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Focus on:
• Non-directed C(sp3)-H oxidation
• Non-activated C(sp3)-H bonds

Challenges

C(sp3)-H bond properties:
1. BDE ~96-101 kcal/mol
2. Lack of high energy n orbital
3. Lack of low energy p* orbital
4. Very high pKa

Overoxidation
1. Product is often more reactive than SM
2. FG tolerance

Regioselectivity – strategies:
1. Tune redox potential of reagent
2. Play with steric elements
3. Directing group
4. Intramolecular reaction

Briefly or Not Discussed:
• Activated C(sp3)-H bonds
• Methods with low synthetic utility
• Supramolecular systems
• Enzymatic oxidations
• Heterogeneous methods
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1. Product is often more reactive than SM
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2. Play with steric elements
3. Directing group
4. Intramolecular reaction

Briefly or Not Discussed:
• Activated C(sp3)-H bonds
• Methods with low synthetic utility
• Supramolecular systems
• Enzymatic oxidations
• Heterogeneous methods

Booming literature – concept change

Before 2007
Directing group / molecular recognition is necessary 
to distinguish between C-H bonds

Following 2007
Electronic, steric and stereoelectronic effects 
together can control selectivity between C-H bonds

Is it the beginning of 
something bigger?

Note that the numbers 
are still very small!
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Historical overview

Fenton, JChemSocTrans 1894 899-910 
Shilov Zhurnal Fizicheskoi Khimii 1969 2174-2175
Bergman JACS 1982 352
Barton, D. H. R. Acc. Chem. Res. 1992, 25 (11), 504–512.
Barton, D. H. R. Chem. Soc. Rev. 1996, 25 (4), 237.

TFDO / Curci JOC 1988 3890
DMDO / Murray, JOC 1985 2847
Oxaziridine / DesMarteau JOC 1993 4754
Periana Science 1998 560
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Ligands developed for 
C(sp3)-H oxidation

(before 2007)

Sutitle
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White – the first preparatively useful method

“e) iterative addition protocol” = added 3x(cat+reagent+additive)
Real equivalents are: cat (15 mol%), AcOH (1.5 equiv.), H2O2 (3.6 equiv)

Reaction development Scope and observations

Mechanism – electrophilic oxygen C-H insertion?

• No proposed mechanism
• Cited ref. on mechanism is consistent with DMDO / TMDO oxidation

McDouall, J. J. W. J. Am. Chem. Soc. 1993, 115 (13), 5768–5775.
• Competitors (Que, Costas) has already investigated and proposed 

mechanism - they are barely mentioned among the references
• Reaction is not exactly stereospecific.
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Accepted Mechanism

Hammett plot and BDE-correlation experiment
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Acetic acid mediated Fe(V) generation

Proposed mechanism

Water mediated Fe(V) generation

Accepted Mechanism

Mechanistic studies:

(1) Bryliakov, K. P. ACS Catal. 2015, 5 (1), 39–44.
(2) Costas, M. Nat. Chem. 2011, 3 (10), 788–793.
(4) Que, L. J. Am. Chem. Soc. 2002, 124 (37), 11056–11063.
(5) Que, L. J. Am. Chem. Soc. 2001, 123 (26), 6327–6337.
and many more references therein...



10

White – further contributions

New catalyst with complimentary reactivity
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White – further contributions

New catalyst with complimentary reactivity
CF3  resistance to oxidation

Restricted approach trajectory

EWG more electrophilic oxidant
(methylene BDE – 98 kcal/mol)

More complex examples
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The Nitrogen Problem

White - overcoming amide and amine incompatibility

White, M. C. J. Am. Chem. Soc. 2017, 139 (41), 14586–14591.
White, M. C. J. Am. Chem. Soc. 2015, 137 (46), 14590–14593.
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The Nitrogen Problem

White - overcoming amide and amine incompatibility Costas – importance of a-substituents 

White, M. C. J. Am. Chem. Soc. 2017, 139 (41), 14586–14591.
White, M. C. J. Am. Chem. Soc. 2015, 137 (46), 14590–14593.

Important observation
a-position remains intact!

By far the best yields in the scope

Does the amide function “activates and deactivates” at the same time?

Rationalization

Costas, M.; Bietti, M. ACS Catal. 2017, 7 (9), 5903–5911.
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Costas – First enantioselective example

Important factors
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iron catalysis, whereas the ligands are 

very often “interchangeable”
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Costas – First enantioselective example

Important factors

Enantiodetermining step

Significant improvement 
in conversion and yield
(Carbamate and acetyl 
groups are also OK)

• Oxidatively robust acid additive
• Propionic acid gave similar results
• Note catalyst loading

ecp-type ligands were not successful with 
iron catalysis, whereas the ligands are 

very often “interchangeable”

Scope – substituents on the cyclohexyl ring

Costas, M. ACS Cent. Sci. 2017, 3 (3), 196–204.

