

Radical Polycyclizations in the Synthesis of Heterocyclic Natural Products

Dan Forster

LSPN - Seminar

- Introduction
- Polycyclization cascades
 - C-centered radical initiated cascades
 - aldehydes
 - alkyl
 - alkenes
 - alkynes
 - N-centered radicals
 - N-aminyl radical
 - N-amidyl radical

Why radical polycyclizations?

Cascade polycyclization reactions => huge interest to shortly access complex frameworks

- Pericyclic reactions (electrocyclizations, cycloadditions, ..)
 - Very elegant, robust, complex structures can be obtained from a single transformation
 - Substrates must be carefully designed (matched/mismatched orbitals)
- Ionic cascades (cationic, anionic)
 - Present in biosynthetic pathways, nature's choice, well implemented
 - Difficult to control due to many possible rearrangements/shifts (carbocations), low functional group tolerance
- Radical cascades
 - Very reactive, extraordinarily short access to complex frameworks from simple starting materials

Radical generation

Homolysis

Heat or light

$$x - x \longrightarrow 2x$$

example:

$$\begin{array}{c|c}
CN & N_2 & CN \\
\hline
N_2 & 2 & \vdots \\
CN & CN & \vdots
\end{array}$$

$$R_0 O_R \longrightarrow 2 R^0$$

Homolytic cleavage of weak, non polarized bonds

Single-Electron Reduction / C-H bond oxidation

Electron addition on polarized bonds or metal oxidation of activated C-H bonds

Metal mediated hydrogen atom transfer

$$M_X H \longrightarrow H + M_{X+1}$$

M = Mn, Fe, Co, Sn

"Homolytic" cleavage of transition metal hydrides generating highly reactive hydrogen radical species

Once generated, radicals tend to propagate => well suited for cascade reactions to rapidly access complex frameworks.

Pioneering work: Porter (1970s): peroxide initiated cascades for prostaglandins synthesis

Observations in peroxy radicals cyclization, which were further used for the synthesis of prostaglandins analogues

Prostaglandin Analogues

Porter, J. Am. Chem. Soc. 1975, 97, 1281; J. Org. Chem. 1975, 40, 3614

Pioneering work: Ueno-Stork 1980s: halo-abstraction and substrate design for regiocontrolled radical cascades

Bu₃SnH

Pioneering work: Curran 1980s: Total synthesis of Hirsutene employing radical polycyclization

First radical polycyclization in the context of total synthesis

- Intro radical generation
- Polycyclization cascades
 - C-centered radical initiated cascades
 - aldehydes / ketones
 - alkyl
 - alkenes
 - alkynes
 - N-centered radicals
 - N-aminyl radical
 - N-amidyl radical

LSPN

9

EPFL

Sm(II) used for generation of ketyl radical via single electron transfer (SET)

Chelating effect of the ester on the Sm(III) induces:

- Selective aldehyde reduction
 - High diastereoselectivity

Procter, Chem. Eur. J. **2013**, 19, 6718 Initial discory of Sml₂ as one electron reducing agent: Kagan, J. Am. Chem. Soc. **1980**, 102, 2693–2698

Sm(II) used for generation of ketyl radical via single electron transfer (SET)

Chelating effect induces again high diastereoselectivity (single diastereomer)

Least hindered aldehyde reacts first

- Intro radical generation
- Polycyclization cascades
 - C-centered radical initiated cascades
 - aldehydes / ketones
 - alkyl
 - alkenes
 - alkynes
 - N-centered radicals
 - N-aminyl radical
 - N-amidyl radical

Sn radical used for halo-abstraction to generate stable tertiary C-centered radical

limonoid skeleton

• First 6-endo occurs from top face of the pseudo-chair form due to sp³ hybridized carbon atom next to double bond (C-OTBS) (C7) => stereodetermining step governed by hybridization of C7

Access to trans-decalin

Inoue, J. Org. Chem. 2021, 86, 6869

Sn radical used for halo-abstraction to generate stable tertiary C-centered radical

 First 6-endo occurs from bottom face of the pseudo-boat form due to sp² hybridized carbon atom next to double bond (C=O) (C9) => stereodetermining step governed by hybridization of C7

Notable access to thermodynamically non-favoured cis-decalin

Inoue, J. Org. Chem. 2021, 86, 6869

Sn radical used for halo-abstraction to generate stable tertiary C-centered radical

(±) puberuline C framework

MeO H H OMe
HO OMe
puberuline C

- First sythesis of the hexacyclic framework of Puberuline C
- Challenging 7-endo trig cyclization (DFT: optimal SOMO/LUMO interraction)

Inoue, Chem. Sci. 2016, 7, 4372

- Intro radical generation
- Polycyclization cascades
 - C-centered radical initiated cascades
 - aldehydes / ketones
 - alkyls
 - alkenes
 - alkynes
 - N-centered radicals
 - N-aminyl radical
 - N-amidyl radical

Fe-mediated hydrogen radical generation and addition on alkene radical acceptor

Trans-decalin favored thanks to mismatched radical/acceptor philicity. Slow radical addition favours thermodynamic product.

Cis-decalin isomer observed due to steric repulsion with ester group.

Liu, Angew. Chem. Int. Ed. 2017, 56, 5849

Pattenden, J. Chem. Soc., Perkin Trans. 1, 2000, 3522

 $R_2 = Me/alkyl$

- Intro radical generation
- Polycyclization cascades
 - C-centered radical initiated cascades
 - aldehydes / ketones
 - alkyls
 - alkenes
 - alkyne
 - N-centered radicals
 - N-aminyl radical
 - N-amidyl radical

An enyne radical cyclization triggering 1,5 HAT

Unexpected Tosyl deprotection in Barton – McCombie deoxygenation conditions triggered by 1,5 HAT during the synthesis of Dapholdhamine B

Sn radical addition on alkyne radical acceptor

Xu, J. Am. Chem. Soc. 2019, 141, 13043

- Intro radical generation
- Polycyclization cascades
 - C-centered radical initiated cascades
 - aldehydes / ketones
 - alkyl
 - alkenes
 - alkyne
 - N-centered radicals
 - N-aminyl radical
 - N-amidyl radical

Ir photocatalytic single electron oxidation of N anion generated from basic deprotonation

First use of photocatalytic radical generation for natural product synthesis

Qin, Acc. Chem. Res. 2019, 52, 1877

Dan Forster 21

Strychnos Alkaloids: (+)-strychnine

Qin, Org. Lett. 2019, 21, 252

- Intro radical generation
- Polycyclization cascades
 - C-centered radical initiated cascades
 - aldehydes / ketones
 - alkyl
 - alkenes
 - alkyne
 - N-centered radicals
 - N-aminyl radical
 - N-amidyl radical

Sn radical used for benzoyl-abstraction to generate amidyl radical

Observed cyclization product when using hydrogen substituted precursors

The chlorine substituent is introduced to direct 6-endo versus 5-exo cyclization

Zard, Angew. Chem. Int. Ed. 2002, 41, 1783; Synlett, 1996, 12, 1148; Tetrahedron lett. 1995, 36, 8791; Tetrahedron Lett. 1999, 39, 2125

Cascade radical polycyclization reactions

- Well implemented in nowadays total synthesis
 - Ultra short access to complex frameworks
 - Radicals propagate until being "stopped"

=> "infinite" potential but also very challenging cascade design

Thank you all for your attention!

Scheme 1. Retrosynthetic analysis of hispidanin A.

Dan Forster 27