28	25
$Pd(OAc)_2/PPh_3$	2a	A 7	8	0	20	50	11	9
$Pd(OAc)_2/PCy_3$	2a	A4	18	43	4	2	32	26
$Pd(OAc)_2/P^tBu_3-HBF_4$	2a	A4	4	0	25	33	4	<5

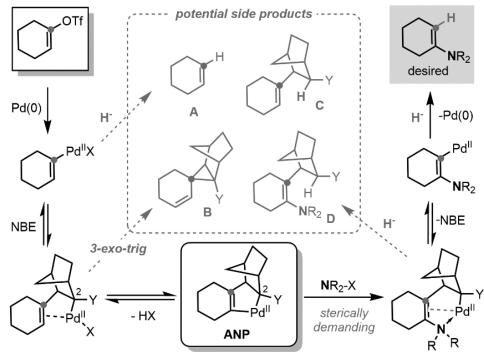

concerted metalation deprotonation (CMD) process


ACS Catal. **2018**, 8, 11827–11833.

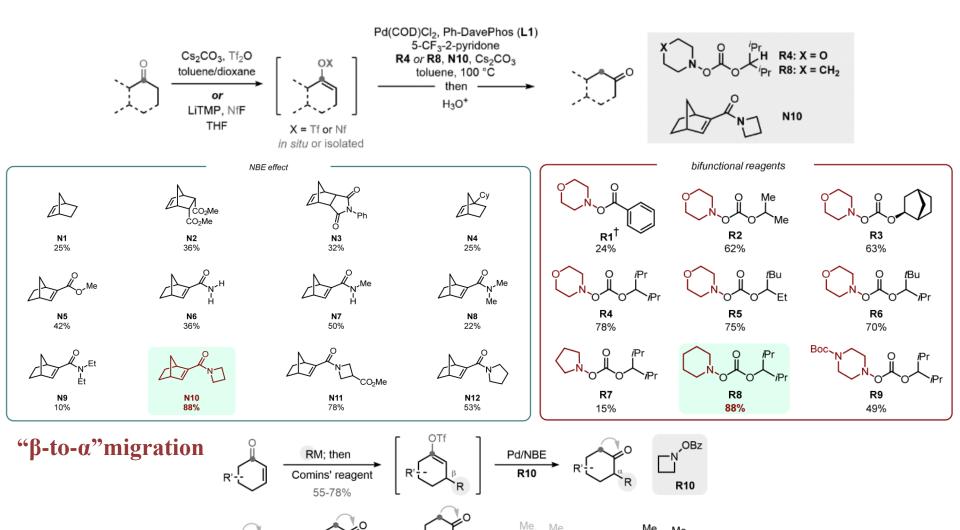
Mono ortho-Amination with ortho Unsubstituted Aryl Iodides

proposed pathways




Nat. Chem. 2018, 10, 866-872.

Triflate-mediated α-Amination Promoted Carbonyl 1,2-Transposition



proposed mechanism

Science **2021**, 374, 734–740.

Ие

(±)-41

39%

OBn

 $(\pm)-40$

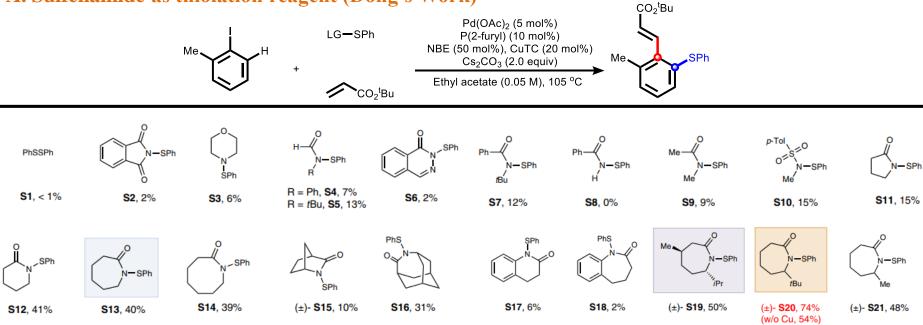
38%

(±)-39

30%

2 steps

(+)-apoverbenone


42 (–)-pinocamphone

35%

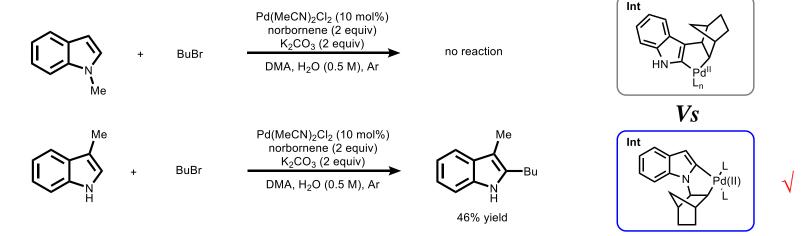
(22% rsm)

ortho-Thiolation of Aryl Iodides

A. Sulfenamide as thiolation reagent (Dong's Work)

B. Thiosulfonate as thiolation reagent (Gu's Work)

Org. Lett. **2019**, *21*, 3204–3209.


