

MULTICOMPONENT REACTIONS AND ORGANOCATALYSIS: A SUITABLE COMBINATION FOR STEREOSELECTIVE SYNTHESIS OF HIGHLY SUBSTITUTED BENZAZEPINES

Martina Spallarossa

Department of Chemistry and Industrial Chemistry, University of Genoa

- ✓ Atom economy
- ✓ Step economy
- ✓ Decoration diversity

X Scaffold diversity

X Stereochemical issue

- ✓ Atom economy
- ✓ Step economy
- ✓ Decoration diversity

- ✓ a new family of seven-membered heterocycles
- ✓ 3 new contigous stereogenic centers
- ✓ 4 possible points of diversity

Moni, L.; Basso, A.; Banfi, L.; Galatini, A.; Spallarossa, M.; Riva, R. J. Org. Chem. 2014, 79, 339-351

Retrosynthetic Analysis

Moni, L.; Basso, A.; Banfi, L.; Galatini, A.; Spallarossa, M.; Riva, R. J. Org. Chem. 2014, 79, 339-351

Synthesis of Boc-imine

Qing, Z.; Takacs, J. M. Org. Lett. **2008**, 10, 545. Banfi, L.; Guanti, G.; Riva, R. Tetrahedron: Asymmetry **1995**, 6, 1345. Yang, J. W.; Stadler, M.; List, B Angew. Chem. Int. Ed. **2007**, 46, 609.

Yang, J. W.; Pan, S. C.; List, B. Org. Synth, **2009**, 86, 11. Yang, J. W.; Stadler, M.; List, B Angew. Chem. Int. Ed. **2007**, 46, 609.

Staudinger Aza Wittig/Ugi-Joullié

entry	PR ₃	temp. (SAW)	solvent (Ugi)	<i>dr</i> (17a: 17b:17c)	yield % (4 steps)
1	PPh ₃	rt	MeOH	51.5 : 28.4 : 20.1	19
2	PPh ₃	rt	DCM	58.4 : 27.1 : 14.4	18
3	PPh ₃	rt	TFE	48.1 : 26.4: 25.4	13
4	PPh ₃	rt	Toluene	53.4 : 30.2 : 16.4	14
5	PPh ₃	0°C	DCM	64.0 : 22.4 : 13.6	58
6	PMe ₃	0°C	DCM	37.3 : 42.0 : 20.7	26
7	PBu ₃	0°C	DCM	43.3 : 37.2 : 19.5	8
8	PPh ₃	0°C	DCM	68.6 : 19.9 : 11.5	54

Yield: 58% (4 steps) 3 diastereomers 64:22:14

Relative configuration of the isomers

Table S3: Experimental coupling constants.

	Stereoisomer	J ₃₋₄	J ₄₋₅
a		6.6 Hz	0 Hz
b		6.9 Hz	8.7 Hz
c		6.0 Hz	7.2 Hz

Relative configuration of the isomers

Table S3: Experimental coupling constants.

Stereoisomer	J ₃₋₄	J ₄₋₅
a	6.6 Hz	0 Hz
b	6.9 Hz	8.7 Hz
c	6.0 Hz	7.2 Hz

Relative configuration of the isomers

Table S3: Experimental coupling constants.

Stereoisomer	J ₃₋₄	J ₄₋₅
a	6.6 Hz	0 Hz
Ь	6.9 Hz	8.7 Hz
c	6.0 Hz	7.2 Hz

Configuration of the two epimeric imines

A careful observation of the preferred conformation of cis imine suggests that the bottom face is relatively free and therefore a high diastereoselectivity favouring the product A is expected.

