MULTICOMPONENT REACTIONS AND ORGANOCATALYSIS: A SUITABLE COMBINATION FOR STEREOSELECTIVE SYNTHESIS OF HIGHLY SUBSTITUTED BENZAZEPINES

Martina Spallarossa

Department of Chemistry and Industrial Chemistry, University of Genoa

Main Isocyanide based multicomponent reactions

\checkmark Atom economy
\checkmark Step economy
\checkmark Decoration diversity

X Scaffold diversity
X Stereochemical issue

Main Isocyanide based multicomponent reactions

\checkmark Atom economy
\checkmark Step economy
\checkmark Decoration diversity

X Scaffold diversity
X Stereochemical issue

Organocatalysis

The target

\checkmark a new family of seven-membered heterocycles
$\checkmark 3$ new contigous stereogenic centers
$\checkmark 4$ possible points of diversity

Moni, L.; Basso, A.; Banfi, L.; Galatini, A.; Spallarossa, M.; Riva, R. J. Org. Chem. 2014, 79, 339-351

Retrosynthetic Analysis

Moni, L.; Basso, A.; Banfi, L.; Galatini, A.; Spallarossa, M.; Riva, R. J. Org. Chem. 2014, 79, 339-351

Synthesis of Boc-imine

Qing, Z.; Takacs, J. M. Org. Lett. 2008, 10, 545.
Banfi, L.; Guanti, G.; Riva, R. Tetrahedron: Asymmetry 1995, 6, 1345.
Yang, J. W.; Stadler, M.; List, B Angew. Chem. Int. Ed. 2007, 46, 609.

Organocatalytic Mannich Reaction

Yang, J. W.; Pan, S. C.; List, B. Org. Synth, 2009, 86, 11.
Yang, J. W.; Stadler, M.; List, B Angew. Chem. Int. Ed. 2007, 46, 609.

Staudinger Aza Wittig/Ugi-Joullié

entry	$\mathbf{P R}_{\mathbf{3}}$	temp. (SAW)	solvent (Ugi)	$\boldsymbol{d r}$ $(\mathbf{1 7 a : ~ 1 7 b : 1 7 c) ~}$	yield \% (4 steps)
$\mathbf{1}$	PPh_{3}	rt	MeOH	$51.5: 28.4: 20.1$	19
$\mathbf{2}$	PPh_{3}	rt	DCM	$58.4: 27.1: 14.4$	18
$\mathbf{3}$	PPh_{3}	rt	TFE	$48.1: 26.4: 25.4$	13
$\mathbf{4}$	PPh_{3}	rt	Toluene	$53.4: 30.2: 16.4$	14
$\mathbf{5}$	PPh_{3}	$0^{\circ} \mathrm{C}$	DCM	$64.0: 22.4: 13.6$	58
$\mathbf{6}$	PMe_{3}	$0^{\circ} \mathrm{C}$	DCM	$37.3: 42.0: 20.7$	26
$\mathbf{7}$	PBu_{3}	$0^{\circ} \mathrm{C}$	DCM	$43.3: 37.2: 19.5$	8
$\mathbf{8}$	PPh_{3}	$0^{\circ} \mathrm{C}$	DCM	$68.6: 19.9: 11.5$	54

Yield: 58\% (4 steps)
 3 diastereomers 64:22:14

Relative configuration of the isomers

Table S3: Experimental coupling constants.

Stereoisomer		\mathbf{J}_{3-4}	\mathbf{J}_{4-5}
a	6.6 Hz	0 Hz	
b	6.9 Hz	8.7 Hz	
c	6.0 Hz	7.2 Hz	

Relative configuration of the isomers

Table S3: Experimental coupling constants.

	Stereoisomer	\mathbf{J}_{3-4}	
a	6.6 Hz	0 Hz	
b	6.9 Hz	8.7 Hz	
c	6.0 Hz	7.2 Hz	

Relative configuration of the isomers

Table S3: Experimental coupling constants.

Stereoisomer		\mathbf{J}_{3-4}	\mathbf{J}_{4-5}
a	6.6 Hz	0 Hz	
b	6.9 Hz	8.7 Hz	
c	6.0 Hz	7.2 Hz	

Configuration of the two epimeric imines

A careful observation of the preferred conformation of cis imine suggests that the bottom face is relatively free and therefore a high diastereoselectivity favouring the product A is expected.

On the other hand, in the preferred conformation of trans imine, the upper face is encoumbered by the axial $\mathrm{NH}(\mathrm{Boc})$ group, but the lower face is also encoumbered, this time by the axial methyl group. Therefore the UgiJoullié reaction is expected to be less diastereoselective and slower.

Study of the scope

regioselectivity problem \longrightarrow enzyme catalysis

Study of the scope

entry	subs	products	lipase	solvent	lipase/substrate $(\mathrm{mg} / \mathrm{mmol})$	temp	time	$\mathbf{a}: \mathbf{b}$	yield $(\mathbf{a}+\mathbf{b})$	conv 1
18a	19a, 21a	S-Amano PS	vinil acetate	22	$10^{\circ} \mathrm{C}$	2 h	$37: 63$	77%	60%	
2	18a	19a, 21a	S-PPL	vinil acetate	65	$20^{\circ} \mathrm{C}$	2 h	$75: 25$	76%	50%
3	18a	19b, 21b	Amano AK	vinil butyrate	22	$0{ }^{\circ} \mathrm{C}$	6 h	$0: 100$	40%	80%
4	18a	19b, 21b	S-PPL	vinil butyrate	44	$10^{\circ} \mathrm{C}$	24 h	$100: 0$	66%	67%
5	18a	19b, 21b	CAL	vinil butyrate	22	$10^{\circ} \mathrm{C}$	6 h	$68: 32$	76%	62%
6	18b	19a, 21a	CAL	buffer $/ \operatorname{Pr}_{2} \mathrm{O}^{\mathrm{d}}$	29	$20{ }^{\circ} \mathrm{C}$	15 h	$21: 79$	20%	85%
7	18c	19b, 21b	CAL	buffer $/ \operatorname{Prpr}_{2} \mathrm{O}^{\mathrm{d}}$	29	$10^{\circ} \mathrm{C}$	19 h	$12: 88$	25%	33%