Outline

- 1. Introduction
- 2. Pd(0)-Initiated Catalytic Reactions
- 3. Pd(II)-Initiated Catalytic Reactions
- 4. Summary

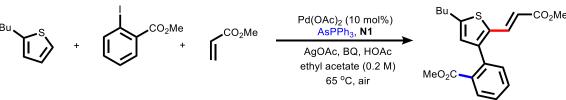
N-H Bond Activation-Initiated 2-Functionalization of Indoles

Bach, 2011, 2012

J. Am. Chem. Soc. 2011, 133, 12990-12993.

J. Am. Chem. Soc. 2012, 134, 14563-14572.

Angew. Chem., Int. Ed. 2013, 52, 6080-6083.


Direct Vicinal Difunctionalization of Thiophenes

Dong, 2019

a. lack of an ortho substituent

b. coordinative ability of the sulfur

$$= \sum_{Pd} \sum_{Pd}$$

Entry	Change from the	yield of 4a (%) ^a			
1			82(81)		
2	١		2		
3	PPh ₃ ii	1			
4	(PhO) ₃ P	0			
	NBE Effect (15 m	ol% NBE used inst	ead) ^b		
O N M	e N. I		> 2	OMe Cy	
N1 62	N2 5	N3 15	N4 45	N5 16	
C ₇ H ₁₅		5 NHMe	CO ₂ Me	Zar CN	
N6 18	N7 2	N8 11	N9 20	N10 10	

J. Am. Chem. Soc. 2019, 141, 18958–18963.

Vicinal Difunctionalization of Heteroarenes with **Dual Electrophiles**

Dong, 2021

Angew. Chem. Int. Ed. 2021, 60, 26184–26191.

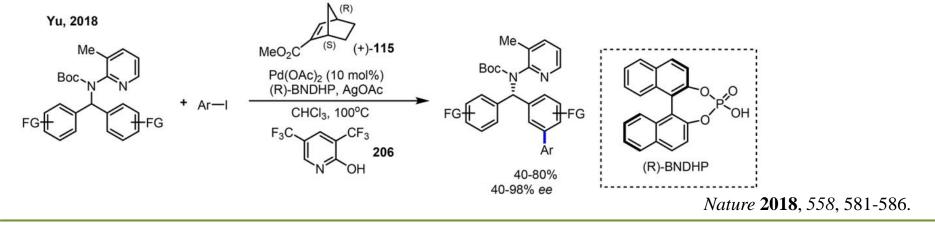
C-H Bond Activation-Initiated Meta Functionalization of Arenes

Yu, 2021

27

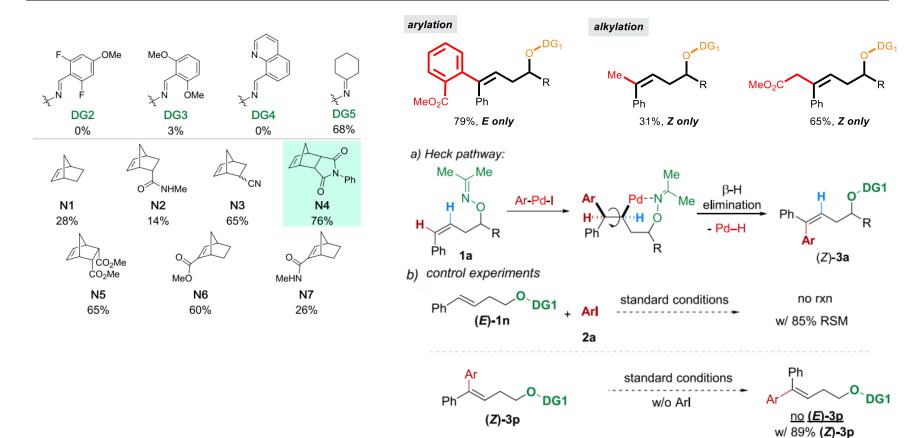
Meta-Amination/Alkynylation and Chlorination

DCM, 100°C

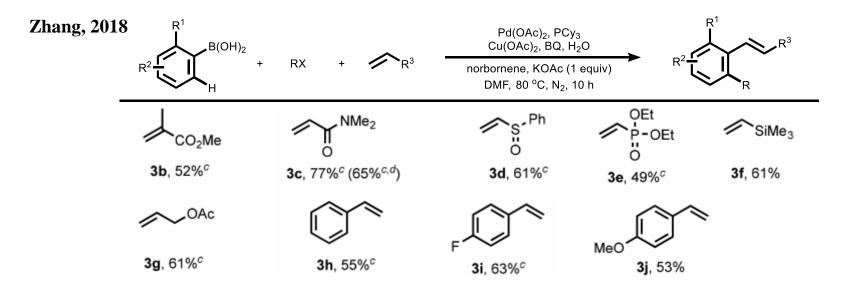

NHTFA

J. Am. Chem. Soc. 2016, 138, 14092-14099.

220, 44-72%


Enantioselective Remote Meta C-H Functionalization

219


Distal Alkenyl C-H Functionalization

Dong, 2020

J. Am. Chem. Soc. 2020, 142, 2715–2720


Transmetalation-Initiated Ortho Functionalization of Arylboron Species.

Zhou, 2018

ACS Catal. 2018, 8, 3775-3779.

Palladium(II)-Initiated Borono-Catellani Reaction

Angew. Chem., Int. Ed. 2018, 57, 7161-7165.

Summary

- Much development concerning ortho functionalization has been developed over the last ten years.
 - ✓ Formation of C-C and C-X bonds are possible
 - ✓ Asymmetric catalysis is now possible in many systems
- Many areas left to explore

Thanks for your attention!