

Visible Light Induced C(*sp*³)-H Bonds Functionalization

LSPN Seminar BAO, Xu 13. 09. 2018

^b Pandey, G.; Laha, R., Angew. Chem.Int. Ed. 2015, 54, 14875.

Ar¹

 α -Acylation of Tertiary Amines NHC (10 mol%) Ru(bpy)₃Cl₂ (1 mol%) *m*-DNB (1.2 equiv) DCM, visible light up to 92% *ee* Ox R¹ ∎ Ox 13. R² :NR2 HC 11 R² + NR₂ +NR₂ н NHC Catalysis Photoredox Catalysis R H⁺ NR2 1 Aza-Breslow Intermediate 2+ R¹ HO IV NR₂ R2 NR₂ Ш

DiRocco, D. A.; Rovis, T., J. Am. Chem. Soc. 2012, 134, 8094

Functionalization of ethers

HΟ

O

Br Br ∗eosin Y Ò

Allylic C–H Functionalization

Aliphatic C–H Functionalization

Remote C–H Functionalization

Amidyl radical induced C-H Functionalization

Shen, X.; Zhao, J.-J.; Yu, S., Org. Lett. 2018, 20, 5523.

Advantage

- ➤ mild condition
- good compatibility with several functional group
- Formation of C-C and C-X bonds are possible

Disadvantage

- Poor regioselectivity
- Poor siteselectivity
- Enantioselectivity challenge

Many areas left to explore!