On the other hand, in the preferred conformation of trans imine, the upper face is encoumbered by the axial NH(Boc) group, but the lower face is also encoumbered, this time by the axial methyl group. Therefore the Ugi-Joullié reaction is expected to be less diastereoselective and slower.

regioselectivity problem 🛶 enzyme catalysis

Study of the scope

entry	subs	products	lipase	solvent	lipase/substrate (mg/mmol)	temp	time	a:b	yield (a + b)	conv
1	18a	19a, 21a	S-Amano PS	vinil acetate	22	10 °C	2 h	37:63	77%	60%
2	18a	19a, 21a	S-PPL	vinil acetate	65	20 °C	2 h	75:25	76%	50%
3	18a	19b, 21b	Amano AK	vinil butyrate	22	0 °C	6 h	0:100	40%	80%
4	18a	19b, 21b	S-PPL	vinil butyrate	44	10 °C	24 h	100:0	66%	67%
5	18a	19b, 21b	CAL	vinil butyrate	22	10 °C	6 h	68:32	76%	62%
6	18b	19a, 21a	CAL	buffer/ <i>i</i> Pr ₂ O ^d	29	20 °C	15 h	21:79	20%	85%
7	18c	19b, 21b	CAL	buffer/ <i>i</i> Pr ₂ O ^d	29	10 °C	19 h	12:88	25%	33%

Study of the scope

NHBoc I			BocHN	R ²
SO ₂ -p	Tol Mannich reaction	n SAW/Ugi-Joul	lié	
R ¹ N ₃	R ² 0	R ³ -NC R ⁴ -CC	D ₂ H R ¹	
14			17a-o	R ⁴
17a	17b	17c	17d	17e
R ¹ = H	R ¹ = H	<mark>R¹ =</mark> H	R ¹ = H	R ¹ = H
R ² = Me	R ² = Me	R ² = Me	R ² = Me	R ² = Me
R ³ = <i>t</i> -Bu	R ³ = <i>n</i> −Bu	<mark>R³</mark> = <i>n</i> −Bu	R ³ = 2,6 -(Me ₂)-C ₆ H ₃	$R^3 = CH_2CO_2Et$
R ⁴ = 5-Cl-2-thienyl	$R^4 = 3$ -Br- C_6H_4	<mark>R⁴</mark> = Ph	R ⁴ = Et	<mark>R</mark> ⁴ = Et
Y (A): 53%	Y (A): 48%	Y (A): 60%	Y (A): 55%	Y (A): 53%
Y (A + B + C): 83%	Y (A + B + C): 76%	Y (A + B + C): 86%	Y (A + B + C): 84%	Y (A + B + C): 83%
17f	17g	17h	1 7 i	171
R ¹ = H	R ¹ = H	R ¹ = H	R ¹ = H	R ¹ = H
R ² = Me	R ² = Me	R ² = Me	R ² = Bn	R ² = Bn
R ³ = cyclohexyl	$R^3 = nC_5H_{11}$	<mark>R³</mark> = Bn	<mark>R³</mark> = <i>t</i> −Bu	R ³ = Me
R ⁴ = S -BnCHNHFmoc	<mark>R⁴</mark> = S - <i>i</i> PrCHNHCbz	R ⁴ = MeOCH ₂	R ⁴ = 5-Cl-2-thienyl	R⁴ = 3-OMe-C ₆ H ₄
Y (A): 48%	Y (A): 55%	Y (A): 55%	Y (A): 42%	Y (A): 47%
Y (A + B + C): 68%	Y (A + B + C): 78%	Y (A + B + C): 73%	Y (A + B + C): 69%	Y (A + B + C): 70%
17m	17n	170		
R ¹ = 8 -Br	R ¹ = 8 -Br	R ¹ = 7 -Br		

<mark>R¹ = 8 -B</mark> r	R ¹ = 8 -Br	<mark>R¹</mark> = 7 -Br
<mark>R²</mark> = Bn	<mark>R²</mark> = Bn	R ² = Bn
$R^3 = CH_2CO_2Et$	<mark>R³</mark> = Bn	R ³ = <i>t</i> −Bu
<mark>R⁴</mark> = Ph	R ⁴ = CH ₂ NHFmoc	R ⁴ = Et
Y (A): 33%	Y (A): 47%	Y (A): 30%
Y (A + B + C): 46%	Y (A + B + C): 57%	Y (A + B + C): 41%

Secondary transformations

Suzuki reaction

Secondary transformations

Suzuki reaction

✓ New method for fast assembly of a new family of seven-membered heterocycles.

 Possibility of synthesizing, in high enantiomeric excess, unknown azido aldehydes by an organocatalytic procedure.

 Isolation in good overall yield of a single stereoisomer (out of eight) of a new heterocyclic structure endowed with three contiguous stereogenic centers.

The final products can be further derivatized.

