

New C(sp³)-H Alkynylation
Methodologies:
Beyond Classical Activated Positions

Rubén Omar Torres Ochoa

Contents

1. Introduction

2. New C(sp³)-H Alkynylation Reactions

- Direct Alkynylation of C(sp³)-H Bonds
- Alkynylation through C(sp³)-H Activation Process
- Distal Alkynylation Based on 1,5-HAT

3. Conclusions

Introduction

Alkynes

Why are they so relevant?

-Synthetic H O H H H R1 R2 aldehydes alkenes

H O O HO $R^{1} - C' \qquad C - R^{2}$ $R^{2} \qquad OH O'$ $R^{2} \qquad C - R^{2}$ $R^{3} - C' \qquad C - R^{2}$ $R^{4} - C' \qquad C - R^{2}$ $R^{5} - C' \qquad C - R^{2}$

R-N-N N R¹ R² triazoles

alkanes

R¹ R²
addition products

Synthesis of alkynes

First approach

Corey-Fuchs

E. J. Corey, P. L. Fuchs, *Tetrahedron Lett.* **1972**, *13*, 3769.

Seyferth-Gilbert

D. Seyferth, et al. J. Org. Chem., 1971, 36, 1379.

Second approach

terminal alkyne

$$R^{2} = OH$$
 $R^{3} = OH$
 $R^{2} = OH$
 $R^{3} = OH$
 $R^{2} = OH$
 $R^{3} = OH$
 $R^{2} = OH$
 $R^{3} = OH$
 $R^{3} = OH$
 $R^{3} = OH$
 $R^{3} = OH$
 $R^{4} = OH$

B. M. Trost, et al. Adv. Synth. Catal. 2009, 351, 963.

R. Chinchilla, C. Nájera, Chem. Rev. 2007, 107, 874.

V. Gevorgyan, et al. Angew. Chem. Int. Ed. 2010, 49, 2096.

Alkynylation of C(sp³) bonds

$$\begin{array}{cccc}
R_1^1 & X & Alkyne & R_1^1 & Alkynyl \\
R^2 & R^3 & R^3
\end{array}$$

$$C(sp^3)-X$$

Prefuctionalization is required...

Ideal scenario

$$\begin{array}{ccc}
R_1^1 & H & Alkyne & R_2^1 & Alkynyl \\
R_1^2 & R_3^2 & R_3^2 & R_3^2
\end{array}$$

$$C(sp^3)-H$$

1. Alkynylation on activated C(sp³)-H bonds

-Acidic proton
Carbonyl compounds → Electrophilic alkynylation

J. Waser, et al. Chem. Soc. Rev. **2012**, 41, 4165 J. Waser, et al. Chem. Eur. J. **2010**, 16, 9557

-Easily oxidizable positions Allylic, benzylic, α to heteroatoms \rightarrow Cross-dehydrogenative coupling

C.-J. Li, et al. Angew Chem. Int. Ed. 2014, 53, 74

2. Unactivated C(sp³)-H bonds

-Direct alkynylation

-Alkynylation mediated by C-H activation

-Distal alkynylation mediated by 1,5-HAT

$$R \xrightarrow{X} H R_{2}$$

$$R \xrightarrow{XH} R^{2}$$

$$X = N, O$$

$$R \xrightarrow{XH} R^{2}$$

$$X = SO_{2}R,$$

$$EBX derivative$$

$$R \xrightarrow{XH} R^{2}$$

$$X = SO_{2}R,$$

$$R \xrightarrow{XH} R^{2}$$

Seminal work

solvent

Direct Alkynylation of C(sp³)-H Bonds

$$X=CH_2$$
, n=1, R=Ph 63% X=CH₂, n=2, R=Ph 83% X=CH₂, n=2, R=n-C6H₁₃ 62% X=CH₂, n=3, R=Ph 64%

Advantages:

- -Moderate to good yields
- -Saturated heterocycles, Et₂O and DCE were also alkynylated
- -Triflones are easily synthesized
- -Metal-free protocol
- -Aromatic and aliphatic alkynes

Disadvantages:

- -Few examples
- -Large excess of the alkane

$$R^1$$
 $+$ F_3CO_2S AIBN (20 mol%)
 R^2 reflux

solvent

Mechanism

rearrangement

$$R$$
 R
 $+$
 $SiMe_3$
 $t_{BuOH, rt}$
 R
 R
 R
 R
 R
 R

$$\begin{array}{c|c} \mathsf{OH} & \mathsf{NH}_2 \\ \hline \\ \mathsf{SiMe}_3 & \hline \\ \\ \mathsf{73}^c & \\ \\ \hline \end{array} \\ \mathsf{SiMe}_3$$

Advantages:

- -Good to high yields
- -Metal-free protocols
- -Predictable regioselectivity

Disadvantages:

-Large excess of the alkanes

Mechanism

Advantages:

- -Good chemical yields
- -Terminal alkynes were used
- -Catalyst are not expensive

Disadvantages:

- -Regioselectivity issues in linear alkanes
- -Large excess of alkane

Alternative to CDC

Mechanism

Seminal work

Alkynylation through C(sp³)-H Activation

Advantages:

- -Tolerant to several functionalities
- -γ-Position was also alkynylated
- -Quinoline scaffold is easily detachable

Limitations:

- -Mostly on secondary carbons
- -No full conversion

$$\frac{\text{Insertion}}{\text{Pd---N}} = \frac{\text{Insertion}}{\text{Br} - \text{SiR}_3} = \frac{\beta}{\text{Pd-N}}$$

$$R \xrightarrow{H} \underset{\text{Ar}}{\text{H}} \underset{\text{Ar}}{\text{H}} + R' - \underset{\text{R}}{\overset{\text{F}}{\text{i}}} = -Br \xrightarrow{\text{SiR}_2 \text{R'}} \frac{5 \text{ mol}\% \left[\text{Pd(allyl)Cl}\right]_2}{\text{IAd} \cdot \text{HBF}_4} \\ \xrightarrow{\text{Cs}_2 \text{CO}_3, \text{ Et}_2 \text{O}} \\ 85 \, ^{\circ}\text{C}, \text{ N}_2, \text{ 8 h}} R \xrightarrow{\text{SiR}_2 \text{R'}}$$

$$R^{4} \cdot \stackrel{\bigoplus}{N} N \cdot R^{4}$$
 BF_{4}
 $E = Ad$
 $E = Ad$

Advantages:

- -Broad scope and good yields (primary over secondary carbons)
- -Oxidant is not required

Limitations:

-Amides possessing a quaternary carbon at C-2 gave poor yields

NPr TIPS

Side product detected during optimization

NPhth
$$H \longrightarrow NHAr_F + TIPS \longrightarrow Br$$

$$AgOAc, toluene$$

$$10 mol% Pd(OAc)_2$$

$$12 mol% L$$

$$AgOAc, toluene$$

$$110 °C, 20 h$$

$$Ar_F = (4-CF_3)C_6F_4$$

TIPS NPhth
$$(n-Pr)_3Si$$
 NPhth TES NPhth Ph₃C NPhth NHAr_F NHAr_F NHAr_F NHAr_F NHAr_F NHAr_F NHAr_F NHAr_F NPhth NHAr_F NPhth NHAr_F NPhth NHAr_F NPhth NHAr_F NPhth NHAr_F NPhth NHAr_F NHAR

Advantages:

- -Broader scope and good yields (primary and secondary carbons)
- -Amides possessing a quaternary carbon at C-2
- -Alkynylation at C-3 position is feasible

Limitations:

-Reaction conditions are not the same for each substrate

Toluene : t- Amyl-OH

(0.3 mL: 0.2 mL) 105 °C, 16 h, Air

Ar = Ph, 64% yield, 94% ee Ar = p-MeC₆H₄, 55% yield, 90% ee Ar = p-ClC₆H₄, 61% yield, 95% ee

3n, R=H, 78% yield, 96% ee **3o**, R=Cl, 84% yield, 94% ee **3p**, R=Br, 80% yield, 95% ee **3q**, R=Me, 76% yield, 95% ee **3r**, R=NO₂, 58% yield, 96% ee

3s, R=F, 84% yield, 96% ee

Remarks:

- -First enantioselective C(sp³)-H alkynylation -BINOL was crucial in for both the reactivity
- -BINOL was crucial in for both the reactivity and enantioselectivity

Other remarkable works on this field:

1. Y. Zhang, et al. J. Am. Chem. Soc. 2015, 137, 12990

$$R^{1}$$
 NHQ + H R^{3} $\frac{\text{Co(OAc)}_{2} \cdot 4\text{H}_{2}\text{O, Ag}_{2}\text{CO}_{3}, \text{ TBAI}}{\text{Na}_{2}\text{CO}_{3}, \text{ pyridine}}$ R^{1} R^{2} = aryl or alkyl; R^{3} = aryl, alkyl, alkenyl

2. G. Chen, et al. Org. Lett. 2014, 16, 6260

PhthN,
$$AQ$$
 PhthN, AQ PhthN

3. X. Shi, et al. Org. Lett. **2016**, 18, 2970

Seminal work

Distal Alkynylation Based on 1,5-HAT

Advantages:

- -Carbamoyl and amidyl radicals performed well
- -Broad FG tolerance
- -Functionalization of secondary and tertiary positions
- -Good yields

Limitations:

- -Functionalization in a benzylic position failed
- -Only phenyl acetylene moiety was installed

4CzIPN

-Aromatic and aliphatic alkynes

-Tertiary carbons

-Secondary and primary carbons

Mechanism

PG N S
$$R^3$$
 initiator R^4 R^2 R^3 R^4 R^4

$$R_{R^2}^{1}$$
 $+$ R_{R^2} $+$ R_{R^3} $+$ R_{R^3}

$$R_{R^2}^{1/2}$$
 R^3

OH OH OH OH OH OH
$$C_5H_{11}$$
 C_5H_{11} C_5H_{12} C_5H_{13} C_5H_{14} C_5H_{15} C_7H_{15} C_7H_{15}

Other performed functionalizations:

Chlorination (TsCl)
Amination (DEAD)

Fluorination (NFSI)

- -Aliphatic or aromatic alkynes
- -Primary and tertiary hydroperoxides

Real catalytic specie

Clock experiment

Mechanism

$$\begin{array}{c} \text{Ph} \stackrel{\textstyle \longleftarrow}{\longrightarrow} \text{SO}_2\text{CF}_3 \\ \text{OOH} \\ & \begin{array}{c} \textbf{2e}, \text{LiBH}_4 \\ \hline \text{CH}_3\text{CN}, \text{RT} \end{array} \\ \end{array} \begin{array}{c} \text{OH} \\ \text{CH}_3 \end{array}$$

$$\begin{array}{c|c} & & & \\ \hline Ph & & & \\ \hline \end{array}$$

$$CH_3$$
alkyne
 SO_2
 CF_3
 CF_3
 CF_3
 CF_3
 CF_3
 $C_5H_{11}OO \cdot C_5H_{11}OOH$
 $C_5H_{11}OOH$

LiBH₄

Conclusions

New C(sp³)-H/alkynylation reactions on unactivated positions

-Direct alkynylation

- -Mediated by C-H activation
- -Mediated by 1,5-HAT

Supplementary to other well-established procedures

-Good chemical yields

-Terminal alkynes can be used

-High enantioselectivities are feasible