Non-Directed Oxidation of Unactivated C(sp³)-H Bonds

LSPN GROUP SEMINAR BY BALÀZS BUDAI 28.02.2019

Non-Directed C(sp³)-H oxidation

Focus on:

- Non-directed C(sp³)-H oxidation
- Non-activated C(sp³)-H bonds

Challenges

C(sp3)-H bond properties:

- 1. BDE ~96-101 kcal/mol
- 2. Lack of high energy n orbital
- **3.** Lack of low energy π * orbital
- 4. Very high pKa

Overoxidation

- 1. Product is often more reactive than SM
- 2. FG tolerance

Regioselectivity – strategies:

- 1. Tune redox potential of reagent
- 2. Play with steric elements
- 3. Directing group
- 4. Intramolecular reaction

Briefly or Not Discussed:

- Activated C(sp³)-H bonds
- Methods with low synthetic utility
- Supramolecular systems
- Enzymatic oxidations
- Heterogeneous methods

Non-Directed C(sp³)-H oxidation

Focus on:

- Non-directed C(sp³)-H oxidation ٠
- Non-activated C(sp³)-H bonds ٠

Challenges

C(sp3)-H bond properties:

- BDE ~96-101 kcal/mol 1.
- Lack of high energy n orbital 2.
- 3. Lack of low energy π * orbital
- Very high pKa 4.

Overoxidation

- Product is often more reactive than SM 1.
- FG tolerance 2.

Regioselectivity – strategies:

- **Tune redox potential of reagent** 1.
- **Play with steric elements** 2.
- **Directing group** 3.
- Intramolecular reaction

Non-Directed C(sp³)-H oxidation

Focus on:

- Non-directed C(sp³)-H oxidation
- Non-activated C(sp³)-H bonds

Challenges

C(sp3)-H bond properties:

- 1. BDE ~96-101 kcal/mol
- 2. Lack of high energy n orbital
- 3. Lack of low energy π * orbital
- 4. Very high pKa

Overoxidation

- 1. Product is often more reactive than SM
- 2. FG tolerance

Regioselectivity – strategies:

- 1. Tune redox potential of reagent
- 2. Play with steric elements
- 3. Directing group
- 4. Intramolecular reaction

0000000

Historical overview

Fenton, *JChemSocTrans* **1894** 899-910 Shilov *Zhurnal Fizicheskoi Khimii* **1969** 2174-2175 Bergman *JACS* **1982** 352 Barton, D. H. R. *Acc. Chem. Res.* **1992**, *25* (11), 504–512. Barton, D. H. R. *Chem. Soc. Rev.* **1996**, *25* (4), 237. TFDO / Curci *JOC* **1988**DMDO / Murray, *JOC* **1985**Oxaziridine / DesMarteau *JOC* **1993**Periana *Science* **1998**

Historical overview

Fenton, *JChemSocTrans* **1894** 899-910 Shilov *Zhurnal Fizicheskoi Khimii* **1969** 2174-2175 Bergman *JACS* **1982** 352 Barton, D. H. R. *Acc. Chem. Res.* **1992**, *25* (11), 504–512. Barton, D. H. R. *Chem. Soc. Rev.* **1996**, *25* (4), 237.

TFDO / Curci *JOC* **1988**DMDO / Murray, *JOC* **1985**Oxaziridine / DesMarteau *JOC* **1993**Periana *Science* **1998**

Historical overview

Shilov *Zhurnal Fizicheskoi Khimii* **1969** 2174-2175 Bergman *JACS* **1982** 352 Barton, D. H. R. *Acc. Chem. Res.* **1992**, *25* (11), 504–512. Barton, D. H. R. *Chem. Soc. Rev.* **1996**, *25* (4), 237. DMDO / Curci JOC **1988**DMDO / Murray, JOC **1985**Oxaziridine / DesMarteau JOC **1993**Periana *Science* **1998** Ligands developed for C(sp3)-H oxidation (before 2007)