• Compare with Fu, Jacobsen, Lee&Tan
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2-step / 1-pot protocol – only tertiary or activated C(sp3)-H bond ox.

Baran

Unactivated C(sp3)-H bond ox.

Proposed mechanism
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Baran
Optimization and important factors Key: choice of 

redox mediator

HFIP was also 
essential

Quinuclidine (green) and 
Aceclidine (yellow) has the 
highest thermodynamic 
potential (E1/2)  they are 
the best performing 
mediators
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Baran
Optimization and important factors

Proposed mechanism

Scope of the reaction

Key: choice of 
redox mediator

HFIP was also 
essential

How safe it is to run the 
cell filled with MeCN
and air?

Quinuclidine (green) and 
Aceclidine (yellow) has the 
highest thermodynamic 
potential (E1/2)  they are 
the best performing 
mediators
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Hartwig – C-N bond formation

Method

Mechanism

Hartwig, J. F. ACS Cent. Sci. 2016, 2 (10), 715–724.
Hartwig, J. F. Nature 2015, 517 (7536), 600–604.

Conclusions from preliminary studies
1. Tertiary alkyl radical is generated (lifetime <10-9 sec)
2. C-H bond cleavage is turnover limiting step (KIE = 5)
3. Iron is involved in C-N bond formation (Fe-N3 intermediate)
4. In MeCN, C-H lysis is faster, radical rebound in slower
5. In  EtOAc, C-H lysis is slower, radical rebound is faster
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Groves

C-H chlorination and bromination

C-H fluorination

Liu, W.; Groves, J. T. J. Am. Chem. Soc. 2010, 132 (37), 12847–12849.
Liu, W.; Groves, J. T. Science (80-. ). 2012, 337 (6100), 1322–1325.
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Groves – C-H halogenation
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C-H fluorination

Liu, W.; Groves, J. T. J. Am. Chem. Soc. 2010, 132 (37), 12847–12849.
Liu, W.; Groves, J. T. Science (80-. ). 2012, 337 (6100), 1322–1325.
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Mechanism – “heteroatom rebound catalysis”

C-H chlorination / bromination

Effect of apical – trans ligands

C-H fluorination

Liu, W.; Groves, J. T. J. Am. Chem. Soc. 2010, 132 (37), 12847–12849.
Liu, W.; Groves, J. T. Science (80-. ). 2012, 337 (6100), 1322–1325.
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Alexanian, Vanderwal – HLF-type halogenation

C-H bromination
HLF reaction needs 
strong acidic media 

(H2SO4)

Alexanian, E. J. J. Am. Chem. Soc. 2014, 136 (41), 14389–14392.
Vanderwal, C. D.; Alexanian, E. J. J. Am. Chem. Soc. 2016, 138 (2), 696–702.
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Alexanian, Vanderwal – HLF-type halogenation

C-H bromination

C-H chlorination

High selectivity to 
methylene C–H bonds

HLF reaction needs 
strong acidic media 

(H2SO4)

Trace acid could promote Cl2 

generation  polychlorinated product

Alexanian, E. J. J. Am. Chem. Soc. 2014, 136 (41), 14389–14392.
Vanderwal, C. D.; Alexanian, E. J. J. Am. Chem. Soc. 2016, 138 (2), 696–702.
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Lectka – photocatalyzed C-H fluorination

Working hypothesis for mechanism

Conditions

Lectka, T. Chem. Sci. 2014, 5 (3), 1175–1178.
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Lectka – photocatalyzed C-H fluorination

Working hypothesis for mechanism

Scope of transformation
Conditions

Lectka, T. Chem. Sci. 2014, 5 (3), 1175–1178.
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Overview

Major branches of C(sp3)-H oxidation chemistry
1. C-O bond formation

1. Heme or Non-heme Fe / Mn catalytic systems (White, Groves, Costas)
2. Electrochemical methods (Baran)
3. Hypervalent iodine based systems (Maruoka – not presented)

2. C-N bond formation
1. Iron / Hypervalent iodine system (Hartwig)
2. Metal-nitrenoid chemistry (Du Bois – not presented)

1. C-X bond formation
1. Heme or Non-heme Fe / Mn catalytic systems (Groves)
2. Intermolecular HLF reaction based halogenation (Alexanian)
3. Photocatalyzed halogenation (Lectka and others)

Take home message
1. Subtle electronic, steric and stereoelectronic factors determine the reaction outcome
2. Fe / Mn – based systems dominate the field
3. Short-lived radicals allow asymmetric C-H functionalization
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Questions

Where will the oxidation take place?

Explain the selectivity!
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Thank you for your attention !


