

Biocatalysis : Historical Development and Recent Applications

Bastien DELAYRE LSPN Seminars 2nd August 2018

- 1) Introduction
- 2) Historical Milestones
- 3) Applications of Wild-type Enzymes to Organic Synthesis : Examples
- 4) Protein Engineering : Rationale Design & Directed Evolution
- 5) Applications and Highlights of the Recent Literature
- 6) Conclusion & Outlook

1) Introduction

- Enzyme = in-yeast
- Proteins
- Nature's catalysts

Pancreatic Lipase (Guinea-Pig) PDB entry 1GPL

1996-2012 world's best selling drug

Louis Pasteur

Enzymatic catalysis in organic media at 100°C, Zaks A., Klibanov A.M., *Science*, **1984**, *224*, 1249-51 Enzyme-catalyzed processes in organic solvents, Zaks A., Klibanov A.M., *PNAS*, **1985**, *82*, 3192-96

8

3) Wild-type Enzymes : Lipases

- Lipases (Serine Proteases)
- Catalytic Triad
- Electron-relay mechanism

3) Wild-type Enzymes : Lipases

Chem. Soc. Rev., **2017**, 46, 2678-2691 Tetrahedron Lett. **1992**, 33, 7287–7290 OPRD, **2011**, 15, 294-300 • Halohydrin dehalogenases

3) Wild-type Enzymes : HHDH

4) Protein Engineering

Rational design

Known Protein Structure (X-Ray)

Site-directed mutagenesis (SDM)

If the mechanism is known, specific amino acids can be rationally exchanged e.g. steric hindrance

Smith, J. Biol. Chem., **1978**, 253, 6551–6560 Also see : J. Biol. Chem., **2006**, 281, e31

Directed Evolution

No structural information required

Random mutagenesis, creation of a mutant library, screening for desired properties, selection of the best mutants. Darwinian-type evolution.

Frances. H. Arnold

F. H. Arnold, *Biotechnol. Bioeng.*, **1992**, *39*, 658–662 *Also see : ACIE*, **2018**, *57*, 4143–4148

Combination of both

General Wisdom :

Directed Evolution can help identifying amino acids that should be substituted to improve performance

In many cases, but not all :

Additional effect of beneficial mutations

Mutations closer to the active more effectively influence the catalytic properties of enzymes

Chem. Rev., **2011**, *111*, 4141-4164 Trends Biotechnol., **2005**, *23*, 231 13 Curr. Opin. Chem. Biol. **2005**, *9*, 195

- A) KRED : Ketone Reductases
- **B)** Transaminases
- C) Diels-Alderase
- D) Olefin Cyclopropanation

5) Applications of Designed Enzymes : KREDs

Atorvastatin : Wild-type enzymes were subjected to directed evolution techniques to improve process efficiency

Overall yield >90%

KRED

Parameter	Process design	Initial process	Final process
Substrate loading/g L ⁻¹	160	80	160
Reaction time/h	<10	24	8
Biocatalyst loading/g L ⁻¹	<1	9	0.9
Isolated yield/%	>90	85	95
Chemical purity/%	>98 (GC)	>98	>98
E.e. of 4 /%	>99.5	>99.5	>99.9
Phase separation of organic product phase from aqueous phase containing enzyme/min	<10	>60	<1
Space-time yield/ $g_{product}$ L ⁻¹ d ⁻¹ Catalyst yield ($g_{product}/g_{cat}$)	>384 >160	80 9	480 178

Parameter	Process design	Initial process	Final process
Substrate loading/g L ⁻¹	>120	20	140
Reaction time/h	8	72	5
Biocatalyst loading/g L ⁻¹	1.5	30	1.2
Isolated yield/%	>90	67	92
Chemical purity/%	>98	>98	>98
E.e. of 1/%	>99.5	>99.5	>99.5
Phase separation of organic product phase from aqueous phase containing enzyme (min	<10	>60	<1
Space-time yield/ g_{product} L ⁻¹ d ⁻¹ Catalyst yield ($g_{\text{product}}/g_{\text{cat}}$)	>360 80	7 0.7	672 117

HHDH

5) Applications of Designed Enzymes : Transaminases

Sitaglyptin Synthesis : Chemocatalytic route vs. Enzymatic route

5) Applications of Designed Enzymes : Diels-Alderase

5) Applications of Designed Enzymes : Cyclopropanation