[Fe^{III}₂(µ-O)(NO₃)₂(BBP)₂(CH₃OH)₂]²

Fell 0 0

[Fe^{III}₂((S)-L)(µ-O)(OBz)]⁺

R'-iPr, R-H: IPr, HPytacn

R-R'-H: tpa R-H, R'-Me; 5Me₃ tpa R-Me, R'-H; 6Me₃ tpa

mbnp Scheme 5.14 Schematic representation of relevant tetradentate ligands used to prepare

MeOPhep

(S,S,R)-mcpp iso-mep

> MeO Me

mononuclear iron(II) complexes to perform alkane oxidations

[Fell(BpdL₂)(CH₃CN)]²⁺

NCCH₃

MeO₂C

Ar

 $X = CI, CF_3SO_3$

CH₃CN

 $Ar = 2,6-iPr_2-C_6H_3$

2,6-Me₂-C₆H₃

 $[Fe^{II}CI_2(Py(Im^{IPr2}Ph)_2)], X = CI, Ar = 2,6-iPr_2-C_6H_3$ $[Fe^{II}(OTf)_2(Py(Im^{IPr2}Ph)_2)], X = CI, Ar = 2,6-iPr_2-C_6H_3$

[Fe^{II}CI₂(Py(Im^{Me2}Ph)₂)], X = CI, Ar = 2,6-Me₂-C₆H₃ [Fe^{II}(OTf)₂(Py(Im^{Me2}Ph)₂)], X = CI, Ar = 2,6-Me₂-C₆H₃

CH₂CN

MeO₂C

-N

CH3CN

2+

CO₂Me

[Fe^{III}(PaPy₃)(CH₃CN)]²⁺ [Fe^{III}(PMA)(CH₃CN)]²⁺ [Fe^{II}(CF₃SO₃)₂(Py(ProMe)₂)]

[Fe^{II}(BpdL₃)(CH₃CN)]²⁺ [Fe^{II}(N4Py)(CH₃CN)]²⁺

CO₂Me

OSO₂CF

[Fe^{II}(OTf)₂(Py(NMe₂)₂)]

[Fe^{II}(CI)₂(Ind)]

[Fell(tpoen)(CI)]+

[Fe^{II}(BnTPEN)(CH₃CN)]²⁺

2+

NCCHa

CF₃SO₃

Scheme 5.12 Iron catalysts with tridentate N-based ligands. OTf stands for CF₃SO₃ anion

2+

2+

- N

CH₃CN

MeÓ

OTf

OMe OTf

2+

White – the first preparatively useful method

White – the first preparatively useful method

"e) iterative addition protocol" = added 3x(cat+reagent+additive) Real equivalents are: **cat (15 mol%), AcOH (1.5 equiv.), H**2**O**2 **(3.6 equiv)**

White – the first preparatively useful method

"e) iterative addition protocol" = added 3x(cat+reagent+additive) Real equivalents are: **cat (15 mol%), AcOH (1.5 equiv.), H**2**O**2 **(3.6 equiv)**

Entry	y Sul	bstrate	Major Product	2	Isolated %Yield [*] (rsm) [†]	[Remote: Proximal] [‡]
1	remote	proximal		15, X = H	48 [§] (29)	1:1
2	H	H. F B	HOL H.	16, X = OAc	43 (35)	5:1
3	~	\sim	$\sim \sim $	17, X = Br	39 (32)	9:1
4		u		18, X = F	43 (20)	6:1
5	н	н	нојнј	19, X = OAc	49 (21)	29:1
6	X	××××	XXXX	20 , X = Br	48 (17)	20:1
7	H	HLAR	HO H H R	21, R = CH ₃	52 (18)	>99:1
8	~~	~ Å		22, R = OCH	l ₃ 56 (32)	>99:1

White - the first preparatively useful method

"e) iterative addition protocol" = added 3x(cat+reagent+additive) Real equivalents are: **cat (15 mol%), AcOH (1.5 equiv.), H**2**O**2 **(3.6 equiv)**

Mechanism – electrophilic oxygen C-H insertion?

- No proposed mechanism
- Cited ref. on mechanism is consistent with DMDO / TMDO oxidation McDouall, J. J. W. J. Am. Chem. Soc. **1993**, 115 (13), 5768–5775.
- Competitors (Que, Costas) has already investigated and proposed mechanism they are barely mentioned among the references
- Reaction is not exactly stereospecific.