Study of the scope

14

17b

$$
\begin{aligned}
& \mathrm{R}^{1}=\mathrm{H} \\
& \mathrm{R}^{2}=\mathrm{Me} \\
& \mathrm{R}^{3}=n-\mathrm{Bu} \\
& \mathrm{R}^{4}=3-\mathrm{Br}-\mathrm{C}_{6} \mathrm{H}_{4} \\
& \mathrm{Y}(\mathrm{~A}): 48 \% \\
& \mathrm{Y}(\mathrm{~A}+\mathrm{B}+\mathrm{C}): 76 \%
\end{aligned}
$$

17g
$\mathrm{R}^{1}=\mathrm{H}$
$\mathrm{R}^{2}=\mathrm{Me}$
$\mathrm{R}^{3}=n \mathrm{C}_{5} \mathrm{H}_{11}$
$\mathbf{R}^{4}=\mathrm{S}$ - PrCHNHCbz
$Y(A): 55 \%$
$Y(A+B+C): 78 \%$

17n

$\mathrm{R}^{1}=8-\mathrm{Br}$
$\mathrm{R}^{2}=\mathrm{Bn}$
$\mathrm{R}^{3}=\mathrm{Bn}$
$\mathbf{R}^{4}=\mathrm{CH}_{2}$ NHFmoc
Y (A): 47%
$Y(A+B+C): 57 \%$

17c
$R^{1}=H$
$\mathrm{R}^{2}=\mathrm{Me}$
$\mathrm{R}^{3}=n-\mathrm{Bu}$
$\mathbf{R}^{4}=\mathrm{Ph}$
$Y(A): 60 \%$
$Y(A+B+C): 86 \%$
17h
$R^{1}=H$
$\mathrm{R}^{2}=\mathrm{Me}$
$\mathrm{R}^{3}=\mathrm{Bn}$
$\mathbf{R}^{4}=\mathrm{MeOCH}_{2}$
$Y(A): 55 \%$
$Y(A+B+C): 73 \%$

170

$\mathrm{R}^{1}=7-\mathrm{Br}$
$\mathrm{R}^{2}=\mathrm{Bn}$
$\mathrm{R}^{3}=t-\mathrm{Bu}$
$\mathrm{R}^{4}=\mathrm{Et}$
$Y(A): 30 \%$
$Y(A+B+C): 41 \%$

17a-0

17d
17e

$$
\begin{aligned}
& \mathrm{R}^{1}=\mathrm{H} \\
& \mathrm{R}^{2}=\mathrm{Me} \\
& \mathrm{R}^{3}=\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et} \\
& \mathbf{R}^{4}=\mathrm{Et} \\
& \mathrm{Y}(\mathrm{~A}): 53 \% \\
& \mathrm{Y}(\mathrm{~A}+\mathrm{B}+\mathrm{C}): 83 \%
\end{aligned}
$$

17i
171

$$
\mathrm{R}^{1}=\mathrm{H}
$$

$\mathrm{R}^{2}=\mathrm{Me}$
$\mathrm{R}^{3}=2,6-\left(\mathrm{Me}_{2}\right)-\mathrm{C}_{6} \mathrm{H}_{3}$
$\mathrm{R}^{4}=\mathrm{Et}$
$Y(A): 55 \%$ $Y(A+B+C): 84 \%$

$$
\mathrm{R}^{1}=\mathrm{H}
$$

$$
\mathrm{R}^{2}=\mathrm{Bn}
$$

$$
\mathrm{R}^{2}=\mathrm{Bn}
$$

$$
\mathrm{R}^{3}=t-\mathrm{Bu}
$$

$$
\mathrm{R}^{4}=5-\mathrm{Cl}-2 \text {-thienyl }
$$

$$
\mathrm{R}^{3}=\mathrm{Me}
$$

Y (A): 42\%

$$
\mathrm{R}^{4}=3-\mathrm{OMe}-\mathrm{C}_{6} \mathrm{H}_{4}
$$

$$
Y(A): 47 \%
$$

$$
Y(A+B+C): 69 \%
$$

$$
Y(A+B+C): 70 \%
$$

17m

$\mathrm{R}^{1}=8-\mathrm{Br}$
$\mathrm{R}^{2}=\mathrm{Bn}$
$\mathrm{R}^{3}=\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$
$\mathrm{R}^{4}=\mathrm{Ph}$
Y (A): 33%
$Y(A+B+C): 46 \%$

Secondary transformations

Suzuki reaction

Secondary transformations

Suzuki reaction

Conclusion

\checkmark New method for fast assembly of a new family of seven-membered heterocycles.
\checkmark Possibility of synthesizing, in high enantiomeric excess, unknown azido aldehydes by an organocatalytic procedure.
\checkmark Isolation in good overall yield of a single stereoisomer (out of eight) of a new heterocyclic structure endowed with three contiguous stereogenic centers.
\checkmark The final products can be further derivatized.

Dank U Merci ${ }^{\text {mahalo Köszi }}$ Merci Moszi oobing ${ }^{\text {do }}$ Merci Gracias piepuil's Dekikuju danke Kiitos

