Ketyl Radical Test Solution - Thought Process, Preparation, and Use

NOTES:

This is a qualitative test for the presence of H_2O or O_2 in hydrocarbon solvents. This test is strictly qualitative. This is not a quantitative determination of O_2 / H_2O . Use DRY THF for preparation! If unsure, stir THF over sodium for 24 h and distill.

THF FW = 72.11 d = 0.8991 mL = 0.0123 mol = 7.424×10^{21} particles = 7.424×10^{15} millions

Desire < 10 parts H₂O per million parts THF => 7.424 x 10¹⁶ particles H₂O in 1 mL THF

Estimate 1 drop from 9" pipette is 175 μ L (\pm 50 μ L) Propose that 4x ketyl radical is sufficiently sensitive

Benzophenone (Ph₂C=O) FW = 182.22Ketyl Radical (Ph₂C-O $^{\bullet}$ Na $^{+}$) FW = 205.21

Conc. of one drop should be: $5 \times 10^{-7} \text{ mol} / 175 \,\mu\text{L} = 1.026 \times 10^{-4} \text{g} / 0.175 \,\text{mL} = 0.6 \,\text{mg/mL}$

This requires 12 mg of ketyl radical in 20 mL THF, or 10.7 mg benzophenone in 20 mL THF

Dissolved 17.0 mg benzophenone in 20 mL THF with ~12 mg Na⁰. Stirred for 48 h. Solution became dark inky purple. Tested box solvents by adding one drop of ketyl radical solution to 1 mL of solvent – Petroleum ether, diethyl ether, toluene, and benzene remain purple. THF (when dry) may appear blue due to dilution. The expected order of color change is usually: purple, blue, green, yellow, clear. Halogenated solvents cannot be tested by this method as they undergo radical chemistry, as will proteo-solvents, acetone, and acetonitrile.

JCT 9/12/00