*rsm = % recovered unoxidized starting material. * Starting material was recycled five times. * GC yield.

Major Product Isolated [Remote: Substrate Entry %Yield (rsm)[†] Proximal][‡] 48[§](29) remote proximal 15. X = H 1:1 16. X = OAc 43 (35) 5:1 17. X = Br 39 (32) 9:1 18. X = F 43 (20) 6:1 19, X = OAc 49 (21) 29:1 20, X = Br 48 (17) 20:1 21. R = CH2 52 (18) >99:1 22, R = OCH3 56 (32) >99:1

Hammett plot and BDE-correlation experiment

¹⁸O incorporation suggest M=O intermediate

Acetic acid mediated Fe(V) generation

Water mediated Fe(V) generation

Mechanistic studies:

Bryliakov, K. P. ACS Catal. 2015, 5 (1), 39–44.
 Costas, M. Nat. Chem. 2011, 3 (10), 788–793.
 Que, L. J. Am. Chem. Soc. 2002, 124 (37), 11056–11063.
 Que, L. J. Am. Chem. Soc. 2001, 123 (26), 6327–6337.
 and many more references therein...

New catalyst with complimentary reactivity

New catalyst with complimentary reactivity

10

10

Diversification of peptides and amino acids

Diversification of peptides and amino acids

Diversification of peptides and amino acids

37-61%

White, M. C. Nature 2016, 537 (7619), 214-219.

White - overcoming amide and amine incompatibility

White, M. C. J. Am. Chem. Soc. **2017**, 139 (41), 14586–14591. White, M. C. J. Am. Chem. Soc. **2015**, 137 (46), 14590–14593.

(S,S)-Mn(^{TIPS}ecp)

Scope – substituents on the cyclohexyl ring

 S20^a
 S21^b

 52%, (+)76% ee
 39%, (-)55% ee

S2^c **S1**^c 45%^d, (+)61% ee 50%^d, 64% ee

2-step / 1-pot protocol – only tertiary or activated C(sp3)-H bond ox.

Unactivated C(sp3)-H bond ox.

Proposed mechanism

Hartwig – C-N bond formation

Method

Mechanism

Entry	Substrate	Catalyst	Temperature (°C)	Additive	Yield (%)	Selectivity
1	cis	Fe(OAc) ₂ / L11	23	TEMPO*	3	NA
2	cis	Fe(OAc) ₂ /L11	23	BHT*	3	NA
3†	cis	Fe(OAc) ₂ /L11	80	NA	55	3.2
4†	trans	Fe(OAc) ₂ /L11	80	NA	43	3.2
5†	cis	BzOOBz	80	ABCN:	40	1.7
6†	trans	BzOOBz	80	ABCN‡	33	1.7

Conclusions from preliminary studies

- 1. Tertiary alkyl radical is generated (lifetime <10⁻⁹ sec)
- 2. C-H bond cleavage is turnover limiting step (KIE = 5)
- 3. Iron is involved in C-N bond formation (Fe-N₃ intermediate)
- 4. In MeCN, C-H lysis is faster, radical rebound in slower
- 5. In EtOAc, C-H lysis is slower, radical rebound is faster

Hartwig – C-N bond formation

Entry

2

3†

4†

5†

6†

Groves

C-H chlorination and bromination

C-H fluorination

Groves – C-H halogenat

C-H chlorination and bromination

C-H fluorination

Liu, W.; Groves, J. T. *J. Am. Chem. Soc.* **2010**, *132* (37), 12847–12849. Liu, W.; Groves, J. T. *Science (80-.).* **2012**, *337* (6100), 1322–1325.

Mechanism – "heteroatom rebound catalysis"

Lectka – photocatalyzed C-H fluorination

Working hypothesis for mechanism

Lectka – photocatalyzed C-H fluorination

Overview

Major branches of C(sp3)-H oxidation chemistry

- 1. C-O bond formation
 - 1. Heme or Non-heme Fe / Mn catalytic systems (White, Groves, Costas)
 - 2. Electrochemical methods (Baran)
 - 3. Hypervalent iodine based systems (Maruoka not presented)

2. C-N bond formation

- 1. Iron / Hypervalent iodine system (Hartwig)
- 2. Metal-nitrenoid chemistry (Du Bois not presented)

1. C-X bond formation

- 1. Heme or Non-heme Fe / Mn catalytic systems (Groves)
- 2. Intermolecular HLF reaction based halogenation (Alexanian)
- 3. Photocatalyzed halogenation (Lectka and others)

Take home message

- 1. Subtle electronic, steric and stereoelectronic factors determine the reaction outcome
- 2. Fe / Mn based systems dominate the field
- 3. Short-lived radicals allow asymmetric C-H functionalization

Questions

Where will the oxidation take place?

Explain the selectivity!

Literature

Important reviews/perspectives:

- 1. Cheng, J.-P. Chem. Rev. 2017, 117 (13), 8622–8648.
- 2. White, M. C. J. Am. Chem. Soc. 2018, 140 (C), 13988–14009.
- 3. Costas, M., Que, L. Chem. Rev. 2004, 104 (2), 939–986.
- 4. Theopold, K. H. Chem. Rev. 2010, 110 (2), 1060–1081.
- 5. Ackermann, L. Chem. Rev. 2018, acs.chemrev.8b00507.
- 6. Shi, Z. J. Chem. Rev. 2011, 111 (3), 1293–1314.
- 7. Perez, P. J. ChemInform **2008**, *39* (48), 3379–3394.
- 8. Maimone, T. J. J. Am. Chem. Soc. 2019.
- 9. Baran, P. S. Angew. Chemie Int. Ed. 2011, 50 (15), 3362–3374.
- 10. Nakamura, E. Chem. Rev. 2017, 117 (13), 9086–9139.
- 11. Nagib, D. A. Synth. 2018, 50 (8), 1569–1586.
- 12. Lei, A. Chem. Rev. 2017, 117 (13), 9016-9085.
- 13. Krska, S. W. Chem. Soc. Rev. 2016, 45 (3), 546–576.

- C-N and C-X bond
 - 1. Sharma, A. & Hartwig, J. F. Metal-catalysed azidation of tertiary C-H bonds suitable for late-stage functionalization. *Nature* **517**, 600–604 (2015).
 - 2. Karimov, R. R., Sharma, A. & Hartwig, J. F. Late stage azidation of complex molecules. ACS Cent. Sci. 2, 715–724 (2016).
 - 3. Liu, W. & Groves, J. T. Manganese Catalyzed C-H Halogenation. Acc. Chem. Res. 48, 1727–1735 (2015).
 - 4. Liu, W.; Groves, J. T. J. Am. Chem. Soc. 2010, 132 (37), 12847–12849.
 - 5. Liu, W.; Groves, J. T. Science (80-.). 2012, 337 (6100), 1322–1325.
 - 6. Liu, W. & Groves, J. T. Manganese Catalyzed C-H Halogenation. Acc. Chem. Res. 48, 1727–1735 (2015).
 - 7. Rana, S. et al. Selective C-H halogenation over hydroxylation by non-heme iron(iv)-oxo. Chem. Sci. 9, 7843–7858 (2018).
 - 8. Sathyamoorthi, S., Banerjee, S., Du Bois, J., Burns, N. Z. & Zare, R. N. Site-selective bromination of sp3C-H bonds. *Chem. Sci.* 9, 100–104 (2017).
 - Schmidt, V. A., Quinn, R. K., Brusoe, A. T. & Alexanian, E. J. Site-selective aliphatic C-H bromination using N -bromoamides and visible light. J. Am. Chem. Soc. 136, 14389–14392 (2014).
 - Quinn, R. K. *et al.* Site-Selective Aliphatic C-H Chlorination Using N-Chloroamides Enables a Synthesis of Chlorolissoclimide. *J. Am. Chem. Soc.* 138, 696–702 (2016).

Fe / Mn

- 1. Barton D. H. R., & Doller, D. The Selective Functionalization of Saturated Hydrocarbons: Gif Chemistry. Acc. Chem. Res. 25, 504–512 (1992).
- 2. Font, D. et al. Readily Accessible Bulky Iron Catalysts exhibiting Site Selectivity in the Oxidation of Steroidal Substrates. Angew. Chemie Int. Ed. 55, 5776–5779 (2016).
- 3. Visser, S. P. De, Kumar, D., Cohen, S., Shacham, R. & Shaik, S. A Predictive Pattern of Computed Barriers for C H Hydroxylation by Compound I of Cytochrome P450. 8362–8363 (2004). doi:10.1021/ja048528h
- 4. Clark, J. R., White, M. C., Feng, K., Howell, J. M. & Trzepkowski, L. J. Remote Oxidation of Aliphatic C–H Bonds in Nitrogen-Containing Molecules. J. Am. Chem. Soc. 137, 14590–14593 (2015).
- 5. Nanjo, T., De Lucca, E. C. & White, M. C. Remote, Late-Stage Oxidation of Aliphatic C-H Bonds in Amide-Containing Molecules. J. Am. Chem. Soc. 139, 14586–14591 (2017).
- 6. Liu, W. & Groves, J. T. Manganese Catalyzed C-H Halogenation. Acc. Chem. Res. 48, 1727–1735 (2015).
- 9. Rana, S. et al. Selective C-H halogenation over hydroxylation by non-heme iron(iv)-oxo. Chem. Sci. 9, 7843–7858 (2018).
- 10. Bassan, A., Blomberg, M. R. A., Siegbahn, P. E. M. & Que, L. A density functional study of O-O bond cleavage for a biomimetic non-heme iron complex demonstrating an FeV-intermediate. J. Am. Chem. Soc. 124, 11056–11063 (2002).
- 11. Qiu, B., Xu, D., Sun, Q., Lin, J. & Sun, W. Manganese-Catalyzed Asymmetric Oxidation of Methylene C-H of Spirocyclic Oxindoles and Dihydroquinolinones with Hydrogen Peroxide. Org. Lett. 21, 618–622 (2019).
- 12. Chen, M. S. & White, M. C. A Predictably Selective Aliphatic C H Oxidation Reaction for Complex Molecule Synthesis. Science (80-.). 318, 783–787 (2007).
- 13. Milan, M., Carboni, G., Salamone, M., Costas, M. & Bietti, M. Tuning Selectivity in Aliphatic C–H Bond Oxidation of N -Alkylamides and Phthalimides Catalyzed by Manganese Complexes. ACS Catal. 7, 5903–5911 (2017).
- 14. Osberger, T. J., Rogness, D. C., Kohrt, J. T., Stepan, A. F. & White, M. C. Oxidative diversification of amino acids and peptides by small-molecule iron catalysis. *Nature* 537, 214–219 (2016).
- 15. White, M. C. & Zhao, J. Aliphatic C-H Oxidations for Late-Stage Functionalization. J. Am. Chem. Soc. 140, 13988–14009 (2018).
- 16. Gormisky, P. E. & White, M. C. Catalyst-Controlled Aliphatic C–H Oxidations with a Predictive Model for Site-Selectivity. J. Am. Chem. Soc. 135, 14052–14055 (2013).
- 17. Milan, M., Bietti, M. & Costas, M. Highly Enantioselective Oxidation of Nonactivated Aliphatic C–H Bonds with Hydrogen Peroxide Catalyzed by Manganese Complexes. ACS Cent. Sci. 3, 196–204 (2017).
- 18. Ottenbacher, R. V., Talsi, E. P. & Bryliakov, K. P. Mechanism of Selective C–H Hydroxylation Mediated by Manganese Aminopyridine Enzyme Models. ACS Catal. 5, 39–44 (2015).
- 19. Chen, K. & Que, L. Stereospecific alkane hydroxylation by non-heme iron catalysts: Mechanistic evidence for an Fev=O active species. J. Am. Chem. Soc. 123, 6327–6337 (2001).
- 20. Barton, D. H. R. On the mechanism of Gif reactions. Chem. Soc. Rev. 25, 237 (1996).
- 21. Kawamata, Y. et al. Scalable, Electrochemical Oxidation of Unactivated C–H Bonds. J. Am. Chem. Soc. 139, 7448–7451 (2017).

Thank you for your attention !